CHAPTER 3
MAIN RESULTS

In this chapter, we present some new delay-dependent criterion for asymptotic
stability for uncertain neutral system based on Lyapunov stability theory and
linear matrix inequality (LMI) techniques. In section 3.1, we derive new sufficient
condition for asymptotic stability of neutral system without matric uncertainties.
Then, we extend the result to establish asymptotic stability of neutral system
with matric uncertainties in section 3.2. Some numerical simulations are given to

illustrate the effectiveness of our theoretical results.

Consider the following neutral system with time-varying delay:
2(t) — Ci(t—d) = (A4+ AA))xz(t) + (B+ AB(t))x(t — 7(t)) (3.1)

z(t) = ¢(t), t € [—h,0]
where z(t) € R™ is state at time t defined by x,(0) = z(t + 0),¥0 € [—h,0],
C, A, B € R™™ are constant matrices and initial vector ¢ € Cj, AA(t) and AB(t)
are unknown real matrices of appropriate dimensions representing the system ’s

time-varying parameter uncertainties and satisfy
[AA(t) AB®)] = EF@D|G Gi] (3.2)

where E, G, G are known real constant matrices of appropriate dimensions, and

F(t) is an unknown matrix function satisfying
FT(t)F(t) < I,vt>0. (3.3)

the delay d is positive constant and the delay 7(¢) is a time-varying continuous

function which satisfies
0 S Tm S T(t) S TM™, (34)

where 7,,, 7y are constants and h = max{d,7y;}. Now we present a delay-

dependent asymptotic stability condition for system (3.1).
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Let 7. = 2(Tar + 7n) and p = 2(7ys — 7). Then 7(£) can be expressed as

T(t) = 7 + p&(t), (3.5)
where
27(6)—(Tar+7m)
£(t) = E— VA G FD
0, ™ = Tm-

Obviously, |£(t)| < 1. For this case, 7(t) is a function belonging to the interval |7, —
0, Te + p], where p can be taken as the range of variation of the time-varying delay
7(t). Let operator D : C([—d, 0], R") — R" is defined as D(z;) = x(t) — Cx(t — d)
where [|C]] < 1. We first investigate delay-dependent criterion for asymptotic

stability for neutral system without matric uncertainties of system (3.1)
i(t) = Ax(t) + Bx(t —7(t)) + Ci(t — d). (3.6)
Using the fact that
t—Te
x(t—7) —x(t—71(t)) = / x(s)ds
t

system (3.6) can be rewritten as

t—Te

&(t) = Az(t) + Bx(t — 1) — B/ t(s)ds + Ci(t — d). (3.7)

t—7(t)

3.1 Delay-dependent Criterion for Asymptotic Stabil-
ity of Neutral System without Matrices Uncertain-
ties

In this section, we deal with the problem for asymptotic stability of the

zero solution of neutral system without matric uncertainties.

Theorem 3.1.1. For given nonnegative scalars 7, and Ty, system (3.6) is asymp-

totically stable for any T(t) satisfying 0 < 7, < 7(t) < s , if there exist matrices
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P>0,0Q>00Q>0Qy>0R>0,5>0,Y >0 and L;, K;, M;(i =1,2,3,4,5)

of appropriate dimensions such that

b1 P12 P13
ko oy Pa3
* * Qa3

* % S

* * *x

where

P14
P2a
P34
Paa

*
*
*

*

¢15
¢25
¢35
¢45
¢55

*
*

*

2dMT

2dM]

2dMT

2d M}

2dMT

—2dY
*

*

27 LT
27 LT
27 LT
27 LT
27, LT
0
—27.R

*

o1 =Q+ KFA+ ATK, + Ly + LT + MT + M, + Q,
1o =KIB— LT + ATKy + Ly + M,
$p13=—K{ + ATK3+ Ly+ M;+ P

¢ra = K{C+A"Ky+ Ly + M, — PC

¢15 = ATK5 + Ls + Ms — M,

¢22:_Q+K2TB+BTK2—L5—L2

¢23 - _Kg + BTKg v Lg
¢24 - KQTC + BTK4 — L4
¢25 - BTK5 - L5 - M2

¢33 =dY + . R+ pS — KI — K3+ Q2

¢3s = KiC — K,

bs5 = — 5 — My — PC

b =KIC+CTK, —Q
b15 = CTK; — My + CPCT
55 = —Mg — M5 — O,

pKI B
pKIB
pKIB
pKTB
pKI'B

0

0
—pS

Proof. We prove the Theorem 3.1.1 is true for three cases, namely , 7,,, < 7(t) < Te;

