TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
NOMENCLATURE AND ABBREVIATIONS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Passive Cooling in Building	1
1.1.1 Shading	1
1.1.2 Solar Chimney	2
1.1.3 Earth Cooling Tube	2
1.2 Passive Cooling by Nocturnal Long Wave Radiation	3
1.3 Literature review	4
ada 1.3.1 Reviewed Study DIABLE BOL	4
1.3.2 Experimental Studies 1.3.3 Simulated Model with Experimental Studies	5 9
A 1.3.4 Applications of Nocturnal Cooling eserv	e_{12}
1.4 Objectives of the Study	15
1.5 Significances	15
1.6 Scopes	15

1.7 Organization of the Thesis	16
CHAPTER 2 PRINCIPLES AND THEORIES	18
2.1 Closed-End Thermosyphon Heat Pipe	18
2.2 Nocturnal Long Wave Radiation	24
	20
CHAPTER 3 SIZING OF THERMOSYPHON EVAPORATOR LENGTH	30
3.1 Introduction	30
3.2 Experimental Setup	32
3.3 Simulation Setup	39
3.4 Results and Discussion	43
3.5 Summary	45
CHAPTER 4 NOCTURNAL LONG WAVE PASSIVE COOLING	
FOR BUILDING	47
4.1 Introduction	47
4.2 Experimental Setup	50
4.3 Simulation Model	52
4.4 Model Verification	62
4.5 Energy Analysis	65
4.6 Sensitivity Analysis	71
4.7 Economical Analysis	72
4.8 Summary	75

FOR SEASONAL COOL STORAGE APPLICATION	76
5.1 Introduction	76
5.2 Energy Analysis	80
5.3 Summary	84
CHAPTER 6 CONCLUSIONS	85
REFERENCES	89
APPENDICES	
APPENDIX A: Publication	93
APPENDIX B: Source Code of Engineering Equation Solver (EES) for	
Finding Rate of Heat Rejected by Thermosyphon Heat Pipe	140
CURRICULUM VITAE	144

LIST OF TABLES

Table		Page
3.1	The calculation parameters for the experimental system design.	38
4.1	The operational parameters of thermosyphon heat pipe.	50
4.2	The conditions for the simulation of the tested room.	63
4.3	The conditions for the whole-year simulation.	66
4.4	The initial cost for 48 thermosyphon heat pipes.	74
4.5	The calculated conditions for economical analysis.	74
4.6	The cash flows (Baht) at each controlled room temperature.	74
5.1	The conditions for the seasonal simulation.	77

LIST OF FIGURES

Figure		Page
2.1	Thermosyphon.	19
2.2	Thermal resistance and their locations.	21
2.3	Electromagnetic spectrum ranges.	26
3.1	Flow chart of the design concept.	31
3.2	Schematic drawing of the experimental setup.	33
3.3	Temperature sensors with 16 channel data logger, ± 0.1 °C in accuracy.	34
3.4	Attaching the sensors with the thermosyphon heat pipe by	
	chromium wire before coating with silicone sealant.	35
3.5	The experimental result of water temperature between	
	$L_e/L = 1.00, 0.67$ and 0.33 studied cases.	36
3.6	The experimental result of rate of rejected heat between	
	$L_e/L = 1.00, 0.67 \text{ and } 0.33 \text{ studied cases.}$	36
3.7	The averaged convective heat transfer coefficient for each L_e/L .	37
3.8	The 1.0 m^3 water storage tank with 48 thermosyphon heat pipe.	39
3.9	The computational domain of $L_e/L= 1.00$ by structure grid. The	
	initial and boundary condition applied at the computation domain.	43
3.10	The vector flow field and temperature distribution	
	at 1.0 hour simulation.	44
3.11	The vector flow field and temperature distribution	
	at 12.0 hours simulation.	45

4.1	The concept of cool water production by nocturnal cooling.	48
4.2	Flowchart of the calculation step for the nocturnal passive	
	cooling system in any building.	49
4.3	The experimental unit.	52
4.4	Schematic diagrams of heat input and output at the	
	considered boundaries.	54
4.5	The equation fitting from an experiment to find the correlation	
	between radiator temperature, stored water temperature	
	and sky temperature.	55
4.6	The calculation steps for estimating the stored water temperature,	
	room temperature and the percent load reduction by the	
	passive system.	61
4.7	The comparison between the stored water temperature and	
	tested room temperature from the experiment and that	
	from the simulation results in February 2006.	64
4.8	Comparison of the radiation heat rejection and the convection	
	heat load on the18 th February 2006 night.	65
4.9	The simulated whole-year cool water temperature. The passive	
	system has a 1.0 m^3 storage tank with 6.36 m^2 radiator area.	
	The inside air-conditioned room temperature is at 27.0 °C.	68
4.10	The percent load reduction of the air-conditioning system	
	under the controlled condition.	70
4.11	The sensitivity analysis of the tested unit.	71
4.12	The NPV and the interest rate of the tested unit	73

5.1	Flowchart of the long term seasonal passive cooling system.	76
5.2	The simulated whole-year temperature of the cooling water	
	used in summer. The passive system had a 15.0 m ³ storage tank	
	with 100.0 m ² radiator area. The inside air-conditioned	
	room temperature was at 27.0°C.	79

5.3

5.4

The simulated whole-year temperature of the cooling water used in summer. The passive system had a 100.0 m³ storage tank, 100.0 m² radiator area and with $(UA)_{coil} = 500 \text{ W K}^{-1}$. The inside air-conditioned room temperature was at 27.0°C. The percent cooling load reduction in the summer period (1 March -30 June) during daytime. The storage tank was 5.0 m³ and 15.0 m³.

80

83

NOMENCLATURE AND ABBREVIATIONS

	Latin Symbols	
Letter	Description	Unit
А	area,	m ²
C_p	constant pressure specific heat,	J kg ⁻¹ K ⁻¹
C _v	constant volume specific heat,	J kg ⁻¹ K ⁻¹
h	convective heat transfer of radiator sheet,	$W m^{-2} K^{-1}$
k	thermal conductivity,	$W m^{-1} K^{-1}$
L 735	thickness,	m ZOS
m	mass,	kg
• m	mass flow rate,	kg s ⁻¹
Q	heat transfer,	J
$\dot{\varrho}$	rate of heat transfer	W
Т	temperature,	К
U	overall heat transfer coefficient,	$W m^{-2} K^{-1}$
van	volume 1918188	m ³ SOINU
	ht by Chiang Ma Greek Letters	i University
Letter	Description US P	S _{Unit} rved
Δt	time interval,	S
ε	emissivity of the radiator surface	
ρ	density,	kg m ⁻³

Subscripts and Superscripts

Letter	Description
а	ambient
air	air
coil	heat exchanger coil
convection	convection
dp	dew point
gain	gain from surrounding to the storage tank
gain(room)	gain from surrounding to tested room
i	the present number of calculation
<i>i</i> +1	the later number of calculation
i-1	the former number of calculation
ins	storage tank insulation
ins(room)	tested room insulation
load	load from artificial heater
load(overall)	total cooling load during the daytime
ритр	submersible pump
rad	radiator
radiation	radiation hts reserved
removed	removed at the cooling coil
room	room
sky	atmosphere and outer space

stored	stored in storage tank
stored(room)	stored in tested room
tank	storage tank
w	water
wc	water in heat exchanger coil
wc(in)	water in heat exchanger coil at inlet point
wc(out)	water in heat exchanger coil at outlet point