

Appendix A

NITRATE, MR (0 to 4.5 mg/L NO₃⁻-N)

Method 8171, Cadmium Reduction Method, Using Powder Pilows:

- Enter the stored program number for high rang nitrate nitrogen (NO₃⁻-N).
 Press: 353 ENTER The display will show: dial nm to 400
- Rotate the wavelength dial until the small display show: 400 nm. When the correct wavelength is dialed in, the display will quickly show: Zero sample then: mg/L NO₃¬N MR
- 3. Fill a sample cell with 25 mL of sample. (the prepare sample)
- 4. Fill another cell with 25 mL of deionized water (the blank).
- Add the contents of one Nitra Ver 5 Nitrate Reagent Poder Pillow to each cell. Stopper.
- 6. Press: **SHIFT TIMER** A one-minute reaction period will begin. Shake until the time beeps.
- 7. When the timer beeps, press: **SHIFT TIMER** A five-minute reaction period will begin.
- When the timer beeps, the display will show: mg/L NO₃-N MR Place the blank into the cell holder. Close the light shield.
- 9. Press: ZERO the display will show: Zeroing.....then: 0.0 mg/L NO₃-N MR
- 10. Place the prepare sample into the cell holder. Close the light shield.
- **11.** Press: **READ** the display will show: **Reading....**then the result in mg/L nitrate expressed as nitrogen (NO₃⁻-N) will be displayed.

Sampling and storage:

Collect samples in clean plastic or glass bottles. Store at 4 0 C (39 0 F) or lower if the sample is to be analyzed with 24 to 48 hours. Warm to room temperature before running the test.

PHOSPHORUS, REACTIVE (0 to 2.5 mg/L PO₄³⁻)

(Also called Orthophosphate)

Method 8048, PhosVer 3 (Ascorbic Acid) Method, Using Powder Pilows:

- Enter the stored program number for reactive phosphorus, ascorbic acid method.
 Press: 490 ENTER The display will show: dial nm to 890
- Rotate the Rotate the wavelength dial until the small display show: 890 nm. When the correct wavelength is dialed in, the display will quickly show: Zero sample then: mg/L PO₄³·PV
- 3. Insert a 10-mL Cell Riser into the cell compartment.
- 4. Fill a 10-mL sample cell with 10 mL of sample.
- 5. Add the contents of one Phosphate Powder Pillow for 10 mL sample to the cell (the prepare sample). Swirl immediately to mix.
- 6. Press: SHIFT TIMER A two-minute reaction period will begin.
- 7. Fill a second 10-mL sample cell with 10 mL of sample (this is the blank).
- 8. When the timer beeps, the display will show: $mg/L PO_4^{3-}PV$ Place the blank into the cell holder. Close the light shield.
- 9. Press: **ZERO** the display will show: **Zeroing....** then: **0.0 mg/L PO₄³**·PV
- **10.** Place the prepare sample into the cell holder. Close the light shield.
- Press: READ the display will show: Reading....then the result in mg/L PO₄³⁻ will be displayed.

Sampling and storage:

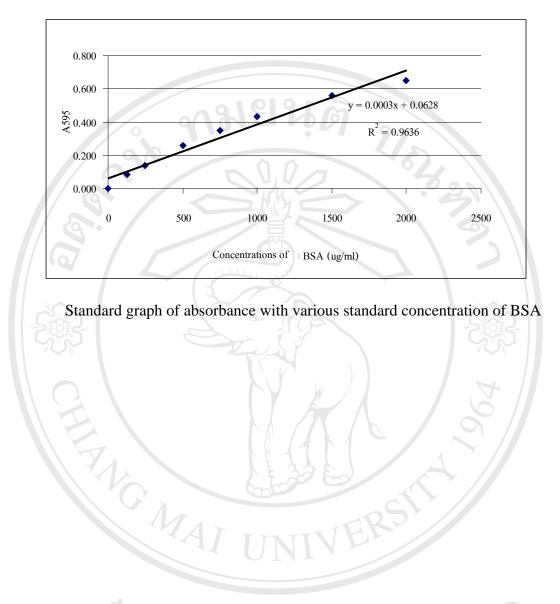
ĺ

Collect samples in clean plastic or glass bottles. Analyze samples immediately for best results. If prompt analysis is impossible, preserve samples by filtering immediately and storing at 4 0 C (39 0 F) for up to 48 hours. Warm to room temperature before analysis.

