
CHAPTER 3

MAIN RESULTS

In this chapter, we present some new delay-dependent criterion for asymptotic

stability for uncertain neutral system based on Lyapunov stability theory and

linear matrix inequality (LMI) techniques. In section 3.1, we derive new sufficient

condition for asymptotic stability of neutral system without matric uncertainties.

Then, we extend the result to establish asymptotic stability of neutral system

with matric uncertainties in section 3.2. Some numerical simulations are given to

illustrate the effectiveness of our theoretical results.

Consider the following neutral system with time-varying delay:

ẋ(t) − Cẋ(t − d) = (A + ∆A(t))x(t) + (B + ∆B(t))x(t − τ(t)) (3.1)

x(t) = φ(t), t ∈ [−h, 0]

where x(t) ∈ Rn is state at time t defined by xt(θ) = x(t + θ),∀θ ∈ [−h, 0],

C, A,B ∈ Rn×n are constant matrices and initial vector φ ∈ Ch, ∆A(t) and ∆B(t)

are unknown real matrices of appropriate dimensions representing the system ’s

time-varying parameter uncertainties and satisfy

[∆A(t) ∆B(t)] = EF (t)[G G1] (3.2)

where E,G, G1 are known real constant matrices of appropriate dimensions, and

F (t) is an unknown matrix function satisfying

F T (t)F (t) ≤ I, ∀t ≥ 0. (3.3)

the delay d is positive constant and the delay τ(t) is a time-varying continuous

function which satisfies

0 ≤ τm ≤ τ(t) ≤ τM , (3.4)

where τm, τM are constants and h = max{d, τM}. Now we present a delay-

dependent asymptotic stability condition for system (3.1).
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Let τe = 1
2
(τM + τm) and ρ = 1

2
(τM − τm). Then τ(t) can be expressed as

τ(t) = τe + ρξ(t), (3.5)

where

ξ(t) =




2τ(t)−(τM+τm)
τM−τm

, τM > τm,

0, τM = τm.

Obviously, |ξ(t)| ≤ 1. For this case, τ(t) is a function belonging to the interval [τe−
ρ, τe + ρ], where ρ can be taken as the range of variation of the time-varying delay

τ(t). Let operator D : C([−d, 0], Rn) → Rn is defined as D(xt) = x(t)−Cx(t− d)

where ‖C‖ < 1. We first investigate delay-dependent criterion for asymptotic

stability for neutral system without matric uncertainties of system (3.1)

ẋ(t) = Ax(t) + Bx(t − τ(t)) + Cẋ(t − d). (3.6)

Using the fact that

x(t − τe) − x(t − τ(t)) =

∫ t−τe

t−τ(t)

ẋ(s)ds

system (3.6) can be rewritten as

ẋ(t) = Ax(t) + Bx(t − τe) − B

∫ t−τe

t−τ(t)

ẋ(s)ds + Cẋ(t − d). (3.7)

3.1 Delay-dependent Criterion for Asymptotic Stabil-

ity of Neutral System without Matrices Uncertain-

ties

In this section, we deal with the problem for asymptotic stability of the

zero solution of neutral system without matric uncertainties.

Theorem 3.1.1. For given nonnegative scalars τm and τM , system (3.6) is asymp-

totically stable for any τ(t) satisfying 0 ≤ τm ≤ τ(t) ≤ τM , if there exist matrices
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P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0, S > 0, Y > 0 and Li, Ki,Mi(i = 1, 2, 3, 4, 5)

of appropriate dimensions such that

Σ1 =




φ11 φ12 φ13 φ14 φ15 2dMT
1 2τeL

T
1 ρKT

1 B

∗ φ22 φ23 φ24 φ25 2dMT
2 2τeL

T
2 ρKT

2 B

∗ ∗ φ33 φ34 φ35 2dMT
3 2τeL

T
3 ρKT

3 B

∗ ∗ ∗ φ44 φ45 2dMT
4 2τeL

T
4 ρKT

4 B

∗ ∗ ∗ ∗ φ55 2dMT
5 2τeL

T
5 ρKT

5 B

∗ ∗ ∗ ∗ ∗ −2dY 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS




< 0 (3.8)

where

φ11 = Q + KT
1 A + AT K1 + L1 + LT

1 + MT
1 + M1 + Q1

φ12 = KT
1 B − LT

1 + AT K2 + L2 + M2

φ13 = −KT
1 + AT K3 + L3 + M3 + P

φ14 = KT
1 C + AT K4 + L4 + M4 − PC

φ15 = AT K5 + L5 + M5 − M1

φ22 = −Q + KT
2 B + BT K2 − LT

2 − L2

φ23 = −KT
2 + BT K3 − L3

φ24 = KT
2 C + BT K4 − L4

φ25 = BT K5 − L5 − M2

φ33 = dY + τeR + ρS − KT
3 − K3 + Q2

φ34 = KT
3 C − K4

φ35 = −K5 − M3 − PC

φ44 = KT
4 C + CT K4 − Q2

φ45 = CT K5 − M4 + CPCT

φ55 = −MT
5 − M5 − Q1

Proof. We prove the Theorem 3.1.1 is true for three cases, namely , τm ≤ τ(t) < τe;

