CONTENTS	
2818126	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (IN ENGLISH)	iv
ABSTRACT (IN THAI)	vi
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF SCHEMES	xviii
LIST OF ABBREVIATIONS	xx
CHAPTER I : INTRODUCTION	1
CHAPTER II : LITERATURE REVIEWS	6
2.1 Overview of antioxidant activity, polyphenols in	6
plants and product traditionally used in diabetes	
2.1.1 Research on antioxidant activity, polyphenols in	n 6
2.1.2 Beneficial and safety of BFPB with probiotic bacterium 2.2 Oxidative Stress	19 19 24
2.2.1 Oxidative stress and human diseases	25
2.2.2 Oxidative stress defense systems	27

2.3	Diabetes	31
	2.3.1 Classification and diagnosis	32
0	2.3.2 Criteria for the diagnosis of diabetes	33
20	2.3.3 Criteria for testing for pre-diabetes and	34
S.	diabetes in asymptomatic adult individuals	
a	2.3.4 Components of the comprehensive	35
	diabetes evaluation medical history	
505	2.3.5 Experimental diabetes in animal model	38
206	2.3.5.1 Streptozotocin-induced diabetes	38
2.4	Oxidative stress, diabetes and antioxidants	45
	2.4.1 Hyperglycemia and stress-activated pathways	58
1 A	2.4.2 NF- _K B pathway	59
	2.4.3 JNK/SAPK pathway	60
	2.4.4 P38 MAPK pathway	61
S S Ś	2.4.5 Hexosamine pathway	62
adansu	2.4.6 Oxidative stress relate to insulin resistance	63
Copyright [©]	and diabetic complication University	ity
All rig	2.4.7 Biomarkers of oxidative stress in diabetes	68
CHAPTER III : MA	ATERIALS AND METHODS	71
3.1	Chemicals and instruments are in appendix A.	71

Page

3.2	In vitro study: The effects of antioxidant activity	71
	from 30 Thai indigenous plants against diabetic	
0	stress in the <i>in vitro</i> study	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.2.1 Plant materials	72
	3.2.2 Preparation of ethanol plant extracts	76
	3.2.3 Measurements of antioxidant activity	76
	3.2.3.1 ABTS free radicals decolorization as	ssay 76
See.	3.2.3.2 Lipid peroxidation assay	77
0.000	3.2.3.3 Glycation of protein analysis	78
2	3.2.4 Blood sample collections	79
	3.2.5 Determination of total phenolic content	80
	3.2.6 Determination of flavonoids content	80
	3.2.7 Determination of total tannins content	81
	3.2.8 Preparation and plant extracts components	81
<u> </u>	identification by HPLC	2
ລູງຊຸມອ	3.2.9 Quantitative analysis of polyphenol	83
<b>Copyright</b> [©]	compounds by thin layer chromatography	rsity
All ri ^{3.3}	In vivo study: The effects of biologically fermen	ted 84
	Thai indigenous plants against diabetic oxidative	9
	stress in streptozotocin-induced rats.	

Page

Ι	Page
3.3.1 Preparation and identification of	84
biologically fermented plant beverage (BFPB)	
3.3.1.1 Preparation of mixed BFPB	86
3.3.1.2 Preparation of sample solution	87
3.3.1.3 Analytsis of active ingredients in BFPB	88
crude extract by chromatography	
and HPLC	
3.3.2 Animals	89
3.3.3 Induction of diabetic rats	89
3.3.4 Experimental protocols	90
3.3.5 Measurement of oxidative stress markers	91
3.3.5.1 Determination of plasma glucose levels	92
3.3.5.2 Plasma lipid peroxidation assay	92
3.3.5.3 Determination of oxidative stress	93
status in red blood cells	
3.3.5.4 Superoxide anion (O ₂ ) scavenging	93
Copyright [©] by Chactivity assay/ai Universi	ity
A 3.3.5.5 Nitric Oxide (NO) scavenging	94
activity assay	

xi

3.4 Statistical analysis

<b>CHAPTER IV : RESULTS AND DISCUSSION</b>	95
4.1 In vitro study: The effects of antioxidant activity of	95
30 Thai indigenous plants against diabetic stress in	
the in vitro study	
4.1.1 Indigenous plants with the yield of	95
ethanol extracts	
4.1.2 Total antioxidant activity by ABTS	99
4.1.3 Lipid peroxidation study of diabetic	104
oxidative stress	
4.1.4 Free radical scavenging activity on diabetic	107
oxidative stress using glycation assay	
4.1.5 Analysis of polyphenolic compounds by HPLC	111
4.1.6 Analysis of polyphenol compounds by TLC	115
4.1.7 Determination of total polyphenolic	119
properties; total phenols, flavonoids and	
tannins content of five plants with strong	<b>1</b> U
Copyright [©] by antioxidant activity Mai Univers	ity
4.2 The effects of biologically fermented Thai indigenous	122
plant beverage against diabetic oxidative stress in	
streptozotocin-induced rats	