Appendix B

Standard Protein Assay

Preparing standard Bovine Serum Albumin with various concentrations


Vial #	Stock Standard BSA	ddH ₂ O	Concentration
1	20 µl 2 mg/ml stock	0 μ1	2000 µg/ml
2	30 µl 2 mg/ml stock	10 µl	1500 μg/ml
3	20 µl 2 mg/ml stock	20 µl	1000 µg/ml
4	20 Tube 2	20 µl	750 µg/ml
5	20 Tube 3	20 µl	500 µg/ml
6	20 Tube 5	20 µl	250 µg/ml
707 7	20 Tube 6	20 µl	125 µg/ml
Blank	0	20 µl	0 μg/ml

BSA = Bovine Serum Albumin

 $ddH_2O = double distilled water$

		Absor	rbance 59	95 nm	~05	
	Concentration	AT	TTN	ΠV	Average	Average standard-
	(µg/ml)	1	2	3		Average blank
	0	0.299	0.303	0.301	0.301	0.000
ลิข	125	0.374	0.382	0.397	0.384	0.083
	250	0.434	0.445	0.447	0.442	0.141
Cop	500	0.561	0.566	0.558	0.562	0.261
AI	750 g	0.649	0.656	0.651	0.652	e 1 ^{0.351} e
	1000	0.726	0.736	0.738	0.733	0.432
	1500	0.859	0.853	0.865	0.859	0.558
	2000	0.958	0.939	0.955	0.951	0.650

Absorbance values at 595 nm at various standard concentration of BSA

Appendix C

Water Quality Standards for Industrial Effluent

Parameters	Standard Values	Method for Examination
1. pH value	5.5-9.0	pH Meter
2. Total Dissolved Solids (TDS)	 not more than 3,000 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 5,000 mg/l not more than 5,000 mg/l exceed TDS of receiving water having salinity of more than 2,000 mg/l or TDS of sea if discharge to sea 	Dry Evaporation 103-105 °C, 1 hour
3. Suspended solids (SS)	not more than 50 mg/l depending on receiving water or type of industry or wastewater treatment system under consideration of PCC but not exceed 150 mg/l	Glass Fiber Filter Disc
4. Temperature	not more than 40°C	Termometer during the sampling
5. Color and Odor	not objectionable	Not specified
6. Sulphide as H ₂ S	not more than 1.0 mg/l	Titrate
7. Cyanide as HCN	not more than 0.2 mg/l	Distillation and Pyridine Barbituric Acid Method
8. Fat, Oil & Grease (FOG)	not more than 5.0 mg/l depending of receiving water or type of industry under consideration of PCC but not exceed 15.0 mg/l	Sovent Extraction by Weight
9. Formaldehyde	not more than 1.0 mg/l	Spectrophotometry
10.Phenols	not more than 1.0 mg/l	Distillation and 4-Aminoantipyrine Method
11.Free Chlorine	not more than 1.0 mg/l	lodometric Method
12.Pesticides	not detectable	Gas-Chromatography
13.Biochemical Oxygen Demand (BOD)	not more than 20 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 60 mg/l	-Azide Modification at 20 °C , 5 days
14.Total Kjedahl Nitrogen (TKN)	not more than 100 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 200 mg/l	Kjeldahl
15.Chemical Oxygen Demand (COD)	not more than 120 mg/l depending on receiving water of type of industry under consideration of PCC but not exceed 400 mg/l	Potassium Dichromate Digestion
16.Heavy metals		
1. Zinc (Zn)	not more than 5.0 mg/l	Atomic Absorption Spectro Photometry; Direct Aspiration or Plasm
2. Chromium Hexavalent)	not more than 0.25 mg/l	Emission Spectroscopy ; Inductively Coupled Plama : ICP
3. Chromium (Trivalent)	not more than 0.75 mg/l	
4. Copper (Cu)	not more than 2.0 mg/l	
5. Cadmium (Cd)	not more than 0.03 mg/l	
6. Barium (Ba)	not more than 1.0 mg/l	
7. Lead (Pb)	not more than 0.2 mg/l	
8. Nickel (Ni)	not more than 1.0 mg/l	
9. Manganese (Mn)	not more than 5.0 mg/l	
10. Arsenic (As)	not more than 0.25 mg/l	Atomic Absorption Spectrophotometry; Hydride Generation, or
11. Selenium (Se)	not more than 0.02 mg/l	Plasma Emission Spectroscopy; Inductively Coupled Plasma : ICF
12. Mercury (Hg)	not more than 0.005 mg/l	Atomic Absorption Cold Vapour Techique