T(t) = Te; and 7. < 7(t) < iy

Case I: 1, < 7(t) < T
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Choose a Lyapunov-Krasovskii functional candidate as

t

Vi(x,) =D (x,)PD(x,) +/ xT(s)Qx(s)ds—i-/ 27 (8)Qx(s)ds

t—Te t—d
t 0 t
—l—/t $T(S)Q2$(s)d5+[Te ds /t+s 7 (0)Ri(0)do

—d
4 / s / " (0)Si(0)d0 + / s / SOy (3.9)
—re t+s —d  Jits
where P > 0,Q > 0,01 > 0,02 > 0,R > 0,5 > 0 and Y > 0. Taking the
derivative of Vi (z;) with respect to ¢ along the trajectory of (3.7) yields
Vi(zy) =2D (z))PD(x) + 25 () Qz(t) — 2T (t — 7.)Qu(t — 7.)
+ 2T () Qua(t) — 2T (t — d)Qua(t = d) + &7 (1) Qo (t)

— T (t — d)Qai (t — d) + &7 (t)(dY + T.R + pS)i(t) — /t t 7(s)Ri(s)ds

- /t__m 7 (5)Si(s)ds — /t_dj:T(s)Y:'c(s)ds (3.10)
Since
t—Tm t—7(t)
—/t @7 (s)Si(s)ds < —/t @7 (s)S2(s)ds (3.11)

and from the following equalities :

20T (K] 4+ 27 (t — 7o) KT + 2T () KE + a7 (t — d)K] + 27 (t — d)KT]x
t—Te

[Az(t) + Bx(t — 7e) — B/ &(s)ds+ Ci(t —d) — ()] =0 (3.12)

t—7(t)
[T (LT + 27 (t = 7o) Ly + 2T () LT + &7 (t — d)L] + 27 (t — d)LE]x

[z(t) —x(t —T.) — /t x(s)ds] =0 (3.13)

T ()M + 2T (t — r)MT + 2T ()MT + 2T (t — d)M] + 2T (t — d)MT]x

[z(t) —z(t — d) — /td:b(s)ds] =0 (3.14)
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where K;, L;, M;(i = 1,2, 3,4,5) are some matrices of appropriate dimensions, then

we have

Vl(xt) §2DT(xt)PD(J;t) + a7 ()Qx(t) — 27 (t — 1) Qu(t — 7,)
+ 2" (O)Qua(t) — 2’ (t = d)Quz(t — d) + &7 (1) Qo™ (t) = &(t — d)Qai:(t — d)

+ i (0)(AY + 7R + pS)i(t) — /t () Ri(s)ds

U sitas— [ i

t—Te

+ 2" (K] 42 (t =) KT + 2T (KT +37(t — d)K] + 27 (t — d) KT
t—Te

« [Az(t) + Ba(t — 7.) - B/ i(s)ds + Ci(t = d) — #(1)

t—7(t)

+ 2T () LY + 2" (t — 7o) L3 + 2T ()L + 2T (t — d) L] + 2T (t — d)LE]
X [x(t) — x(t — 7)) — /t_ x(s)ds]

+ 2l (YMT + 2T (t — )M+ 2T () MT 42T (t — d)MT + 27 (t — d) M)
X [z(t) —x(t —d) — /t_dj:(s)ds]

=2[x(t) — Cz(t = d)]" P[2(t) — Ci(t — d)] + 2" (t)Qx(t) — 27 (t — 7.)Qu(t — 7.)
+ 2T (1)Qua(t) — o (t — d)Qua(t — d) + &7 (1) Qo™ (£) — &(t — d)Qai:(t — d)

+ 2T (#)(dY + TR+ pS)i(t) — /tt T(s)Ri(s)ds

t—(t) t
— /t @7 (s)Sa(s)ds — /td iT(s)Yi(s)ds
+ 2" () K] + 2" (t — 1)Ky + 3T (KT + 3T (t — d)K] + 2" (t — d)K] |
x [Az(t) + Ba(t — 7.) — B/ i (s)ds + Cit = d) — (1)

t—7(t)
+2[eT () LT + 2" (t — 7)) L3 + 2T (t) LY + 37 (t — d) LY + 27 (t — d)L]]

t

X [x(t) —x(t —7e) — / x(s)ds]

t—Te

+ 2T ()M + 2T (t — r)M] + 2T () ME + 2T (t — d)M] + 27 (t — d)M]]

X [z(t) —z(t —d) — /tdjs(s)ds]
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t 1 t
:l/ wl(t, s)pw(t, s)ds—i——/ Wl (t, s)pow(t, s)ds
d Ji_q Te Jt—r,

e

+ T_;T(t) /t j:t) Tt 8)dsw(t, 5)ds (3.15)
where
Wit s) =[2"(t) 2Tt—-71) zT@t) iT@t—-d) 27(t—-d) —aT(s)
du+Zu 12+ Zin i3+ Ziz du+ Zia 15+ Zis 2dMY
* Go2 + Zay G23+ Zog Goa+ Zos Gos+ Zos 2dM3
b= 1 * * G33 + L3z Q34+ L3g G35+ Lss 2dM§;F
2 * * * Gaa+ Zas Gas + Zus 2dMT
* * * * Os5 + Zss 2dM5T
* * * * * —2dY
du+2Zu b2+ Ziy P+ Zis dutZu ¢is+ Zis 27L
* Go2 + Zoy Go3+ Zog Gos+ Zos Gas + Zos 27 Ly
by — 1 * * b33+ Zsz Paa+ Zag ¢35+ Zzs  27.LY
2 * * 3 Gus + Zas Gas + Zys 27 Ly
* * * * G55 + Zss QTeLg
* * * * * —27.R