τ(t) = τe; and τe < τ(t) ≤ τM

Case I : τm ≤ τ(t) < τe
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Choose a Lyapunov-Krasovskii functional candidate as

V1(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ −τm

−τe

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ +

∫ 0

−d

ds

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ (3.9)

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0, S > 0 and Y > 0. Taking the

derivative of V1(xt) with respect to t along the trajectory of (3.7) yields

V̇1(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t)

− ẋT (t − d)Q2ẋ
T (t − d) + ẋT (t)(dY + τeR + ρS)ẋ(t) −

∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τm

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds (3.10)

Since

−
∫ t−τm

t−τe

ẋT (s)Sẋ(s)ds ≤ −
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds (3.11)

and from the following equalities :

2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]×

[Ax(t) + Bx(t − τe) − B

∫ t−τe

t−τ(t)

ẋ(s)ds + Cẋ(t − d) − ẋ(t)] = 0 (3.12)

2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]×

[x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds] = 0 (3.13)

2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]×

[x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds] = 0 (3.14)
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where Ki, Li,Mi(i = 1, 2, 3, 4, 5) are some matrices of appropriate dimensions, then

we have

V̇1(xt) ≤2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR + ρS)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [Ax(t) + Bx(t − τe) − B

∫ t−τe

t−τ(t)

ẋ(s)ds + Cẋ(t − d) − ẋ(t)]

+ 2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds]

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]

=2[x(t) − Cx(t − d)]T P [ẋ(t) − Cẋ(t − d)] + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR + ρS)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [Ax(t) + Bx(t − τe) − B

∫ t−τe

t−τ(t)

ẋ(s)ds + Cẋ(t − d) − ẋ(t)]

+ 2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds]

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]
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=
1

d

∫ t

t−d

ωT (t, s)φ1ω(t, s)ds +
1

τe

∫ t

t−τe

ωT (t, s)φ2ω(t, s)ds

+
1

τe − τ(t)

∫ t−τ(t)

t−τe

ωT (t, s)φ3ω(t, s)ds (3.15)

where

ωT (t, s) = [xT (t) xT (t − τe) ẋT (t) ẋT (t − d) xT (t − d) − ẋT (s)]

φ1 =
1

2




φ11 + Z11 φ12 + Z12 φ13 + Z13 φ14 + Z14 φ15 + Z15 2dMT
1

∗ φ22 + Z22 φ23 + Z23 φ24 + Z24 φ25 + Z25 2dMT
2

∗ ∗ φ33 + Z33 φ34 + Z34 φ35 + Z35 2dMT
3

∗ ∗ ∗ φ44 + Z44 φ45 + Z45 2dMT
4

∗ ∗ ∗ ∗ φ55 + Z55 2dMT
5

∗ ∗ ∗ ∗ ∗ −2dY




φ2 =
1

2




φ11 + Z11 φ12 + Z12 φ13 + Z13 φ14 + Z14 φ15 + Z15 2τeL
T
1

∗ φ22 + Z22 φ23 + Z23 φ24 + Z24 φ25 + Z25 2τeL
T
2

∗ ∗ φ33 + Z33 φ34 + Z34 φ35 + Z35 2τeL
T
3

∗ ∗ ∗ φ44 + Z44 φ45 + Z45 2τeL
T
4

∗ ∗ ∗ ∗ φ55 + Z55 2τeL
T
5

∗ ∗ ∗ ∗ ∗ −2τeR




φ3 =




−Z11 −Z12 −Z13 −Z14 −Z15 (τ(t) − τe)K
T
1 B

∗ −Z22 −Z23 −Z24 −Z25 (τ(t) − τe)K
T
2 B

∗ ∗ −Z33 −Z34 −Z35 (τ(t) − τe)K
T
3 B

∗ ∗ ∗ −Z44 −Z45 (τ(t) − τe)K
T
4 B

∗ ∗ ∗ ∗ −Z55 (τ(t) − τe)K
T
5 B

∗ ∗ ∗ ∗ ∗ −|τ(t) − τe|S




Z11, Z22, Z33, Z44, Z55 > 0, Z12, Z13, Z14, Z15, Z23, Z24, Z25, Z34, Z35 and Z45 are some

parameter matrices of appropriate dimensions. From (3.15) if φ1 < 0, φ2 < 0 and

φ3 < 0, then V̇1(xt) ≤ −λ1‖x(t)‖2 for some λ1 > 0. Pre and post-multiplying both
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sides of φ3 < 0 by diag{I, I, I, I, I, sgn(τ(t) − τe)}, we get that


−Z11 −Z12 −Z13 −Z14 −Z15 ρKT
1 B

∗ −Z22 −Z23 −Z24 −Z25 ρKT
2 B

∗ ∗ −Z33 −Z34 −Z35 ρKT
3 B

∗ ∗ ∗ −Z44 −Z45 ρKT
4 B

∗ ∗ ∗ ∗ −Z55 ρKT
5 B

∗ ∗ ∗ ∗ ∗ −ρS




.