Remarks: 1) PCC Pollution Control Committee

2) The standards were summerized from the Notification of the Ministry of Science, Technology and Environment, No. 3, B.E. 2539 (1996) and it specifies that pollution sources that the above standards are to be applied are factories group II and III issues under the Factory Act B.E.2535 (1992) and every kind of industrial estates.

3) Notification of the Pollution Control Committee, No. 3, B.E. 2539 (1996) dated August 20, B.E. 2539 (1996) has issued types of factories (category of factories issued under the Factory Act B.E.2535 (1992) that are allowed to discharge effluent having different standards from the Ministerial Notification No. 3 above as follows :

(1) BOD up to 60 mg/l

- animal furnishing factories (category 4 (1))
- starch factories (category 9 (2))
- food from starch factories (category 10)
- textile factories (category 15)
- tanning factories (category 22)
- pulp and paper factories (category 29)
- chemical factories (category 42)
- pharmaceutical factories(category 46)
- frozen food factories (category 92)

(2) COD up to 400 mg/l

- food furnishing factories (category 13 (2))
- animal food factories (category 15 (1))

- textile factories (category 22)

- pulp and paper factories (category 38)

(3) TKN

- 100 mg/l - effective after 1 year from the date published in the Royal Government Gazette of the Ministerial Notification No. 4

- 200 mg/l - effective after 2 year from the date published in the Royal Government Gazette of the Ministerial Notification No. 4 for the following factories:

- (3.1) food furnishing factories (category 13 (2))
- (3.2) animal food factories (category 15 (1))

Sources: Notification the Ministry of Science, Technology and Environment, No. 3, B.E.2539 (1996) issued under the Enhancement and Conservation of the National Environmental Quality Act B.E.2535 (1992), published in the Royal Government Gazette, Vol. 113 Part 13 D, dated February 13, B.E.2539 (1996 3769

