
CHAPTER 2

PRELIMINARIES

In this chapter, we give some basic definitions, notations, lemmas and

results which will be used in the later chapters.

2.1 Notations

The following notations that will be used in this thesis

R
n − the n dimensional Euclidean space,

R
n×n − the set of all n × n real matrices,

‖x‖ − the Euclidean norm of vector x,

diag{·} − the block diagonal matrix,

I − the identity matrix,

AT − the transpose of matrix A,

A > 0, A ≥ 0, A < 0, A ≤ 0 − means that A is symmetric positive definite,

positive semi-definite, negative definite and negative semi-definite,

λmax(A) − maximum eigenvalue of matrix A,

λmin(A) − minimum eigenvalue of matrix A,

Ch = C([−h, 0], Rn), h > 0 − denotes the Banach space of continuous functions,

mapping the interval [−h, 0] into Rn , with the topology of uniform convergence,

‖xt‖ ∈ Ch defined xt = x(t + θ),−h ≤ θ ≤ 0 and ‖xt‖Ch
= sup

−h≤θ≤0
‖x(t + θ)‖,


A B

∗ C


 − ∗ represents the symmetric form of matrix, namely ∗ = BT .

2.2 Lyapunov Function

Consider the system described by

ẋ = f(t, x), x(t0) = x0 (2.1)
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where x ∈ Rn, xi = xi(t), f = (f1, f2, ..., fn) and fi = fi(t, x1, x2, ..., xn) for i =

1, 2, ..., n

Definition 2.2.1 (Lyapunov Function) Let D be a domain R
n such that 0̄ ∈ D

V : D ⊆ R
n → R, We say that V (x) is a Lyapunov function of system (2.1) if the

following conditions hold :

(1) V (x) is continuous on D ⊆ R
n.

(2) V (x) is positive definite such that V (0̄) = 0 and V (x) > 0 for x �= 0̄.

(3) the derivative of V with respect to (2.1) is negative semidefinite (i.e. V̇ (0) =

0, and for all x in ‖x‖ ≤ k, V̇ (x) ≤ 0).

2.3 Stability

Definition 2.3.1 A point x̄ is called an equilibrium point of equation (2.1) if

f(t, x̄) = 0 for all t ≥ t0. For all purposes of the stability theory we can as-

sume that 0̄ is an equilibrium of (2.1).

Definition 2.3.2 The equilibrium point x̄ of equation (2.1) is called stable if, for

each ε > 0, there is δ = δ(ε, t0) > 0 such that ‖x(t0)‖ < δ implies ‖x(t)‖ < ε for

all t ≥ t0 ≥ 0.

Definition 2.3.3 The equilibrium point x̄ of equation (2.1) is called unstable if it is

not stable.

Definition 2.3.4 The equilibrium point x̄ of equation (2.1) is called Asymptotically

stable (denoted A.S.) if it is stable and ‖x(t)‖ → 0 as t → ∞.

Definition 2.3.5 The equilibrium point x̄ of equation (2.1) is called Uniformly

asymptotically stable if, for each ε > 0, there is δ = δ(ε) > 0 such that ‖x(t0)‖ < δ

implies ‖x(t)‖ < ε and ‖x(t)‖ → 0 as t → ∞ for all t ≥ t0 ≥ 0.

Theorem 2.3.1 [1] The equilibrium point x̄ of equation (2.1) is stable if there ex-

ists a Lyapunov function for system (2.1). Moreover, if there exists a Lyapunov
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function whose derivative is negative definite, then the equilibrium point x̄ is A.S.

Definition 2.3.6 The operator D is said to be stable if solution x̄ = 0 of the homo-

geneous difference equation D(xt) = 0, t ≥ 0 is stable where D : Ch → Rn.

Definition 2.3.7 suppose f : Ch → Rn, D : Ch → Rn are given continuous func-

tions. The relation

d

dt
D(t, xt) = f(t, xt),

is called the neutral differential equation. The function D will be called the oper-

ator for the neutral differential equation.

Theorem 2.3.2 [5] Suppose D is stable, f : Ch → Rn and suppose u(s), v(s) and

w(s) are continuous, nonnegative and nondecreasing with u(s), v(s) > 0 for s �= 0

and u(0) = v(0) = 0. If there is a continuous function V : Ch → Rn shuh that

u(‖D(xt)‖) ≤ V (xt) ≤ v(‖xt‖Ch
),

V̇ (xt) ≤ −w(‖D(xt)‖),

If w(s) > 0 for s > 0, then the solution x = 0 of the neutral differential equation

is uniformly asymptotically stable. The same conclusion holds if the upper bound

on V̇ (xt) is given by −w‖x(t)‖.

Lemma 2.3.1 (Schur Complement [2]) Given constant symmetric matrices Q, S

and R ∈ R
n×n where R(x) < 0, Q(x) = QT (x) and R(x) = RT (x) we have


 Q(x) S(x)

ST (x) R(x)


 < 0 ⇔ Q(x) − S(x)R−1(x)ST (x) < 0.

Lemma 2.3.2 [5] Suppose λmin(Q) is minimum eigenvalue of matrix Q and λmax(Q)

is maximum eigenvalue of matrix Q. The following inequalities hold:

λmin(Q)xT x ≤ xT Qx ≤ λmax(Q)xT x,

for symmetric matrix Q ∈ Rn×n for all x ∈ Rn.
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Lemma 2.3.3 [9] Let U, V, W and M be real matrices of appropriate dimensions

with M satisfying M = MT , then M + UV W + W T V T UT < 0 for all V T V ≤ I if

and only if there exists a scalar ε > 0 such that M + ε−1UUT + εW T W < 0.

Lemma 2.3.4 [5] There exists a symmetric matrix X such that

 P1 − LXLT Q1

QT
1 R1


 < 0 and


 P2 + X Q2

QT
2 R2


 < 0

if and only if



P1 + LP2L
T Q1 LQ2

QT
1 R1 0

QT
2 LT 0 R2


 < 0

2.4 Types of Matrix

Definition 2.4.1 (Symmetric Matrix) A real n×n matrix A is called symmetric if

AT = A.

Definition 2.4.2 (Positive Definite Matrix)A real n×n matrix A is called positive

definite if

xT Ax > 0

for all nonzero vectors x ∈ R
n. It is called positive semidefinite if

xT Ax ≥ 0.

Definition 2.4.3 (Negative Definite Matrix) A real n×n matrix A is called negative

definite if

xT Ax < 0

for all nonzero vectors x ∈ R
n. It is called negative semidefinite if

xT Ax ≤ 0.
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The follows result are well known

Lemma 2.4.1 [7] A symmetric matrix is positive semidefinite (definite) matrix if

all of its eigenvalues are nonnegative (positive).

Lemma 2.4.2 [7] A symmetric matrix is negative semidefinite (definite) matrix if

all of its eigenvalues are nonpositive (negative).