< 0 (3.16)

By Lemma 2.3.1 (Schur Complement [2]) implies φ3 < 0. Let φ4 = φ1 + φ2, in

light of Lemma 2.3.4 (3.8) holds if and only if φ4 < 0 and (3.16) simultaneously

hold, and in light of Lemma 2.3.4 again φ4 < 0 if and only if φ1 < 0 and φ2 < 0.

Then (3.8) hold if and only if φ1 < 0,φ2 < 0 and (3.16) simultaneously hold. It’s

obvious that V1(xt) ≥ λmin(P )‖D(xt)‖2.

Consider DT (xt)PD(xt)

≤λmax(P )‖D(xt)‖2

≤λmax(P )‖x(t) − Cx(t − d)‖2

≤λmax(P )[2‖x(t)‖2 + 2‖Cx(t − d)‖2]

≤2λmax(P )[‖x(t)‖2 + ‖Cx(t − d)‖2]

≤2λmax(P )[‖xt‖2 + ‖C‖2‖xt‖2]

≤2λmax(P )[1 + ‖C‖2]‖xt‖2

=a‖xt‖2; a = 2λmax(P )[1 + ‖C‖2] > 0.

Consider
∫ t

t−τe
xT (s)Qx(s)ds

≤
∫ t

t−τe

λmax(Q)‖x(s)‖2ds

≤λmax(Q)

∫ t

t−τe

‖x(s)‖2ds

≤λmax(Q)

∫ t

t−τe

sup
t−τM≤s≤t

‖x(s)‖2ds

≤τeλmax(Q) sup
t−τM≤s≤t

‖x(s)‖2

=τeλmax(Q)‖xt‖2

=b‖xt‖2; b = τeλmax(Q) > 0.
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Consider
∫ t

t−d
xT (s)Q1x(s)ds

≤
∫ t

t−d

λmax(Q1)‖x(s)‖2ds

≤dλmax(Q1)‖x(s)‖2

≤dλmax(Q1)‖xt‖2

=c‖xt‖2; c = dλmax(Q1) > 0.

Consider
∫ t

t−d
ẋT (s)Q2ẋ(s)ds

=xT (t)Q2x(t) − xT (t − d)Q2x(t − d)

≤λmax(Q2)‖x(t)‖2

≤λmax(Q2)‖xt‖2

=d‖xt‖2; d = λmax(Q2) > 0.

Consider
∫ 0

−τe

∫ t

t+s
ẋT (θ)Rẋ(θ)dθds

=

∫ 0

−τe

[xT (t)Rx(t) − xT (t + s)Rx(t + s)]ds

=

∫ 0

−τe

xT (t)Rx(t)ds −
∫ 0

−τe

xT (t + s)Rx(t + s)ds

≤
∫ 0

−τe

λmax(R)‖x(t)‖2ds

≤λmax(R)‖x(t)‖2.τe

≤τeλmax(R)‖xt‖2 = e‖xt‖2; e = τeλmax(R) > 0.

Consider
∫ −τm

−τe

∫ t

t+s
ẋT (θ)Sẋ(θ)dθds

=

∫ −τm

−τe

[xT (t)Sx(t) − xT (t + s)Sx(t + s)]ds

=

∫ −τm

−τe

xT (t)Sx(t)ds −
∫ −τm

−τe

xT (t + s)Sx(t + s)ds

≤
∫ −τm

−τe

λmax(S)‖x(t)‖2ds

=λmax(S)‖x(t)‖2(−τm + τe)

≤(τe − τm)λmax(S)‖xt‖2 = f‖xt‖2; f = (τe − τm)λmax(S) > 0.
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Finally consider
∫ 0

−d

∫ t

t+s
ẋT (θ)Y ẋ(θ)dθds

=

∫ 0

−d

[xT (t)Y x(t) − xT (t + s)Y x(t + s)]ds

=

∫ 0

−d

xT (t)Y x(t)ds −
∫ 0

−d

xT (t + s)Y x(t + s)ds

≤
∫ 0

−d

λmax(Y )‖x(t)‖2ds

=dλmax(Y )‖x(t)‖2

≤dλmax(Y )‖xt‖2 = g‖xt‖2; g = dλmax(Y ) > 0.