_le _212 _Zl3 _Z14 _Zl5

(r(t) = 7e)
(T(t) = 7c)

* x =33 —Zsy —Zs5 (17(t)—71.)KIB
(7(t) = 7e)
(7(t) = 7e)

* * * * * —|7(t) — 7|S

Zh1, Loz, 233, Zaa, Zss > 0, L2, Z13, Zia, Zis, L23, Zoa, Zas, L34, Z3s and Zys are some
parameter matrices of appropriate dimensions. From (3.15) if ¢; < 0, ¢y < 0 and

$3 < 0, then Vi (z;) < —Ai||x(t)||? for some A; > 0. Pre and post-multiplying both
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sides of ¢3 < 0 by diag{I,I,I,I,1,sgn(r(t) — 1)}, we get that

—Zn ~Ziy —Zis —Zu —Zis pKIB
* —Zyg —Zaz —Zoy —Zos PK;[B
* * —Z33 —Z3s —Zszs pKiB
* * * — Ly —Zys pK4TB
* * * * — s pK5TB

* * * * * —pS

<0 (3.16)

By Lemma 2.3.1 (Schur Complement [2]) implies ¢35 < 0. Let ¢g4 = ¢ + ¢, in
light of Lemma 2.3.4 (3.8) holds if and only if ¢, < 0 and (3.16) simultaneously

hold, and in light of Lemma 2.3.4 again ¢4 < 0 if and only if ¢; < 0 and ¢5 < 0.
Then (3.8) hold if and only if ¢; < 0,2 < 0 and (3.16) simultaneously hold. It’s

obvious that Vi(2¢) > Amin(P)]| D (1)
Consider ~ DT(z,)PD(x)
naz(P)||D (@) ||
az(P)|2(t) — Ca(t — d)||?
Dnaa(P)2]|2(®)[* + 2| C(t — d) %]
2 max(P)[lz(O)]* + |C(t — d)||*]
2 maz(P) ||zl + [|C117 [l2]]7]
)L+ IC[P]|e ]

ma:r(

:ath||2;a = 2Xmaz(P)[1+ [[C]") > 0

Consider ftt_Te 27 (s)Qu(s)ds
<[ M@ P

—Te

D (Q) / Jx(s) s
Q) / sup  [|x(s)%ds

—Te t—TMm <s<t

STe)\maJZ(Q) sup HJZ(S)HQ

t—7pr<s<t

=TeAmaa(Q)]|:[|”

=b||7¢||% b = TeAmae(Q) > 0.
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Consider ftt_d 27 (5)Qq2(s)ds

t 2
< /t_dAmM@l)nx(s)H ds

<dAmar (Qu)l2(s)]|?
SdAmax(Ql)thHz
=cl|lz|]*; ¢ = dAmaa(Q1) > 0.

Consider [ @7 (s)Qui(s)ds
=21 (£)Qax(t) — 2’ (t — d)Qax(t — d)
i (Q2) |21

S)\maac(QZ)thHQ
:detH27d = /\mam(QQ) > 0.

Consider  [° [ 7(0)Ri(0)dods

: / (" () Re(t) — " (¢ + 5)Ra(t + 5)]ds

0

. /0 T (t)Rx(t)ds — / o (t + s)Ra(t + s)ds
< [ NwalB) a0
S)\ma:c<R)Hx(t)H2-Te

<TeAmar(B) [2e]|* = el|z%; € = Tedimas(R) > 0.
Consider [~ [ 37 (0)S#(0)dods
L / T (O)Sn() — 2Tt + 5) St + 5)]ds
. /_Tm 2" (t)Sx(t)ds — /_Tm 't + s)Sx(t + s)ds

< [ )t

:)‘maOC(S)Hx(t)HQ(_Tm + )
<(Te = Ti) Amaa (S) 212 = Flladl?; f = (7 = 7o) Amaa(S) > 0.
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Finally consider f?d f;s #7(0)Y (0)dbds

_ / (Y a(t) — aT(t + 5)Yalt + s)]ds

—d

o /O 2T ()Y x(t)ds — /0 " (t+s)Yz(t +s)ds

—d —d
0
< [ MaaVllz(0)ds
—d
=dAmax (V)| (¢) H2
<o (V)|2:]1> = gllzil*s g = dhnaa(Y) > 0.
Hence, we conclude that Vi(z;) < (a+b+c+d+e+ f+g)||z:]|?. Since operator
D(x;) stable. Therefore, solution 2 = 0 of system (3.6) is asymptotically stable
according to Theorem (2.3.2)

Case Il 7(t) =7,

For this case, we choose a Lyapunov-Krasovskii functional candidate as
t t
Va(2,) =D (2,)PD(,) +/ xT(s)Qx(s)d5+/ 27 (5)Q17(s)ds
t—Te t—d