Surface Water Quality Standards

Parameter ^{1/}	Units	Statistics	Standard Value for Class ^{2/}					Methods for Examination	
	011103	Statistics	Class1	Class2	Class3	Class4	Class5		
1. Colour,Odour and Taste	-	-	n	n'	n'	n'	-		
2. Temperature	C° ~	-	n	n'	n'	n'	-	Thermometer	
3. рН	-	-2	n	5-9	5-9	5-9	-	Electrometric pH Meter	
4. Dissolved Oxygen (DO) ^{2/}	mg/l	P20	n	6.0	4.0	2.0	-	Azide Modification	
5. BOD (5 days, 20°C)	mg/l	P80	n	1.5	2.0	4.0	-	Azide Modification at 20°C , 5 days	
6. Total Coliform Bacteria	MPN/100 ml	P80	n	5,000	20,000	-	-	Multiple Tube Fermentation Technique	
7. Fecal Coliform Bateria	MPN/100 ml	P80	n	1,000	4,000	P	-	Multiple Tube Fermentation Technique	
8. NO ₃ -N	mg/l	-	n		5.0		-	Cadmium Reduction	
9. NH ₃ -N	mg/l	-	n		0.5		-	Distillation Nesslerization	
10.Phenols	mg/l	-	n		0.005		-	Distillation,4-Amino antipyrene	
11.Copper (Cu)	mg/l	-	n		0.1			Atomic Absorption -Direct Aspiration	
12.Nickle (Ni)	mg/l	-	n		0.1		7	Atomic Absorption -Direct Aspiration	
13.Manganese (Mn)	mg/l	17	n		1.0		-	Atomic Absorption -Direct Aspiration	
14.Zinc (Zn)	mg/l	.	n		1.0		-	Atomic Absorption -Direct Aspiration	
15.Cadmium (Cd)	mg/l	-	n		0.005* 0.05**		-	Atomic Absorption -Direct Aspiration	
16.Chromium Hexavalent	mg/l	-	n		0.05		-	Atomic Absorption -Direct Aspiration	
17.Lead (Pb)	mg/l		n		0.05		-	Atomic Absorption -Direct Aspiration	
18.Total Mercury (Total Hg)	mg/l	19	n		0.002		- 1	Atomic Absorption-Cold Vapour Technique	
19.Arsenic (As)	mg/l		n		0.01		-	Atomic Absorption -Direct Aspiration	
20.Cyanide (Cyanide)	mg/l	-	n		0.005		-	Pyridine-Barbituric Acid	
21.Radioactivity - Alpha - Beta	Becqurel/I	y.C	h		0.1		L	Gas-Chromatography	
22.Total Organochlorine Pesticides	mg/l	n-t	n		0.05		S-	Gas-Chromatography	
23.DDT	μg/l	-	n		1.0		-	Gas-Chromatography	
24.Alpha-BHC	μg/l	-	n		0.02		-	Gas-Chromatography	
25.Dieldrin	μg/l	-	n		0.1		-	Gas-Chromatography	
26.Aldrin	μg/l	-	n		0.1		-	Gas-Chromatography	
27.Heptachlor & Heptachlorepoxide	μg/l	-	n		0.2		-	Gas-Chromatography	
28.Endrin	μg/l	-	n		None		-	Gas-Chromatography	

Remark: ¹'กำหนดค่ามาตรฐานเฉพาะในแหล่งน้ำประเภทที่ 2-4 สำหรับแหล่งน้ำประเภทที่ 1 ให้

เป็นไปตามธรรมชาติ และแหล่งน้ำประเภทที่ 5 ไม่กำหนดค่า

^{2/}ค่า DO เป็นเกณฑ์มาตรฐานต่ำสุด

P: Percentile value

n: naturally

n': naturally but changing not more than 3°C

*: when water hardness not more than 100 mg/l as CaCO₃

** : when water hardness more than 100 mg/l as CaCO₃

Based on Standard Methods for the Examination of Water and Wastewater

recommended by APHA : American Public Health Association, AWWA :

American Water Works Association and WPCF : Water Pollution Control

Federation

Source: Notification of the National Environmental Board, No. 8, B.E. 2537 (1994), issued under the Enhancement and Conservation of National Environmental Quality Act B.E.2535 (1992), published in the Royal Government Gazette, Vol. 111, Part 16, dated February 24, B.E.2537 (1994).

Classifica	ation and Objectives
Classification	Objectives/Condition and Beneficial Usage
Class 1	Extra clean fresh surface water resources used for : (1) conservation not necessary pass through water treatment process require only ordinary process for pathogenic destruction (2) ecosystem conservation where basic organisms can breed naturally
Class 2	Very clean fresh surface water resources used for : (1) consumption which requires ordinary water treatment process before use (2) aquatic organism of conservation (3) fisheries (4) recreation
Class 3	Medium clean fresh surface water resources used for : (1) consumption, but passing through an ordinary treatment process before using (2) agriculture
Class 4	Fairly clean fresh surface water resources used for : (1) consumption, but requires special water treatment process before using (2) industry
Class 5	The sources which are not classification in class 1-4 and used for navigation.

Source: Notification of the National Environmental Board, No. 8, B.E. 2537 (1994), issued under the Enhancement and Conservation of National Environmental Quality Act B.E.2535 (1992), published in the Royal Government Gazette, Vol. 111, Part 16, dated February 24, B.E.2537 (1994).