Hence, we conclude that V1(xt) ≤ (a + b + c + d + e + f + g)‖xt‖2. Since operator

D(xt) stable. Therefore, solution x = 0 of system (3.6) is asymptotically stable

according to Theorem (2.3.2)

Case II τ(t) = τe

For this case, we choose a Lyapunov-Krasovskii functional candidate as

V2(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ 0

−d

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ (3.17)

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0 and Y > 0 are the same as those

in (3.9). Taking the derivative of V2(xt) with respect to t along any trajectory of

solution of (3.7) yields

V̇2(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + xT (t)Q1x(t)

− xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t

t−d

ẋT (s)Y ẋ(s)ds. (3.18)

The following equalities hold:

2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]×
[Ax(t) + Bx(t − τe) + Cẋ(t − d) − ẋ(t)] = 0 (3.19)
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2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds] = 0 (3.20)

2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds] = 0 (3.21)

where Ki(i = 1, 2, 3, 4, 5) are the same as those in (3.12), Li(i = 1, 2, 3, 4, 5) are

the same as those in (3.13), Mi(i = 1, 2, 3, 4, 5) are the same as those in (3.14).

Then from (3.18), (3.19), (3.20), (3.21). we have

V̇2(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + xT (t)Q1x(t)

− xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [Ax(t) + Bx(t − τe) + Cẋ(t − d) − ẋ(t)]

+ 2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds]

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]

=
1

τe

∫ t

t−τe

ωT (t, s)φ̃1ω(t, s)ds

+
1

d

∫ t

t−d

ωT (t, s)φ̃2ω(t, s)ds (3.22)

where

φ̃1 =




φ11 + Z11 φ12 + Z12 φ13 + Z13 φ14 + Z14 φ15 + Z15 τeL
T
1

∗ φ22 + Z22 φ23 + Z23 φ24 + Z24 φ25 + Z25 τeL
T
2

∗ ∗ φ33 + Z33 φ34 + Z34 φ35 + Z35 τeL
T
3

∗ ∗ ∗ φ44 + Z44 φ45 + Z45 τeL
T
4

∗ ∗ ∗ ∗ φ55 + Z55 τeL
T
5

∗ ∗ ∗ ∗ ∗ −τeR



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φ̃2 =




−Z11 −Z12 −Z13 −Z14 −Z15 dMT
1

∗ −Z22 −Z23 −Z24 −Z25 dMT
2

∗ ∗ −Z33 −Z34 −Z35 dMT
3

∗ ∗ ∗ −Z44 −Z45 dMT
4

∗ ∗ ∗ ∗ −Z55 dMT
5

∗ ∗ ∗ ∗ ∗ −dY




.

From (3.22), if φ̃1 < 0 and φ̃2 < 0, then V̇2(xt) ≤ −λ2‖x(t)‖2, for some λ2 > 0.

Notice that (3.8) implies φ̃1 < 0 and φ̃2 < 0. As in Case I, V (xt) ≤ (a + b + c +

d + e + g)‖xt‖2. Since operator D(xt) stable, the solution x = 0 of system (3.6) is

asymptotically stable according to Theorem 2.3.2 .

Case III τe < τ(t) < τM

For this case, we choose the Lyapunov-Krasovskii functional candidate as

V3(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ −τe

−τM

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ +

∫ 0

−d

ds

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ (3.23)

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0, S > 0 and Y > 0 are the same as

those in (3.9). Similar to Case I, we can prove that system (3.6) is asymptotically

stable. The proof is complete.
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3.2 Delay-dependent Criterion for Asymptotic Stabil-

ity for Uncertain Neutral System

In this section, we deal with the problem for asymptotic stability of the

zero solution for uncertain neutral system,

ẋ(t) =(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe)

− (B + ∆B(t))

∫ t−τe

t−τ(t)

ẋ(s)ds + Cẋ(t − d). (3.24)

Theorem 3.2.1 For given nonnegative scalars τm and τM , system (3.1) is asymp-

totically stable for any τ(t) satisfying 0 ≤ τm ≤ τ(t) ≤ τM if there exist some

matrices P, Q,Q1, Q2, R, S, Y > 0 and Li, Ki,Mi(i = 1, 2, 3, 4, 5) such that

Σ =




ξ11 ξ12 ξ13 ξ14 ξ15 2dMT
1 2τeL

T
1 ρKT

1 (B + ∆B(t))

∗ ξ22 ξ23 ξ24 ξ25 2dMT
2 2τeL

T
2 ρKT

2 (B + ∆B(t))

∗ ∗ ξ33 ξ34 ξ35 2dMT
3 2τeL

T
3 ρKT

3 (B + ∆B(t))

∗ ∗ ∗ ξ44 ξ45 2dMT
4 2τeL

T
4 ρKT

4 (B + ∆B(t))

∗ ∗ ∗ ∗ ξ55 2dMT
5 2τeL

T
5 ρKT

5 (B + ∆B(t))