+ / ()i (3)ds + / 0 ds /t;g'cT(Q)ch(H)dQ

+ O/t T(0)Y(0)do (3.17)

where P >0, @ >0, @1 >0, @2 >0, R>0andY > 0 are the same as those
in (3.9). Taking the derivative of Va(z;) with respect to ¢ along any trajectory of
solution of (3.7) yields

Va(z) =2DT (2 ) PD(x) + 2¥ (1) Qa(t) — 27 (t — 7.)Q(t — 7o) + T (1) Q1 x(t)
— 2t (t — d)Qua(t —d) + 3" (£)Qed” () — #(t — d) Qo (t — d)

+ 27 () (dY + 7. R)i(t) — /t . i (s)Ri(s)ds

t
_ / 7(5)Y i (s)ds. (3.18)
t—d
The following equalities hold:

e KT + 2" (t — 1)Ky + 3T ()KS + 3t (t — d)K] + 27 (t — d) K7 ] x

[Az(t) + Ba(t — 7.) + Ca(t — d) — i(t)] = 0 (3.19)
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2T () L] + 2T (t — 7o) L3 + T () LE + T (t —d)L] + 27 (t — d)LE]

X [z(t) —z(t — 1) — /t &(s)ds] =0 (3.20)

22T ()MT + 2T (t — ) MT + & (t)YMT + a7 (t — d)MT + T (t — d) M)
< (a(t) — ot — d) — /t is)ds) =0 (3.21)

where K;(i = 1,2,3,4,5) are the same as those in (3.12), L;(i = 1,2,3,4,5) are
the same as those in (3.13), M;(i = 1,2,3,4,5) are the same as those in (3.14).
Then from (3.18), (3.19), (3.20), (3.21). we have

Va(e) =2D" (2,) PD () + 27 (1) Qu(t) = & (t — 7.)Qu(t — 7) + 2™ (1)Qua(t)
— 2T (t —d)Qua(t — d) + 27 (1)Qei™ (t) — (t — d) Qo (t — d)
+ 2T ()(dY + 1. R)i(t) — /t; 7 (s)Ri(s)ds — /;d i7(s)Yi(s)ds
+ 2" (K] + 2" (t — 7o) K] + iTKT +i"(t — d)KT + 27 (t — d)KT)
X [Az(t) + Bx(t — 1.) + Ci(t — d) — z(t)]
4+ 2l (O LT 4+ 2T (t — 1) LY + 2T () LE + 2T (t —d)LY + 2T (t — d)L]]
< [z(t) — 2(t — 7.) — /ttT #(s)ds]
+ 2" ()M + 2T (¢ - Te)EMQT + @t () My + & (t = d)M] + 2" (t — d) M)

X [x(t) — x(t —d) — /ttd:i:(s)ds]

1 /[t ~
== wl(t, s)prw(t, s)ds
Te t—Te
1 [ -
+ 8/ dwT(t,s)¢2w(t, s)ds (3.22)
tf
where
O+ 2 Qo+ Zia b3+ Zis G+ Zuu ¢15+ Zis TeL:f
* Qoo + Zag a3+ Loz Gou + Loy Pos + Zas TeLgT
gz§ * * G33 + Zss  Gsa + Zsa P35+ Zss TeLg
1 —
* * * s+ Zaa Gas+ Zus T L]
* * * * G55 + Zss T LL

* * * * * —T.R
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—Zn —Zyw —Zi3 —Zu —Zis dME

* —Zy —Zoz —Zay —Zos dMgT
- * % —Zs3 —Z3g —Zs5 dMT
* * * —Zyy =245 dMFT
* * * * —Zss - dMT
* * * * * —dY

From (3.22), if ¢1 < 0 and ¢y < 0, then Va(ay) < —Xo||z(2)|%, for some Ay > 0.
Notice that (3.8) implies ¢ < 0 and ¢o < 0. As in Case I, Vi(z,) < (a+ b+ c +
d+ e+ g)||x]|?. Since operator D(z;) stable, the solution z = 0 of system (3.6) is
asymptotically stable according to Theorem 2.3.2 .

Case III T, < 7(t) < T;

For this case, we choose the Lyapunov-Krasovskii functional candidate as

t

Va(xy) :DT(:ct)PD(:ct)+/ $T(3)Q:p(s)d5+/ 27 (s)Qi2(s)ds

t—Te t—d
t 0 t
T . T .
—I—/t By (s)ng(s)ds+/_Te ds/t+sx (0)Rz(6)do

—d

+ /_ N ds /tj #7(0)S#(0)d6 + /_ st /tj TO)Y OO (3.23)

where P > 0,Q > 0,Q; > 0,Q2 > 0,R > 0,5 > 0 and Y > 0 are the same as
those in (3.9). Similar to Case I, we can prove that system (3.6) is asymptotically
stable. The proof is complete.
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3.2 Delay-dependent Criterion for Asymptotic Stabil-
ity for Uncertain Neutral System

In this section, we deal with the problem for asymptotic stability of the

zero solution for uncertain neutral system,

B(t) =(A+ AA®)(t) = (B+ AB()x(t - 7.)
—(B+AB(1) / T is)ds + it — d). (3.24)
t—7(t)