Soil Quality Standard

Parameter	Unit	Standard Value	Analytical Methods
1. Volatile Organic Compound	Onit	otandard value	
1) Benzene	mg/kg	Not exceed 6.5	Gas Chromatography or Gas Chromatography/Mass
1) Delizerie	iiig/kg	NOT EXCEED 0.5	Spectrometry (GC/MS) or other methods approved by PCE
2) Carbon Tetrachloride	"	Not exceed 2.5	7 3 3 1
3) 1,2-Dichloroethane	"	Not exceed 3.5	
4) 1,1-Dichloroethylene	"	Not exceed 0.5	
5) cis-1,2-Dichloroethylene	"	Not exceed 43	
6) trans-1,2-Dichloroethylene	"	Not exceed 63	
7) Dichloromethane	"	Not exceed 89	"
8) Ethylbenzene	"	Not exceed 230	"
9) Styrene		Not exceed 1,700	"
10) Tetrachloroethylene	"	Not exceed 57	- 224
11) Toluene	-	Not exceed 520	
12) Trichloroethylene		Not exceed 28	" 202
13) 1,1,1-Trichloroethane	"	Not exceed 630	п
14) 1,1,2-Trichloroethane	"	Not exceed 8.4	
15) Total Xylenes	"	Not exceed 210	
2. Heavy metals			
1) Arsenic	mg/kg	Not exceed 3.9	Inductively Coupled Plasma-Atomic Emission Spectrometr
			or Inductively Coupled Plasma-Mass Spectrometry or Atom
			Absorption, Furnace Technique or Atomic Absorption, Gaseous Hydride or Atomic Absorption, Borohydride
			Reduction or other Methods Approved by Pollution Control
			Department
2) Cadmium and compounds	"	Not exceed 37	Inductively Coupled Plasma-Atomic Emission Spectrometr
			or Inductively Coupled Plasma-Mass Spectrometry or Atom Absorption, Direct Aspiration or Atomic Absorption, Furnac
			Technique or other Methods Approved by Pollution Control
		UNI	Department
3) Hexavalent Chromium		Not exceed 300	Coprecipitation or Colorimetric or Chelation/Extraction or other Methods Approved by Pollution Control Department
4) Lead	"	Not exceed 400	Inductively Coupled Plasma-Atomic Emission Spectrometry
+) Leau		Not exceed 400	or Inductively Coupled Plasma-Mass Spectrometry or Atom
			Absorption, Direct Aspiration or Atomic Absorption, Furnac
			Technique or other Methods Approved by Pollution Contro Department
5) Manganese and compounds		Not exceed 1,800	
6) Mercury and compounds	"	Not exceed 23	Cold-Vapor Technique or other Methods Approved by
			Pollution Control Department
7) Nickel, soluble salts	U ·	Not exceed 1,600	Inductively Coupled Plasma-Atomic Emission Spectrometr
			or Inductively Coupled Plasma-Mass Spectrometry or Atom
			Absorption, Direct Aspiration or Atomic Absorption, Furnac Technique or other Methods Approved by Pollution Contro
			Department
8) Selenium	"	Not exceed 390	Inductively Coupled Plasma-Atomic Emission Spectrometr
			or Atomic Absorption, Furnace Technique or Atomic Absorption, Gaseous Hydride or Atomic Absorption,
			Borohydride Reduction or other Methods Approved by
			Pollution Control Department
3. Pesticides			
	mg/kg	Not exceed 22	Gas Chromatography or other Methods Approved by

1. Soil Quality Standards for Habitat and Agriculture

2) Chlordane	"	Not exceed16	Gas Chromatography/Mass Spectrometry (GC/MS) or other Methods Approved by Pollution Control Department
3) 2,4-D		Not exceed 690	Gas Chromatography or High Performance Liquid Chromatography/Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS) or other Methods Approved by Pollution Control Department
4) DDT		Not exceed 17	Gas Chromatography or Gas Chromatography/Mass Spectrometry (GC/MS) or other Methods Approved by Pollution Control Department
5) Dieldrin	0 " 0	Not exceed 0.3	"
6) Heptachlor		Not exceed 1.1	u u
7) Heptachlor Epoxide	"	Not exceed 0.5	n a c
8) Lindane	"	Not exceed 4.4	
9) Pentachlorophenol	-	Not exceed 30	Gas Chromatography or Gas Chromatography/Mass Spectrometry (GC/MS) or Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) Spectrometry or other Methods Approved by Pollution Control Department
4. Other Chemicals			
1)Benzo (a) pyrene	mg/Kg	Not exceed 0.6	Gas Chromatography/Mass Spectrometry (GC/MS), or Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS), or Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) Spectrometry, oror other Methods Approved by Pollution Control Department
2) Cyanide and compounds	à	Not exceed 11	Total and Amenable Cyanide: Distillation, or Total Amenable Cyanide (Automated Colorimetric, with off-line Distillation), or Cyanide Extraction Procedure for Solids and Oils or other Methods Approved by Pollution Control Department
3) PCBs	"	Not exceed 2.2	Gas Chromatography or other methods approved by PCD
4) Vinyl Chloride	"	Not exceed 1.5	Gas Chromatography or Gas Chromatography/Mass Spectrometry (GC/MS) or other methods approved by PCD