∗ ∗ ∗ ∗ ∗ −2dY 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS




< 0 (3.25)

where

ξ11 = φ11 + KT
1 ∆A(t) + ∆A(t)T K1 + Z11

ξ12 = φ12 + ∆AT (t)K2 + KT
1 ∆B(t) + Z12

ξ13 = φ13 + ∆A(t)T K3 + Z13

ξ14 = φ14 + ∆A(t)T K4 + Z14

ξ15 = φ15 + ∆A(t)T K5 + Z15

ξ22 = φ22 + ∆B(t)T K2 + KT
2 ∆B(t) + Z22

ξ23 = φ23 + ∆B(t)T K3 + Z23

ξ24 = φ24 + ∆B(t)T K4 + Z24

ξ25 = φ25 + ∆B(t)T K5 + Z25

Proof We consider three cases, as in Theorem 3.1.1. Replacing A = A + ∆A(t)
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and B = B + ∆B(t).

Case I : τm ≤ τ(t) < τe

Choose a Lyapunov-Krasovskii functional candidate as

V1(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ −τm

−τe

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ +

∫ 0

−d

ds

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0, S > 0 and Y > 0. Taking the

derivative of V1(xt) with respect to t along the trajectory of (3.24) yields

V̇1(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t)

− ẋT (t − d)Q2ẋ
T (t − d) + ẋT (t)(dY + τeR + ρS)ẋ(t) −

∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τm

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

Since

−
∫ t−τm

t−τe

ẋT (s)Sẋ(s)ds ≤ −
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds (3.26)

and from the following equalities :

2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]×

[(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe) − (B + ∆B(t))

∫ t−τe

t−τ(t)

ẋ(s)ds

+ Cẋ(t − d) − ẋ(t)] = 0

2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]×

[x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds] = 0

2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]×

[x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds] = 0
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where Ki, Li,Mi(i = 1, 2, 3, 4, 5) are some matrices of appropriate dimensions, then

we have

V̇1(xt) ≤2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR + ρS)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe) − (B + ∆B(t))

∫ t−τe

t−τ(t)

ẋ(s)ds

+ Cẋ(t − d) − ẋ(t)]

+ 2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds]

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]

=2[x(t) − Cx(t − d)]T P [ẋ(t) − Cẋ(t − d)] + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ xT (t)Q1x(t) − xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR + ρS)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t−τ(t)

t−τe

ẋT (s)Sẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe) − (B + ∆B(t))

∫ t−τe

t−τ(t)

ẋ(s)ds

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]
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=
1

d

∫ t

t−d

ωT (t, s)φ̂1ω(t, s)ds +
1

τe

∫ t

t−τe

ωT (t, s)φ̂2ω(t, s)ds

+
1

τe − τ(t)

∫ t−τ(t)

t−τe

ωT (t, s)φ̂3ω(t, s)ds (3.27)

where

ωT (t, s) = [xT (t) xT (t − τe) ẋT (t) ẋT (t − d) xT (t − d) − ẋT (s)] where

φ̂1 =
1

2




ξ11 ξ12 ξ13 ξ14 ξ15 2dMT
1

∗ ξ22 ξ23 ξ24 ξ25 2dMT
2

∗ ∗ φ33 + Z33 φ34 + Z34 φ35 + Z35 2dMT
3

∗ ∗ ∗ φ44 + Z44 φ45 + Z45 2dMT
4

∗ ∗ ∗ ∗ φ55 + Z55 2dMT
5

∗ ∗ ∗ ∗ ∗ −2dY




φ̂2 =
1

2




ξ11 ξ12 ξ13 ξ14 ξ15 2τeL
T
1

∗ ξ22 ξ23 ξ24 ξ25 2τeL
T
2

∗ ∗ φ33 + Z33 φ34 + Z34 φ35 + Z35 2τeL
T
3

∗ ∗ ∗ φ44 + Z44 φ45 + Z45 2τeL
T
4

∗ ∗ ∗ ∗ φ55 + Z55 2τeL
T
5

∗ ∗ ∗ ∗ ∗ −2τeR




φ̂3 =




−Z11 −Z12 −Z13 −Z14 −Z15 (τ(t) − τe)K
T
1 (B + ∆B(t))

∗ −Z22 −Z23 −Z24 −Z25 (τ(t) − τe)K
T
2 (B + ∆B(t))

∗ ∗ −Z33 −Z34 −Z35 (τ(t) − τe)K
T
3 (B + ∆B(t))

∗ ∗ ∗ −Z44 −Z45 (τ(t) − τe)K
T
4 (B + ∆B(t))

∗ ∗ ∗ ∗ −Z55 (τ(t) − τe)K
T
5 (B + ∆B(t))

∗ ∗ ∗ ∗ ∗ −|τ(t) − τe|S




.

