TABLE OF CONTENTS

2818126	
	Page
Acknowledgements	iii
Abstract (English)	iv
Abstract (Thai)	vi
Table of Contents	ix
List of Tables	xiii
List of Figures	XV
Abbreviations and symbols	xx
Chapter 1 Introduction	
1.1 Statement and significance of the problem	1
1.1.1 Research objectives	5
1.1.2 Usefulness of the research (Theoretical and/or Applied)	5
1.1.3 Research plan, methodology and scope	5
1.2 Literature review 19913313800	6
1.2.1 Rice (Oryza Sativa L.) Chiang Mai Unive	rsity
1.2.2 Germination	14
1.2.3 Gamma-amino butyric acid	21
1.2.4 GABA determination techniques	30
1.2.5 Glutamate decarboxylase (GAD) activity and GAD protein assays	41

Chapter 2 Materials and methods

2.1	Materials and chemicals	49
	2.1.1 Chemicals for investigation of GABA and amino acids content	49
	2.1.2 Chemicals for determination of GAD activity	50
	2.1.3 Chemicals for protein extraction and SDS-PAGE analysis	50
	2.1.4 Chemicals for western blotting analysis	51
	2.1.5 Chemicals for proteomic analysis	52
	2.1.6 Instruments	54
	2.1.7 Plant Materials	54
2.2	Methods	54
	2.2.1 Germination	54
	2.2.2 Physiological measurement	55
	2.2.3 GABA and amino acid extraction	55
	2.2.4 Derivatization and standard calibration curve of GABA	55
	2.2.5 GABA and amino acid contents determination	56
6 2	2.2.6 GAD enzyme activity determination	56
ດບ	2.2.7 Investigation of protein profile of GABA enriched-rice	nIJ
Co	using SDS-PAGE by Chiang Mai Univer	61
AI	2.2.8 Proteomic analysis	64
	Chapter 3 Results	
3.1	Physiological appearance	68
3.2	GABA and amino acid contents determination	70
	3.2.1 Standard calibration curve for GABA content determination	70
	3.2.2 GABA contents	70

		Page
	3.2.3 Standard calibration curve of amino acids	73
	3.2.4 Amino acids contents	73
	3.2.5 Comparison of GABA and amino acid contents between rice	
	cultivars	79
3.3	GAD enzyme activity determination	80
	3.3.1 Effect of factors influencing the GAD activity	80
	3.3.2 GAD activity determination in germinated rice grain and young leaves	82
3.4	Investigation of protein profile of GABA enriched-rice	
	using SDS-PAGE	84
	3.4.1 Change in total protein between germinated rice grain	
	non-germinated grains and young leaves	84
	3.4.2 Change in total protein at different germination time	86
3.5	Proteomic analysis	87
Cha	pter 4 Discussion	
4.1	Physiological appearance of rice during germination	91
C ^{4.2}	GABA contents in rice during germination	93 tv
4.3	Amino acid contents in rice during germination	96
4.4	Comparison of GABA and amino acid contents among rice cultivars	97
4.5	GAD assay by LC-MS and Western blotting	98
4.6	Change in protein profile of rice after germination and non-germination	99
4.7	Proteomic analysis of non germinated rice grains and its change during	100
	germination	

	Page
Chapter 5 Conclusions	
References	104
Appendices	120
Appendix A Preparation of the chemical reagents	121
Appendix B Derivatization for the determination of GABA	128
and amino acids	
Appendix C Calculations	129
Appendix D Chromatogram of Liquid chromatography-Mass Spectrum	135
Appendix E Mass spectrum, PMF and amino acid sequencing	148
Appendix F Comparison of GABA and amino acids content between rice	152
cultivars	
Appendix G GABA and amino acids contents	160
Curriculum vitae	167

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University AII rights reserved