Remark: 1. Test Methods of Evaluating Solid Waste, Physical/Chemical Methods

(SW-846) (United States Environmental Protection Agency)

2. Soil Sampling and Preservation Methods must be as specified

Source: Pollution Control Department, Bangkok, Thailand (PCD). 1996. Notification of the Ministry of Science, Technology and Environment, No. 3, B.E. 2539 (1996) : Specifying of the Control of Industrial Effluent Standard with the sources from Factories and Industrial Estates, published in the Royal Government Gazette, Vol. 113, Part 13 D, dated February 13, B.E.2539 (1996).

Copyright[©] by Chiang Mai University All rights reserved

2. Soil Quality Standard Soil Quality Standard for Other Purposes

Parameter	Unit	Standard Value	Analytical Methods
1. Volatile Organic Compounds		10101	
1) Benzene	mg/kg	Not exceed 15	Gas Chromatography Nor Gas Chromatography/Mass Spectrometry (GC/MS) or other methods approved by PCE
2) Carbon Tetrachloride		Not exceed 5.3	u .
3) 1,2-Dichloroethane	"	Not exceed 7.6	6, "
4) 1,1-Dichloroethylene	"	Not exceed 1.2	
5) cis-1,2-Dichloroethylene	"	Not exceed 150	
6) trans-1,2-Dichloroethylene		Not exceed 210	
7) Dichloromethane	"	Not exceed 210	
8) Ethylbenzene	"	Not exceed 230	
9) Styrene	"	Not exceed 1,700	
10) Tetrachloroethylene		Not exceed 190	
11) Toluene		Not exceed 520	n
12) Trichloroethylene		Not exceed 520	TT SOP
13) 1,1,1-Trichloroethane		Not exceed 1,400	
		Not exceed 1,400	. 73.55
14) 1,1,2-Trichloroethane			
15) Total Xylenes		Not exceed 210	
2. Heavy metals			
1) Arsenic	mg/kg	Not exceed 27	Inductively Coupled Plasma-Atomic Emission Spectrometr or Inductively Coupled Plasma-Mass Spectrometry or Atom Absorption, Furnace Technique or Atomic Absorption, Gaseous Hydride or Atomic Absorption, Borohydride Reduction or other methods approved by PCD
2) Cadmium and compounds		Not exceed 810	Inductively Coupled Plasma-Atomic Emission Spectrometry or Inductively Coupled Plasma-Mas Spectrometry or Atomic Absorption, Direct Aspiration or Atomic Absorption, Furnace Technique other methods approved by PCD
3) Hexavalent Chromium	11:-	Not exceed 640	Coprecipitation or Colorimetric or Chelation/Extraction or other methods approved by PCD u
4) Lead		Not exceed750	Inductively Coupled Plasma-Atomic Emission Spectrometr or Inductively Coupled Plasma-Mass Spectrometry or Atom Absorption, Direct Aspiration or Atomic Absorption, Furnac Technique or other methods approved by PCD
5) Manganese and compounds	"	Not exceed	"
		32,000	
6) Mercury and compounds	vöð	Not exceed 610	Cold-Vapor Technique or other methods approved by PCE
7) Nickel, soluble salts	nn	Not exceed 41,000	Inductively Coupled Plasma-Atomic Emission Spectrometr or Inductively Coupled Plasma-Mass Spectrometry or Atom Absorption, Direct Aspiration or Atomic Absorption, Furnac Technique or other methods approved by PCD
8) Selenium	by	Not exceed 10,000	Inductively Coupled Plasma-Atomic Emission Spectrometr or Atomic Absorption, Furnace Technique or Atomic Absorption, Gaseous Hydride or Atomic Absorption, Borohydride Reduction or other methods approved by PCI
3.Pesticides			reserved
1) Atrazine	mg/kg	Not exceed 110	Gas Chromatography or other methods approved by PCD
2) Chlordane	"	Not exceed 110	Gas Chromatography/Mass Spectrometry (GC/MS) or othe methods approved by PCD
3) 2,4-D	"	Not exceed 12,000	Gas Chromatography or High Performance Liquid Chromatography/Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS) or othe methods approved by PCD
4) DDT	"	Not exceed 120	Gas Chromatography or Gas Chromatography/Mass Spectrometry (GC/MS) or other methods approved by PCI