Page

2	4.2.1 GC/MS and HPLC analytic of mixed BFPB	122
	extract components and Contents of main	
0	polyphenolic compounds	
	4.2.2 Effect of BFPB on body weight of rats	126
S	4.2.3 Effect of BFPB on plasma glucose levels in	133
G.	STZ-induced diabetic rats	
	4.2.4 Effect of BFPB on plasma TBARS levels in	139
502	STZ-induced diabetic rats	
201-	4.2.5 Effect of BFPB on levels of red blood cells	144
2	oxidative stress in STZ- induced diabetic rats	
	4.2.6 Effect of BFPB on plasma superoxide anion in	149
12	STZ-induced diabetic rats	
	4.2.7 Effect of BFPB on plasma nitric oxide levels	155
	in STZ-induced diabetic rats	
<b>CHAPTER V : CO</b>	NCLUSIONS	161
REFERENCES	หาวทยาลยเชยงเเ	167
APPENDIX	by Chiang Mai Univers	197
CURRICULUM V	Trans reserve	216
LIST OF PUBLIC	ATIONS	217
<b>RESEARCH AWA</b>	RD	221

xiii

Page

## LIST OF TABLES

Table ABERA	Page
2.1 Representations of the subclasses of polyphenolic compounds in plan	t 8
2.2 The different subclasses of flavonoids	9
2.3 Characteristics of ROS and RNS	24
2.4 Defenses systems against oxidative damage	29
2.5 Markers of oxidative stress and their site of location in diabetes	70
3.1 List of 30 Thai indigenous plants used in the study	73
4.1 Percentage yield of ethanolic crude extracts in Thai indigenous plants	96
4.2 Total antioxidant activity of ethanolic crude extracts of Thai	102
indigenous plants by ABTS free radicals decolorization assay	
4.3 Total antioxidant activity of ethanolic crude extracts of Thai	105
indigenous plants by TBARS assay for lipid peroxidation	
4.4 Glycation inhibitory activity assay of ethanolic crude extracts	109
a d of Thai indigenous plants <b>1273 210 20</b> 1	κIJ
4.5 a) TLC values of the rate of flow of five plants and standards on	116
condition n-hexane: ethyl acetate: acetic acid (20:19:1)	e d
b) TLC values of the rate of flow of five plants and standards on	117
condition dichloromethane: methanol: acetic acid (28:18:1)	
4.6 Total antioxidant activity and contents of main polyphenolic	121
compounds in ethanol extract of five plants	

Page
------

4.7 Contents of main polyphenolic compounds in mixed BFPB	125
4.8 Effect of BFPB on body weights in STZ-induced diabetic rats	129
4.9 Effect of BFPB on plasma glucose levels in STZ-induced diabetic rats	135
4.10 Effect of BFPB on plasma TBARS levels in STZ-induced diabetic rate	3141
4.11 Effect of BFPB on levels of red blood cells oxidative stress in	146
STZ-induced diabetic rats	
4.12 Effect of BFPB on plasma superoxide anion level in STZ-induced	152
- diabetic rats	
4.13 Effect of BFPB on plasma nitric oxide levels in STZ-induced	158
diabetic rats	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

## LIST OF FIGURES

Figures ALE A	Page
2.1 The chemical structure of streptozotocin	39
3.1 Chemical structures of some polyphenols found in the samples	82
3.2 Five Thai indigenous plants with strong antioxidant activity	86
and their mixed biologically fermented plant beverags product	
4.1a) HPLC analysis of polyphenols from standard and PE plant extract	112
b) HPLC Chromatograms of MC and KP plant extracts	113
c) HPLC Chromatograms of TC and HC plant extracts	114
4.2 TLC chromatograms of PE, TC, MC, KP and HC plant extracts	118
and also the polyphenol compounds standard	
4.3 GC/MS identification of active ingredients of mixed BFPB extract	123
4.4 HPLC chromatograms of the polyphenol standard and mixed BFPB	124
4.5 Effect of BFPB on body weights in STZ-induced diabetic rats (DM)	130
4.6 Change of body weight in each STZ-induced diabetic rat and normal	131
4.7 Dose response of BFPB on body weight in each STZ-induced	sity e ¹³² d
diabetic rat and normal rat group	