LIST OF TABLES

Table

Δ

Page

Table	e 30 NHEIHA 2/2	Page
1.1	Previous reports of GABA production from rice germination	4
1.2	Rice classification base on amylose content	7
1.3	Protein compositions of some types of seeds	16
1.4	Change in the amino acid content of rice seeds during germination	18
1.5	Previous reports for GABA determination by HPLC	34
1.6 🕻	Various methods for GABA determination	40
1.7	Methods for GAD activity determination	48
2.1	The reaction mixture of crude GAD enzyme at different pH values	57
2.2	The reaction composition for the determination of GAD activity at	50
	different amounts of enzyme	58
2.3	The varying amount of substrate for GAD activity assay	58
2.4	The amount of solution for the Bradford assay	62
2.5	10% separating gel and stacking gel solution preparation for gel	62
2.2	Summers of Interested metric decreased comparison in CADA	
3.3	summary of interested protein decreased expression in GABA-	90
D 1	Molecular weight of CARA and 12 amine acids containing in rice	KII
D .1	Molecular weight of GABA and 12 animo acids containing in fice	
opy	sample before and after derivatization with HN	¹²⁸
C. 1	Example of Peak area of injected sample of non-germinated SPT1	129
~ •	cultivar (control)	
C. 2	The amount of solution for the Bradford assay for calculation	134
F.1	Rice cultivars categories group base on their GABA and amino acids contents in rice grains	153
F.2	Rice cultivars categories group base on their GABA and amino acids	157
G.1	GABA contents in germinated rice grain and young leave of seven selected cultivars	160

G.2	Amino acids content of germinated rice grain at different germination days of seven selected cultivars	162
G.3	Amino acids content of young leave at different germination days of	165
	seven selected cultivars	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Page

LIST OF FIGURES

	Figur	es 1318126	Page
	1.1	Comparative rice grain morphological of sub-species of rice	6
	1.2	Rice grain (a) Structure of rice grain and (b) Cross section of rice kernel	8
	1.3	Rice germinated seed begins with protrusion	9
	1.4	Rice seedling development under aerobic and light conditions	13
	1.5	SDS-PAGE of total protein of grains at the various germination days	20
	1.6	Polypeptide composition of the starchy endosperm of rice during	
		germination	20
	1.7	GABA structure	21
	1.8	Common depiction of the GABA shunt	24
	1.9	Mitochondrial GABA metabolism	25
]	1.10	GAD enzyme catalyzed L-glu to GABA	26
]	1.11	GABA-T enzyme catalyzed GABA to SSA	28
]	1.12	SSADH enzyme catalyzed SSA to succinate	28
1	1.13	High-Performance Liquid Chromatography (HPLC) system	31
1	1.14	HPLC analysis of rice sample consisting of GABA	32
1	1.15	Schematic diagram of the flow-injection system for the sequential	
		quantification of GABA and L-glu	39
â	1.16	Schematic of a representative enzymatic assay by HPLC	42
	1.17	SDS-PAGE and Western-blot analyses of RiceGAD-encoded protein	IJ
С	00	expression O by Chiang Mai University	45
	1.18	Rice GAD introduced into E. coli BL21 for overexpression of the	
A		recombinant proteins using western blotting analysis S C C C	45
	2.1	Membrane preparation and gel sandwich setting of Western blotting	
		technique.	59
	2.2	Transferred membrane was transfer to blocking solution in plastic bag	60
	2.3	SDS-PAGE setting machine attached with the power supply for protein	<i>(</i>)
		separation	63

		Page
2.4	IEF instrument setting for first dimension separation protein from rice	65
2.5	SDS-PAGE (18×35cm) setting for protein separation in second	
	dimension base on the molecular weight	65
3.1	Development of represented rice of KDML 105 cultivars during	
	germination	68
3.2	Seedling developments under aerobic and light conditions at 30°C.	00
	Change in grain weight	69
3.3	Standard calibration curve of GABA	70
3.4	GABA contents of germinated rice grains and young leaves.	71
3.5	HPLC chromatograms of rice extracts after derivatization showing	
	GABA and amino acids derivative peaks	72
3.6	Standard calibration curve of amino acids	74
3.7	Amino acids content in germinated rice grains in different rice cultivars	75
3.8	Amino acids content in rice leave in different rice cultivars	77
3.9	Optimal pH at 40°C of GAD enzyme	80
3.10	The effect of amount of GAD enzyme on their activity of young leaves	
	and germinated rice grain	81
3.11	The effect of amount of substrate and incubation time on GAD activity	82
3.12	GAD activity of (a) SPT1 cultivars (b) KDML 105 cultivars at different	
8 21	germination time of growing part	83
3.13	SDS-PAGE and Western blot analyses of RiceGAD-encoded protein	ΠIJ
Con	expression. O by Chiang Mai Univer	84
3.14	SDS-PAGE analysis of protein profile of rice seedling extract)	85
A 3.15	Protein profile of germinated rice grains and young leave of (a) KDML -	e d
	105 cultivars (b) and SPT1 cultivars	86
3.16	2-D gel image of coomassie brilliant blue-R 250 stained proteins profile	
	of KDML 105 cultivar	88
3.17	2-D gel image of coomassie brilliant blue-R 250 stained proteins profile	00
	of SPT1 cultivar	89