Z11, Z22, Z33, Z44, Z55 > 0, Z12, Z13, Z14, Z15, Z23, Z24, Z25, Z34, Z35 and Z45 are some

parameter matrices of appropriate dimensions. From (3.26) if φ̂1 < 0, φ̂2 < 0 and

φ̂3 < 0, then V̇1(xt) ≤ −λ1‖x(t)‖2 for some λ1 > 0. Pre and post-multiplying both
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sides of φ̂3 < 0 by diag{I, I, I, I, I, sgn(τ(t) − τe)}, we get that




−Z11 −Z12 −Z13 −Z14 −Z15 ρKT
1 (B + ∆B(t))

∗ −Z22 −Z23 −Z24 −Z25 ρKT
2 (B + ∆B(t))

∗ ∗ −Z33 −Z34 −Z35 ρKT
3 (B + ∆B(t))

∗ ∗ ∗ −Z44 −Z45 ρKT
4 (B + ∆B(t))

∗ ∗ ∗ ∗ −Z55 ρKT
5 (B + ∆B(t))

∗ ∗ ∗ ∗ ∗ −ρS




.

< 0 (3.28)

By Lemma 2.3.1 (Schur Complement [2]) implies φ̂3 < 0. Let φ̂4 = φ̂1 + φ̂2, in

light of Lemma 2.3.4 (3.8) holds if and only if φ̂4 < 0 and (3.16) simultaneously

hold, and in light of Lemma 2.3.4 again φ̂4 < 0 if and only if φ̂1 < 0 and φ̂2 < 0.

Then (3.8) hold if and only if φ̂1 < 0,φ̂2 < 0 and (3.16) simultaneously hold.

As in Case I of Theorem 3.1.1 It’s obvious that V1(xt) ≥ λmin(P )‖D(xt)‖2 and

V1(xt) ≤ (a + b + c + d + e + f + g)‖xt‖2. Since operator D(xt) stable. Therefore,

solution x = 0 of system (3.1) is asymptotically stable according to Theorem (2.3.2)

Case II τ(t) = τe

For this case, we choose a Lyapunov-Krasovskii functional candidate as

V2(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ 0

−d

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ (3.29)

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0 and Y > 0 are the same as those

in (3.9). Taking the derivative of V2(xt) with respect to t along any trajectory of

solution of (3.24) yields

V̇2(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + xT (t)Q1x(t)

− xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds

−
∫ t

t−d

ẋT (s)Y ẋ(s)ds. (3.30)
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The following equalities hold:

2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]×
[(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe) + Cẋ(t − d) − ẋ(t)] = 0 (3.31)

2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds] = 0 (3.32)

2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds] = 0 (3.33)

where Ki(i = 1, 2, 3, 4, 5) are the same as those in (3.12), Li(i = 1, 2, 3, 4, 5) are

the same as those in (3.13), Mi(i = 1, 2, 3, 4, 5) are the same as those in (3.14).

Then from (3.30), (3.31), (3.32), (3.33). we have

V̇2(xt) =2DT (xt)PḊ(xt) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + xT (t)Q1x(t)

− xT (t − d)Q1x(t − d) + ẋT (t)Q2ẋ
T (t) − ẋ(t − d)Q2ẋ(t − d)

+ ẋT (t)(dY + τeR)ẋ(t) −
∫ t

t−τe

ẋT (s)Rẋ(s)ds −
∫ t

t−d

ẋT (s)Y ẋ(s)ds

+ 2[xT (t)KT
1 + xT (t − τe)K

T
2 + ẋT (t)KT

3 + ẋT (t − d)KT
4 + xT (t − d)KT

5 ]

× [(A + ∆A(t))x(t) + (B + ∆B(t))x(t − τe) + Cẋ(t − d) − ẋ(t)]

+ 2[xT (t)LT
1 + xT (t − τe)L

T
2 + ẋT (t)LT

3 + ẋT (t − d)LT
4 + xT (t − d)LT

5 ]

× [x(t) − x(t − τe) −
∫ t

t−τe

ẋ(s)ds]

+ 2[xT (t)MT
1 + xT (t − τe)M

T
2 + ẋT (t)MT

3 + ẋT (t − d)MT
4 + xT (t − d)MT

5 ]

× [x(t) − x(t − d) −
∫ t

t−d

ẋ(s)ds]

=
1

τe

∫ t

t−τe

ωT (t, s)φ̃1ω(t, s)ds

+
1

d

∫ t

t−d

ωT (t, s)φ̃2ω(t, s)ds (3.34)
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where

φ̃1 =




ξ11 + Z11 ξ12 + Z12 ξ13 + Z13 ξ14 + Z14 ξ15 + Z15 τeL
T
1

∗ ξ22 + Z22 ξ23 + Z23 ξ24 + Z24 ξ25 + Z25 τeL
T
2

∗ ∗ ξ33 + Z33 ξ34 + Z34 ξ35 + Z35 τeL
T
3

∗ ∗ ∗ ξ44 + Z44 ξ45 + Z45 τeL
T
4

∗ ∗ ∗ ∗ ξ55 + Z55 τeL
T
5

∗ ∗ ∗ ∗ ∗ −τeR




φ̃2 =




−Z11 −Z12 −Z13 −Z14 −Z15 dMT
1

∗ −Z22 −Z23 −Z24 −Z25 dMT
2

∗ ∗ −Z33 −Z34 −Z35 dMT
3

∗ ∗ ∗ −Z44 −Z45 dMT
4

∗ ∗ ∗ ∗ −Z55 dMT
5

∗ ∗ ∗ ∗ ∗ −dY




.