Theorem 3.2.1 For given nonnegative scalars 7, and Tyr, system (3.1) is asymp-
totically stable for any 7(t) satisfying 0 < 7, < 7(t) < 7ar if there exist some
matrices P,Q,Q1,Q2, R,S,Y >0 and L;, K;, M;(i = 1,2,3,4,5) such that

S &2 &3 & &5 2dMT 21 L] pK{(B+ AB(t))
¥ & 3 S Gos 2dMy 21.L5  pKj(B+AB(t))
* ok Gyg & &5 2dAMY 27 L3 pKi(B+ AB(t))
x % % 2dMT 27, LT B+ AB(t
\ u 6o 20M] on] pKIBABO) | o

* ok ok x E5 2dMT 27‘€L§ KI(B+ AB(t))
*x x ox %+ —2dY 0 0
% k% ok % * —27.R 0
x k% %k ok * * =pS

where

&1 = on + KLAA() + AAWT K + 2
€12 = g1 FAAT() Ky + KT AB(t) + Zy3

13 = ¢13 + AA() K3 + Zi3
0=+ AAWTKy + Z14
§15 = P15 + AA() K5 + Z1s
29 = Poo + AB(t)T Ky + KIAB(t) + Zay
23 = o3 + AB(t)T K3 + Zo3
o4 = dou + AB()T Ky + Zoy

o5 = o5 + AB(t)T K5 + Zos
Proof We consider three cases, as in Theorem 3.1.1. Replacing A = A + AA(t)
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and B = B+ AB(t).
Case I: 1, < 7(t) < T

Choose a Lyapunov-Krasovskii functional candidate as

t

Vi(z:) =D (21)PD(z;) + / T(5)Que(s)ds + / T(5)Qua(s)ds

—|—/ $)Q2 (s ds+/ ds/
t—d t+s
/ mds/ 0)S(6 d9+/ ds/ )b
t+s tt+s

where P > 0,Q > 0,Q; > 0,02 > 0,R > 0,8 > 0 and Y > 0. Taking the
derivative of Vi (z;) with respect to ¢ along the trajectory of (3.24) yields

Vi(z) =2D" () PD(z;) + 2T ()Qu(t) — 2T (t — 7.)Qux(t — 7.)
2" () Qua(t) — 2T (t — d)Qra(t — d) + #1(£) Q2™ (t)

iT(t — d)Qei™ (t — d) + 47 ()(dY—i—TeR—i—pS)x'(t)—/ti T (s)Ri(s)ds

_ / #(e)sit)ds— [ Vi

t—Te

Since

t—Tm t—7(t)
- /t i7(8)Sa(s)ds < — /t i7(s)Si(s)ds (3.26)

—Te —Te

and from the following equalities :

2T () K] + 2" (t — ) K] + 3T () KT + 3T (t —d)K] + 27 (t — d)KT]x
(A4 AA@)x(t) + (B + AB(t))x(t — 1) — (B + AB(t)) /t - @(s)ds
+ Ci(t —d) — ()] =0

20T () LT + 2T (t — 7o) Ly + 2T (t) L3 + &7 (t = d)L] + 2T (t — d)LE]x

[z(t) — x(t — Te) — /t x(s)ds] =0

2z ()MT + 2T (t — 7 )My + 2T ()M + &7 (t — d)M] + 27 (t — d)MT]x

[z(t) — x(t — d) — /t_dj:(s)ds] =0
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where K;, L;, M;(i = 1,2, 3,4,5) are some matrices of appropriate dimensions, then

we have

Vl(xt) §2DT(xt)PD(J;t) + a7 ()Qx(t) — 27 (t — 1) Qu(t — 7,)
+ 2" (O)Qua(t) — 2’ (t = d)Quz(t — d) + &7 (1) Qo™ (t) = &(t — d)Qai:(t — d)

+ i (0)(AY + 7R + pS)i(t) — /t () Ri(s)ds

U sitas— [ i

t—Te

+ 2" (K] 42 (t =) KT + 2T (KT +37(t — d)K] + 27 (t — d) KT
t=Te

x [(A+ AA®)z(t) + (B +AB()x(t — 7.) — (B + AB(t)) / i(s)ds

t—7(t)
+ Ci(t — d) — i(1))]
42l (O) LT + 27 (t — 7)) L3 + 2T (t) LY + 327 (t — d) LY + 27 (t — d)L]]

X [z(t) —z(t — 1) — /t t(s)ds]

42l ()M + 2T (t — ) M) + 2T (O)ME + 2Tt — d)M] + 2T (t — d)M]]
X [z(t) —z(t —d) — /tdjc(s)ds]