		Page
4.1	The device was made for observation and quantitative measurement	
	of root growth during germination stage	92
C.1	Standard curve of GABA standard	129
C.2	Chromatogram and peak area of GABA produced from crude GAD	
	enzyme within 10 min of KDML cultivars at 5 germination day	131
C.3	Chromatogram and peak area of crude GAD enzyme containing	
	endogenous GABA	131
C.4	Standard curve of GABA standard for GAD activity assay	132
C.5	Standard curve of BSA standard	134
D1.1.1	Standard GABA 250 ppm	135
D1.1.2	Standard GABA 125 ppm	135
D1.1.3	Standard GABA 50 ppm	135
D1.1.4	Standard GABA 10 ppm	135
D 2.1.1	Chromatogram of germinated rice grains containing GABA	136
D 2.1.2	Chromatogram of germinated rice leave containing GABA	136
D 2.1.3	Chromatogram of GABA standard	136
D 2.1.4	Mass spectrum of samples containing GABA	136
D 3.1.1	Chromatogram of germinated rice grains containing arginine	137
D 3.1.2	Chromatogram of germinated rice leave containing arginine	137
D 3.1.3	Chromatogram of arginine standard	137
D 3.1.4	Mass spectrum of samples containing arginine	137
D 3.2.1	Chromatogram of germinated rice grains containing asparagine	138
D 3.2.2	Chromatogram of germinated rice leave containing asparagine	138
D 3.2.3	Chromatogram of asparagine standard	138
A D 3.2.4	Mass spectrum of samples containing asparagine	138
D 3.3.1	Chromatogram of germinated rice grains containing serine	139
D 3.3.2	Chromatogram of germinated rice leave containing serine	139
D 3.3.3	Chromatogram of serine standard	139
D 3.3.4	Mass spectrum of samples containing serine	139
D 3.4.1	Chromatogram of germinated rice grains containing glycine	140
D 3.4.2	Chromatogram of germinated rice leave containing glycine	140

		Page
D 3.4.3	Chromatogram of glycine standard	140
D 3.4.4	Mass spectrum of samples containing glycine	140
D 3.5.1	Chromatogram of germinated rice grains containing glutamic acid	141
D 3.5.2	Chromatogram of germinated rice leave containing glutamic acid	141
D 3.5.3	Chromatogram of glutamic acid standard	141
D 3.5.4	Mass spectrum of samples containing glutamic acid	141
D 3.6.1	Chromatogram of germinated rice grains containing tyrosine	142
D 3.6.2	Chromatogram of germinated rice leave containing tyrosine	142
D 3.6.3	Chromatogram of tyrosine standard	142
D 3.6.4	Mass spectrum of samples containing tyrosine	• 142
D 3.7.1	Chromatogram of germinated rice grains containing alanine	143
D 3.7.2	Chromatogram of germinated rice leave containing alanine	143
D 3.7.3	Chromatogram of alanine standard	143
D 3.7.4	Mass spectrum of samples containing alanine	143
D 3.8.1	Chromatogram of germinated rice grains containing valine	144
D 3.8.2	Chromatogram of germinated rice leave containing valine	144
D 3.8.3	Chromatogram of valine standard	144
D 3.8.4	Mass spectrum of samples containing valine	144
D 3.9.1	Chromatogram of germinated rice grains containing tryptophan	145
D 3.9.2	Chromatogram of germinated rice leave containing tryptophan	145
D 3.9.3	Chromatogram of tryptophan standard	145
D 3.9.4	Mass spectrum of samples containing tryptophan	145
D 3.10.1	Chromatogram of germinated rice grains containing isoleucine	146
D 3.10.2	Chromatogram of germinated rice leave containing isoleucine	146
D 3.10.3	Chromatogram of isoleucine standard	G146
D 3.10.4	Mass spectrum of samples containing isoleucine	146
D 3.11.1	Chromatogram of germinated rice grains containing leucine	147
D 3.11.2	Chromatogram of germinated rice leave containing leucine	147
D 3.11.3	Chromatogram of leucine standard	147
D 3.11.4	Mass spectrum of samples containing leucine	147

		Page
E.1	Spot number C1; hypothetical protein OsI_13867 [Oryza sativa	
	Indica Group]Function: 0045735-nutrient reservoir activity.	149
E.2	Spot number C2; hypothetical protein OsI_13867 [Oryza sativa	
	Indica Group] Function: nutrient reservoir activity	150
E.3	Spot number C3; hypothetical protein OsI_13867 [Oryza sativa	
	Indica Group], globulin 2 Function: Storage protein in seed	151

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xix

ABBREVIATIONS AND SYMBOLS