4.8 Effect of BFPB on plasma glucose levels in STZ-induced diabetic rats 136

xvi

	Page
4.9 Change of plasma glucose in each STZ-induced diabetic rat and	137
normal rat group	
4.10 Dose response of BFPB on plasma glucose concentrations in each	138
STZ-induced diabetic rat and normal rat group	
4.11 Effect of BFPB on plasma TBARS levels in STZ-induced	142
diabetic rats	
4.12 Dose response of BFPB on plasma TBARS (MDA equivalents)	143
concentrations in each STZ-induced DM group	
4.13 Effect of BFPB on levels of red blood cells oxidative stress Effect	147
of BFPB on levels of red blood cells oxidative stress in	
STZ-induced diabetic rats in STZ-induced diabetic rats	
4.14 Dose response of BFPB on erythrocyte ROS levels in each	148
STZ-induced diabetic group	
4.15 Effect of BFPB on plasma superoxide anion in STZ-induced	153
diabetic rats	
4.16 Dose response of BFPB on plasma superoxide anion levels	154
Copy in each STZ-induced diabetic rations Mai University	sity
4.17 Effect of BFPB on plasma nitric oxide in STZ-induced diabetic rats	159
4.18 Dose response of BFPB on plasma nitric oxide levels in each STZ-	160
induced diabetic rat	

xvii

## LIST OF SCHEMES

Scheme angle 260	Page
2.1 Schematic representation of the involvement of oxidative stress	23
in several clinical conditions most of which have underlying	
inflammatory mechanisms Haber-weiss reaction and Fenton reaction	on
2.2 Oxidative stress and human diseases	26
2.3 Defense systems in vivo against oxidative damage	28
2.4 The mechanism of STZ-induced toxic events in $\beta$ -cells of rat panero	eas 43
MIT-mitochondria; XOD-xanthine oxidase	
2.5 Hyperglycemia and stress-activated pathways oxidative stress	46
2.6 Summarizes of mechanism ties hyperglycemia to the expression	54
of multiple genes related to vascular stress response	
2.7 $O_2^-$ reacting with NO produces peroxynitrite (ONOO ⁻ )	57
2.8 Schematic role of serine kinase activation in oxidative	64
stress-induced insulin resistance	์หบ
2.9 Schematic summary of the various options proposed as causal	67
antioxidant therapy on oxidative stress that leads to diabetic	/ 
All rights reserv	ea
3.1 Schematic diagram show the experimental protocols for study	71
the effects of antioxidant activity from 30 Thai indigenous	
plants against diabetic stress in the in vitro study	

xviii

3.2 Schematic diagram show the protocol to study the effects

of biologically fermented Thai indigenous plants against diabetic oxidative stress in streptozotocin-induced rats



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

91

## **ABBREVIATIONS AND SYMBOLS**

%	percent 91896
Abs	absorbance
ABTS	2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonicacid)
S	diammonium salt
AGEs	advanced glycation end products
ANOVA	analysis of variance
BFPB	biologically fermented indigenous plant beverage
BHT	butylated hydroxytoluene
BW	body weight
°C	degree Celsius
CO ₂	carbondioxide
DM	diabetes mellitus
EDTA	ethylendiaminetetraacetic acid
DCFH-DA	2',7'-dichlorofluorescin diacetate
<b>FFA</b>	free fatty acid by Chiang Mai University
g	ghts reserved
GLUT1	glucose transporter 1
h	hour
НС	Houttuynia cordata Thunb.
HPLC	high performance liquid chromatography

IC ₅₀	inhibition dose at 50%
IkB	inhibitory protein kB
JNK	NH2-terminal Jun kinase
kg	kilogram
КР	Kaempferia parviflora Wall.
NFkB	nuclear factor kB
М	molarity
МАРК	mitogen-activated protein kinase
MC	Morinda citrifolia Linn.
min	minute
mM	millimolar
MDA	malondialdyhyde
NADH	nicotinamide adenine dinucleotide
NADPH	nicotinamide adenine dinucleotide 3'-phosphate
NO	nitric oxide
NOS	nitric oxide synthase
	inducible nitric oxide synthase
Cobnos ght ^C	brain nitric oxide synthase a University
eNOS	endothelial nitric oxide synthase Served
$O_2$	oxygen
O ⁻ 2	superoxide
ONOO ⁻	peroxynitrite

mg	milligram
ml	milliliter
PBS	phosphate buffer saline
PE	Phyllanthus emblica Linn.
РКС	protein kinase C
RAGE	receptor for AGE
RBCs	red blood cells
ROS	reactive oxygen species
SAPK	stress-activated protein kinases
SEM	standard error of mean
SD	standard deviation
SOD	superoxide dysmuthase
STZ	streptozotocin
TBARS	thiobarbituric acid reactive substances
TC	Terminalia chebula Retz.
TLC	thin layer chromatography
C CTEAC SU	trolox equivalent antioxidant capacity
Covyright ^C	volume by volume ng Mai University
A v/w	volume by weight reserved
μg	microgram
µg/ml	microgram per millilite
μΜ	micromolarity

xxii