=2[x(t) — Cz(t = d)]" P[2(t) — Ci(t — d)] + 2" (#)Qx(t) — 2" (t — 7.)Qx(t — 7.)
+al () Qua(t) — 2" (t — d)Qua(t — d) + 2T () Qa2 ™ (1) — i (t — d)Q22(t — d)

t

+ 3T () (dY + TR+ pS)a(t) — / @' (s)Ri(s)ds

t—Te
t—7(t) t
—/ :tT(s)Sjc(s)ds—/ i"(s)Yi(s)ds
t—Te t—d

+ 2l (K] 4+ 27 (t — 7o) KT + 2T (KT + 27 (t —d)K] + 27 (t — d) KT
t—Te

x [(A+ AA®)z(t) + (B + ABt)x(t — 7.) — (B + AB(t)) / i(s)ds

t—7(t)

+ 22T ()M + 2T (t — )M + 2T () MT + &7 (t — d)MT + 2T (t — d)MT)

< [a(t) — a(t — d) — /t i(s)as
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zé /t Wl (t,8)rwl(t, s)ds + l/t WT(t, 8)dow(t, s)ds
t—d t—Te

e

+ T_;T(t) /t j:t) WLt 8)daw(t, 5)ds (3.27)
where
Wit s)=[2"(t) 2T(t—-71) 2T(t) '(t—-d) 2T(t—-d) —i"(s)] where
SERRSE: €13 37 &15 2dM{
* £ §23 §24 &25 2d My
5, = 1 ¥ kG334 Zs3 su+ Zag Gss+ Zgs 2dM3
21 % o« * Gu+ Zis Gz + Zas 2dMT
* % * * G55 + Zss  2dMT
x ok * * * —2dY
§n &2 &13 &1a §15 27, L7
* o €3 3% §25 27, L3
A 1 * ok a3+ Zsz Gsa+ Zag O35+ Zss 27 L5
2 Kook * Gus+ Zas a5+ Zas 21 Ly
0 k * * Gss + Zss 27 LY
* % * * * —27.R
~Zn ~Zw ~Ziz ~Zu =Zis (7(t) - 7.)K{ (B + AB(t))
% —Zoy —Zoy —Zoy —Zas (T(t) — 1) KT (B + AB(t))
4o * % —Zs3 —Z3y —2Zss5 (7(t) = 1)KT(B+ AB(t))
* * x  —Zu —Zis (7(t) — 1) K] (B+ AB(1))
* * * x  —Zss (1(t) — 1) KI (B + AB(t))
* * * * * —|7(t) — 7|S

21, Lo, L3z, Zaa, sy > 0, Zig, Z13, Lia, L, Za3, Loa, Zos, Z3a, Z3s and Zys are some
parameter matrices of appropriate dimensions. From (3.26) if gﬁl <0, gb} < 0 and

b5 < 0, then V;(z;) < —Ay||z(t)||? for some A; > 0. Pre and post-multiplying both
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sides of ¢3 < 0 by diag{I,I,1,I,1,sgn(7(t)—7.)}, we get that

—Zn —Zyy —Zwis —Zwu —Zis pK{(B+AB(t
% =Ly —Tay —Zay —Zas pKy(B+AB(t
* x  —Usz —Zsy —74 KI(B + AB(t
NG AN 2T ( <0 (3.

* * x  —Zu —Zis pKI(B+ AB(t

( (

)
)
)
)
* * * x  —Zss pKI(B+ AB(t))

* * * * * —pS

By Lemma 2.3.1 (Schur Complement [2]) implies ¢35 < 0. Let ¢y = ¢y + s, in
light of Lemma 2.3.4 (3.8) holds if and only if ¢, < 0 and (3.16) simultaneously
hold, and in light of Lemma 2.3.4 again (54 < 0 if and only if (;51 < 0 and <Z;2 < 0.
Then (3.8) hold if and only if ¢; < 0,0, < 0 and (3.16) simultaneously hold.
As in Case I of Theorem 3.1.1 It’s obvious that Vi(z;) > Auin(P)||D(z¢)|]? and
Vi(ze) < (a+b+c+d+e+ f+g)|al/® Since operator D(x;) stable. Therefore,
solution x = 0 of system (3.1) is asymptotically stable according to Theorem (2.3.2)
Case Il 7(t) =7,

For this case, we choose a Lyapunov-Krasovskii functional candidate as
t t
Va(x,) =D (x,)PD(x;) —i—/ 27 (5)Qx(s)ds —i—/ 27(s)Qx(s)ds
t—Te t—d

+ / T (5)Qa(s)ds + / \a /t " 0RO

—Te +s

+ O/t T (0)Y(0)do (3.29)

where P >0, Q >0, 1 >0, Q2 >0, R>0andY > 0 are the same as those
in (3.9). Taking the derivative of Va(z;) with respect to ¢ along any trajectory of
solution of (3.24) yields

Va(z) =2D7 (2 )PD(xy) + 27 () Qu(t) — 2T (t — 7.)Qu(t — 7.) + =T (1) Q1 x:(t)
— 2Tt —d)Qz(t — d) + 37 (£)Qad™ () — #(t — d)Qad(t — d)

+ 2T (t)(dY + 1. R)i(t) — /t 7 (s)Ri(s)ds

_ /t Y ils (3.30)
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The following equalities hold:

2" () K] + 2" (t — 1) KT + T (KT + 3T (t —d)K] + 27 (t — d)KT]x

(A + AA@®)2(t) + (B+ AB()a(t — 7.) + Ci(t — d) — i(t)] = 0 (3.31)

2T (LT 42T (t — 7)) LY + T (t)LE + 2T (t — d)LT + 27 (t — d)LT]

< [a(t) — ot =7.) — /t_ i(s)ds] = 0 (3.32)

T ()YMT + 2T (t — r)MT + &T () MT + 2Tt — d)M] + 27 (t — d) M
t
< [a(t) — ot — d) — / i(s)ds] = 0 (3.33)
t—d
where K;(i = 1,2,3,4,5) are the same as those in (3.12), L;(i = 1,2,3,4,5) are
the same as those in (3.13), M;(i = 1,2,3,4,5) are the same as those in (3.14).

Then from (3.30), (3.31), (3.32), (3.33). we have

Va(z,) =2D" () PD(z;) + 27 (1)Qu(t) — 27 (t — 7.)Qx(t — 1) + 2T (1) Q1 (t)
— ' (t = d)Qua(t — d) + 27 (1) Qo™ (1) — #(t = d)Qai(t — d)

t

+ 2T (#)(dY + 1.R)Z(t) — /t &' (s)Ri(s)ds — /t 7 (s)Yi(s)ds

+ 2l () K] + 2" (t — 7)) KT + 3T () KT + 3T (t —d)K] + 27 (t — d)KZ]
X [(A+ AA())z(t) + (B+ AB#)x(t = 7.) + Ci(t — d) — z(t)]

42l () LT + 2" (t = 7o) LY + 2T () LY + @7 (t — d) LT + 2" (t — d)LE]
< (a(t) = a(t— 7) — /t_ #(s)d9]

+ 22T ()MT + 2Tt — )M + 2T (O)MT + 27 (t — d)MT + 27(t — d) MY
W [a(t) — ot — d) = /t_d:t(s)ds]
—2 [ STt )d(t, s)ds

Te t—Te

+ cli /t_d W (t, 8)dawl(t, s)ds (3.34)
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where

n+Zu St 2 St Zis SutZu &5+ 2 T
* S+ Zon Eo3+ Zoz Soa+ Zoa Eos+ Zos TeLy
b= * * s+ Zsg Eaat Zag a5+ Zss Ty
& * * S+ Zas Cus+ Zus Tl
* * * * &5 + Zss TeLg
* * * * * —1.R

—Zy —Zvy ~Zis —Zu —Zis dMT

* —Zyy —Uyz —Lo —Ls dMgT

- * %  —Zs3 —Zzy —Zs35 dMT

P2 =

* * * — Ty —Zy5 dMT
* * * * —Zss  dMT
% * % * * —dY

From (3.34), if ¢; < 0 and ¢y < 0, then Va(z;) < —Xof|z(t)||?, for some Ay > 0.
Notice that (3.24) implies ¢; < 0 and ¢ < 0. As in Case I in Theorem 3.1.1,
V(zy) < (a+b+c+d+e+g)||rdl® Since operator D(x;) stable, the solution
x = 0 of system (3.1) is asymptotically stable according to Theorem 2.3.2 .

Case III 1. < 7(t) < T

For this case, we choose the Lyapunov-Krasovskii functional candidate as

t

Va(z:) =D () PD(7) + / T(8)Qu(s)ds + / T(5)Qux(s)ds

+/ T(5)Qq(s ds+/ ds/ )do

t—d t+s
/ ds/ 0)Si(0 d9+/ ds/ )db (3.35)
—TM t+s t+s

where P > 0,Q > 0,01 > 0,Q2 > 0,R > 0,5 > 0 and Y > 0 are the same as
those in (3.9). Similar to Case I, we can prove that system (3.1) is asymptotically

stable. The proof is complete.
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Since LMI of theorem 3.2.1 depend on time, which can not be solved by LMI

control toolbox. So we give the new theorem 3.2.2 to avoid this problem.

Theorem 3.2.2 For given nonnegative scalars 7., and Ty, system (3.1) is asymp-

totically stable for any 7(t) satisfying 0 < 1, < 7(t) < 7ar if there exist constants
e > 0 and some matrices P,Q,Q1,Q2, R, S,Y > 0 and L;, K;, M;(i = 1,2,3,4,5)

such that

by}

b1

*

P12
b2z

*

*

P13
P23
P33

*

*

P14
P24
P34
Paa

2dM T
2dM}
2d M}
2dM]
2d MY
—2dY

*

*

*

*

27, LT
27, LT
27’6L3T
27, LT
27 LY

0
—27.R

*

*

*

pKTB
pKIB
pKIB
pKIB
pKIB
0
0
—pS
*

*

KTE G
KIE eGT
KIE 0
KI'E 0
K'E 0
0 0
0 0
0 0
—el 0
* —el

Proof We will sufficient to show that ¥ < 0 if and only if 35 < 0.