From (3.34), if φ̃1 < 0 and φ̃2 < 0, then V̇2(xt) ≤ −λ2‖x(t)‖2, for some λ2 > 0.

Notice that (3.24) implies φ̃1 < 0 and φ̃2 < 0. As in Case I in Theorem 3.1.1,

V (xt) ≤ (a + b + c + d + e + g)‖xt‖2. Since operator D(xt) stable, the solution

x = 0 of system (3.1) is asymptotically stable according to Theorem 2.3.2 .

Case III τe < τ(t) ≤ τM

For this case, we choose the Lyapunov-Krasovskii functional candidate as

V3(xt) =DT (xt)PD(xt) +

∫ t

t−τe

xT (s)Qx(s)ds +

∫ t

t−d

xT (s)Q1x(s)ds

+

∫ t

t−d

ẋT (s)Q2ẋ(s)ds +

∫ 0

−τe

ds

∫ t

t+s

ẋT (θ)Rẋ(θ)dθ

+

∫ −τe

−τM

ds

∫ t

t+s

ẋT (θ)Sẋ(θ)dθ +

∫ 0

−d

ds

∫ t

t+s

ẋT (θ)Y ẋ(θ)dθ (3.35)

where P > 0, Q > 0, Q1 > 0, Q2 > 0, R > 0, S > 0 and Y > 0 are the same as

those in (3.9). Similar to Case I, we can prove that system (3.1) is asymptotically

stable. The proof is complete.
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Since LMI of theorem 3.2.1 depend on time, which can not be solved by LMI

control toolbox. So we give the new theorem 3.2.2 to avoid this problem.

Theorem 3.2.2 For given nonnegative scalars τm and τM , system (3.1) is asymp-

totically stable for any τ(t) satisfying 0 ≤ τm ≤ τ(t) ≤ τM if there exist constants

ε > 0 and some matrices P, Q,Q1, Q2, R, S, Y > 0 and Li, Ki,Mi(i = 1, 2, 3, 4, 5)

such that

Σ2 =




φ11 φ12 φ13 φ14 φ15 2dMT
1 2τeL

T
1 ρKT

1 B KT
1 E εGT

∗ φ22 φ23 φ24 φ25 2dMT
2 2τeL

T
2 ρKT

2 B KT
2 E εGT

1

∗ ∗ φ33 φ34 φ35 2dMT
3 2τeL

T
3 ρKT

3 B KT
3 E 0

∗ ∗ ∗ φ44 φ45 2dMT
4 2τeL

T
4 ρKT

4 B KT
4 E 0

∗ ∗ ∗ ∗ φ55 2dMT
5 2τeL

T
5 ρKT

5 B KT
5 E 0

∗ ∗ ∗ ∗ ∗ −2dY 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI




< 0

(3.36)

Proof We will sufficient to show that Σ < 0 if and only if Σ2 < 0.

Consider

Σ =




ξ11 ξ12 ξ13 ξ14 ξ15 2dMT
1 2τeL

T
1 ρKT

1 (B + ∆B(t))

∗ ξ22 ξ23 ξ24 ξ25 2dMT
2 2τeL

T
2 ρKT

2 (B + ∆B(t))

∗ ∗ ξ33 ξ34 ξ35 2dMT
3 2τeL

T
3 ρKT

3 (B + ∆B(t))

∗ ∗ ∗ ξ44 ξ45 2dMT
4 2τeL

T
4 ρKT

4 (B + ∆B(t))

∗ ∗ ∗ ∗ ξ55 2dMT
5 2τeL

T
5 ρKT

5 (B + ∆B(t))

∗ ∗ ∗ ∗ ∗ −2dY 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS




Since ∆A(t) = EF (t)G and ∆B(t) = EF (t)G1
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, then Σ=




φ11 φ12 φ13 φ14 φ15 2dMT
1 2τeL

T
1 ρKT

1 B

∗ φ22 φ23 φ24 φ25 2dMT
2 2τeL

T
2 ρKT

2 B

∗ ∗ φ33 φ34 φ35 2dMT
3 2τeL

T
3 ρKT

3 B

∗ ∗ ∗ φ44 φ45 2dMT
4 2τeL

T
4 ρKT

4 B

∗ ∗ ∗ ∗ φ55 2dMT
5 2τeL

T
5 ρKT

5 B

∗ ∗ ∗ ∗ ∗ −2dY 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS




+




KT
1 E

KT
2 E

KT
3 E

KT
4 E

KT
5 E

0

0

0




F (t)
(

G G1 0 0 0 0 0 ρG1

)