"	Not exceed 1.5	"
"	Not exceed 5.5	"
"	Not exceed 2.7	"
"	Not exceed 29	"
	Not exceed 110	Gas Chromatography or Gas Chromatography/Mass Spectrometry (GC/MS) or Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) Spectrometry or other methods approved by PCD
mg/kg	Not exceed 2.9	Gas Chromatography/Mass Spectrometry (GC/MS) or Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS) or Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) Spectrometry or other methods approved by PCD
Č	Not exceed 35	Total and Amenable Cyanide: Distillation or Total Amenable Cyanide (Automated Colorimetric, with off-line Distillation) or Cyanide Extraction Procedure for Solids and Oils or other methods approved by PCD
"	Not exceed10	Gas Chromatography or other methods approved by PCD
"	Not exceed 8.3	Purge and Trap Gas Chromatography or Purge and Trap Gas Chromatography Mass Spectrometry or other methods approved by PCD
	· ·	 Not exceed 1.3 Not exceed 5.5 Not exceed 2.7 Not exceed 2.9 Not exceed 110 mg/kg Not exceed 2.9 Mot exceed 35 Not exceed 10

Remark: 1. Test Methods of Evaluating Solid Waste, Physical/Chemical Methods (SW-846) (United States Environmental Protection Agency)

2. Soil Sampling and Preservation Methods must be as specified

Source: Pollution Control Department, Bangkok, Thailand (PCD). 1996. Notification of the Ministry of Science, Technology and Environment, No. 3, B.E. 2539 (1996) : Specifying of the Control of Industrial Effluent Standard with the sources from Factories and Industrial Estates, published in the Royal Government Gazette, Vol. 113, Part 13 D, dated February 13, B.E.2539 (1996).

Appendix D

Statistical analysis for the absorbance values of end-product released by esterase

Statistical analysis for the absorbance values of end-product released by esterase after a group of mollusk being treated with differing concentrations of Pb at 0.5, 1.0 and 1.5 mg/L and Zn at 2.5, 5.0 and 10.0 mg/L at day 10

Duncan a,b				
sample	N	Subse	t for alpha	= 0.05
	6	1	2	3
Zn 10.0 mg/L	9	0.262		5
Pb 1.5 mg/L	9	0.273		
Zn 2.5 mg/L	9	0.290		1
Zn 5.0 mg/L	9	0.306	0.306	
Pb 1.0 mg/L	9		0.371	
Pb 0.5 mg/L	9			0.470
control	6			0.514
Sig.		0.240	0.054	0.18

Statistical analysis for the absorbance values of end-product released by esterase after a group of mollusk being treated with differing concentrations of Pb at 0.5, 1.0 and 1.5 mg/L and Zn at 2.5, 5.0 and 10.0 mg/L at day 20

Duncan a,b			15	
		Subset	for alpha	= 0.05
sample	N		2	3
Zn 10.0 mg/L	9	0.436		6
Zn 5.0 mg/L	9	0.504	0.504	
Pb 1.5 mg/L	9	0.558	0.558	
Zn 2.5 mg/L	9		0.619	C
Pb 1.0 mg/L	9		0.624	I Z
control	6			0.908
Pb 0.5 mg/L	9			0.999
Sig.		0.127	0.145	0.219