Consider

SH

*

P
€2

*

*

&13
€23
533

*

*

514
€24
634
€44

*

515
525
535
645
655

2dMT

2dMY

2dMT

2dMT

2dMT

—2dY
*

*

27 LT
27, LY
27 LY
27, LT
27‘6ng
0
—27.R

*

Since AA(t) = EF(t)G and AB(t) = EF(t)G,

<0

(3.36)
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, then Y=
11 12 Gz pu G5 2dM{ 27 LT pK{B
* (oo Gz Gu G35 2dMF 27.L] pK]B
* % ¢33 s P35 2dMy 27 L5 pK{B
x % %y dus 2dM[ 27.L5 pK{B
x ok % x5y 2dMT 27, LT pKIB
* * * * x  =2dY 0 0
* * * * * * —27.R 0
ok ok k% * * —pS
K'E
KI'E
K'E
KTE
+ F) (G G 00000 oG )
K'E
0
0
0
ar
GY
0
0 T
ol F (t)<ETK1 ETK, ETK, ETK, ETK; 0 0 o). (3.37)
0
0

pGl



Using Lemma (2.3.3), 3 < 0 if and only if

6,

KTE
KI'E
KIE
1| KI'E
€| KI'E

+e€

Using Lemma 2.3.1, we get that ©; < 0 if and only if (3.36) hold.

Sh

*

*

&1
€2

*

(ETK1 ETK, ETK; ETK, ETK; 0 0 0>

pG{

SERRST!

Sz Eu

P33 P3a
*
* *
* *
* *
* *

33

§15
525
P35
Pa5
P55

2dMT
2dM7
2dMT
2dM7
2dMT
—2dY

27, LT
27, LY
2T6L:7;
27 LY
27'6L5T
0
—27.R

pKIB
pKIB
pKIB
pKI'B
pKIB
0
0
—pS

(¢ G ooo0o0o0p6)<o

(3.38)
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Example 3.2.1 Consider neutral system without matric uncertainties with time-
varying delay 7(t) = sin?(t),and d = 0.4 where

where

L0407 ~0.0049 | ~0.0585 00240 ) 04 0
0.0049  —2.0508 | —0.006 —0.0706 | 0 04

By using the Matlab LMI toolbox, we can solve for matrices P, @, Q1,Q2, R, S,Y
and L;, K;, M;(i = 1,2,3,4,5) which satisfy the criterion of Theorem 3.1.1, thus

the zero solution of system (3.6) is asymptotically stable.

Example 3.2.2 Consider uncertain neutral system with time-varying delay 7(¢) =

sin*(t),d = 0.4

where
L0407 —0.0049 | 00585 —0.0240 | 04 0
0.0049 —2.0508 | ~0.006 —0.0706 | 0 04
02 02 —01 —01 —09 0

E= aGl = ,F: ,G: E.
01 —02 01 02 0 0.7

By using the Matlab LMI toolbox, we can solve for matrices P, Q,Q1,Q2, R, S,Y,
L;, K;, M;(i = 1,2,3,4,5) and constants e;, €2, €3 which satisfies the criterion of

Theorem 3.2.1, hence the zero solution of system (3.1) is asymptotically stable.
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In numerical simulation, the two cases are given with the initial state ¢(t) =
[0.1;0.1]T for t € [-0.7,0]. Fig.3.1. shows the response of state variable z; with
step size 0.01. Fig.3.2. shows the time response of state variable xo with step size
0.01. Hence, we might be obtain that the effect of uncertainties in neutral system

will make differences to the dynamics of neutral system.

0.12

0.1

0.08

0.06

x1

<« certain

0.04

uncertain

—0.02 I I I I ! ! I L I
0 10 20 30 40 50 60 70 80 90 100

Figure 3.1: The trajectories of state variable z; of systems (3.1) and (3.6) in
Examples 3.2.1. and 3.2.2.
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0.1

0.08 4

0.06 -

0.04F

X2

<+«—— certain

0.02
uncertain

0 10 20 30 40 50 60 70 80 90 100

Figure 3.2: The trajectories of state variable x5 of systems (3.1) and (3.6) in
Examples 3.2.1. and 3.2.2.
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Table 3.1: Maximum upper bounds of the time-varying delay 7, for fixed constant

delay d.

T | 0.8250 | 0.8210 | 0.8200 | 0.8160 | 0.8040 | 0.7990 | 0.7950

Table 3.2: Comparing some previous results with this paper

Results Maximum allowable value of h
3] 0.3
[5] 0.5658
[9] 0.74
Result of this paper(Constant delays 7(t) = 7 > 0) 0.7910

Example 3.2.3 Consider the stability of the nominal system (3.6) with h =
max{d, as} and 7(t) satisfy (3.4)

—-0.9 0.2 —-1.1 —-0.2 —0.2 0
0.1 —-0.9 —-0.1 —-1.1 0.2 —-0.1
In the case of 1 = 0 (p is the upper bound of the derivative of time-varying delay),

some upper bounds for delays that guarantee asymptotic stability of system in [3,

5, 9] are provided in Table 3.2.