+




GT

GT
1

0

0

0

0

0

ρGT
1




F T (t)
(

ET K1 ET K2 ET K3 ET K4 ET K5 0 0 0
)

. (3.37)
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Using Lemma (2.3.3), Σ < 0 if and only if

Θ1 =




ξ11 ξ12 ξ13 ξ14 ξ15 2dMT
1 2τeL

T
1 ρKT

1 B

∗ ξ22 ξ23 ξ24 ξ25 2dMT
2 2τeL

T
2 ρKT

2 B

∗ ∗ φ33 φ34 φ35 2dMT
3 2τeL

T
3 ρKT

3 B

∗ ∗ ∗ φ44 φ45 2dMT
4 2τeL

T
4 ρKT

4 B

∗ ∗ ∗ ∗ φ55 2dMT
5 2τeL

T
5 ρKT

5 B

∗ ∗ ∗ ∗ ∗ −2dY 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS




+
1

ε




KT
1 E

KT
2 E

KT
3 E

KT
4 E

KT
5 E

0

0

0




(
ET K1 ET K2 ET K3 ET K4 ET K5 0 0 0

)

+ε




GT

GT
1

0

0

0

0

0

ρGT
1




(
G G1 0 0 0 0 0 ρG1

)
< 0. (3.38)

Using Lemma 2.3.1, we get that Θ1 < 0 if and only if (3.36) hold.
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Example 3.2.1 Consider neutral system without matric uncertainties with time-

varying delay τ(t) = sin2(t), and d = 0.4 where

where

A =


 −1.0407 −0.0049

0.0049 −2.0508


 , B =


 −0.0585 −0.0240

−0.006 −0.0706


 , C =


 0.4 0

0 0.4




By using the Matlab LMI toolbox, we can solve for matrices P, Q,Q1, Q2, R, S, Y

and Li, Ki,Mi(i = 1, 2, 3, 4, 5) which satisfy the criterion of Theorem 3.1.1, thus

the zero solution of system (3.6) is asymptotically stable.

Example 3.2.2 Consider uncertain neutral system with time-varying delay τ(t) =

sin2(t), d = 0.4

where

A =


 −1.0407 −0.0049

0.0049 −2.0508


 , B =


 −0.0585 −0.0240

−0.006 −0.0706


 , C =


 0.4 0

0 0.4




E =


 0.2 0.2

0.1 −0.2


 , G1 =


 −0.1 −0.1

0.1 0.2


 , F =


 −0.9 0

0 0.7


 , G = E.

By using the Matlab LMI toolbox, we can solve for matrices P, Q,Q1, Q2, R, S, Y ,

Li, Ki,Mi(i = 1, 2, 3, 4, 5) and constants ε1, ε2, ε3 which satisfies the criterion of

Theorem 3.2.1, hence the zero solution of system (3.1) is asymptotically stable.
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In numerical simulation, the two cases are given with the initial state φ(t) =

[0.1; 0.1]T for t ∈ [−0.7, 0]. Fig.3.1. shows the response of state variable x1 with

step size 0.01. Fig.3.2. shows the time response of state variable x2 with step size

0.01. Hence, we might be obtain that the effect of uncertainties in neutral system

will make differences to the dynamics of neutral system.

0 10 20 30 40 50 60 70 80 90 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

x1

certain

uncertain

Figure 3.1: The trajectories of state variable x1 of systems (3.1) and (3.6) in

Examples 3.2.1. and 3.2.2.
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Figure 3.2: The trajectories of state variable x2 of systems (3.1) and (3.6) in

Examples 3.2.1. and 3.2.2.
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Table 3.1: Maximum upper bounds of the time-varying delay τM for fixed constant

delay d.

d 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τM 0.8250 0.8210 0.8200 0.8160 0.8040 0.7990 0.7950

Table 3.2: Comparing some previous results with this paper

Results Maximum allowable value of h

[3] 0.3

[5] 0.5658

[9] 0.74

Result of this paper(Constant delays τ(t) = τ ≥ 0) 0.7910

Example 3.2.3 Consider the stability of the nominal system (3.6) with h =

max{d, τM} and τ(t) satisfy (3.4)

A =


 −0.9 0.2

0.1 −0.9


 , B =


 −1.1 −0.2

−0.1 −1.1


 , C =


 −0.2 0

0.2 −0.1




In the case of µ = 0 (µ is the upper bound of the derivative of time-varying delay),

some upper bounds for delays that guarantee asymptotic stability of system in [3,

5, 9] are provided in Table 3.2.