Statistical analysis for the absorbance values of end-product released by esterase after a group of mollusk being treated with differing concentrations of Pb at 0.5, 1.0 and 1.5 mg/L and Zn at 2.5, 5.0 and 10.0 mg/L at day 30

			Day30				
Duncan a,b		•		0		?	
ans	UK	19 1	S	ubset for a	llpha = 0.0	5	KIJ
sample	N	1	2	3	4	5	6
Zn 5.0 mg/L	9	0.217	nang	g Ma	I Ur	iver	sity
Pb 1.5 mg/L	9	0.253	0.253				
Zn 10.0 mg/L	9	II U	0.279	0.279			c u
Pb 1.0 mg/L	9			0.317	0.317		
Zn 2.5 mg/L	9				0.350	0.350	
control	6					0.379	0.37
Pb 0.5 mg/L	9						0.40

Sig.	0.169	0.305	0.142	0.210	0.261	0.256	
CURRICULUM VITAE							
Name	Lamyai Neeratanaphan						
Date of Birth	29 th March 1976						
Home Address	345/1, M. 2, Sayphon Village, T. Sila, Aumphurmuang,						
	Khonkaen 4000	0, Thailan	id				
Present Institution	Department of Environmental Science, Faculty of Science						
	Khon Kaen University, Khon Kaen 40002, Thailand						
Tel:	66-43-342912						
Fax:	66-43-342912						
Cell phone No:	66-86-8556667						
E-mail address:	hlamya@kku.ac	:.th					

Short Scientific Biography:

Education

2000-2003	M. Sc. (Environmental Science), Kasetsart University,				
	Bangkok, Thailand				
	• Distribution of Macrobenthic Fauna in the Mangrove Forest				
	after Used as Storage for Waste Water Treatment at Laem Phak				
	Bia, Phetchaburi Province				
1995- 1998	B. Sc. (Environmental Science), Khon Kaen University, Khon				
	Kaen, Thailand ang Mai University				
Fields of Specializat	onts reserved				

- Environment Impact Assessment (EIA)
- Macrobenthic Fauna in the Mangrove Forest
- Freshwater Mollusks

Scholarships

2005-2008	Ph.D. Program by the Commission on Higher Education(CHE).				
	Thesis funded by the Graduate School of Chiang Mai				
	University.				
2000-2003	M. Sc. Program by the Commission on Higher Education (CHE). Thesis funded by the Laem Phak Bia Environmental				
1995- 1998	B. Sc. Program by the Commission on Higher Education (CHE).				
Attended Conferen	ces ces				
0 00					
25-29 August 2008	Oral presentation on "Contamination of Heavy Metals in				
	Sediment and Mollusks Collected from Bueng Jode				
	Reservoir, Khon Kaen Province" at the 12 th International				
	Conference on Integrated Diffuse Pollution Management (IWA				
	DIPCON 2008) by Research Center for Environmental and				
	Hazardous Substance Management (EHSM), Khon Kaen				
	University, THAILAND				
19 January 2007	Oral presentation on "Accumulation and Toxicity of Heavy				
	Metals on Edible Mollusk from Bueng Jode Wetland, Khon				
	Kaen Province" in Seminar Series IV at Department of				
	Biology, Faculty of Science, Chaing Mai University, Chaing				
	Mai, THAILAND				
6 September 2006	Oral presentation on "Accumulation and Toxicity of Heavy				
	Metals on Edible Mollusk from Nongjode Reservoir, Khon				
	Kaen Province." in Seminar Series III at Department of				
	Biology, Faculty of Science, Chaing Mai University, Chaing				
	Mai, THAILAND				

Publications

Lamyai Neeratanaphan and Chitchol Phalaraksh. Y. 2008. Water Quality and Heavy Metals Contamination in Sediment and Edible Mollusks at Bueng Jode Reservoir, Khon Kaen Province. KKU Research Journal, 13 (2): 197-207.
Lamyai Neeratanaphan and Chitchol Phalaraksh. Y. 2008. Contamination of Heavy Metals in Sediment and Mollusks Collected from Bueng Jode Reservoir, Khon Kaen Province. KKU Research Journal, 13 (9): 1058-1064.

