TABLE OF CONTENTS

	010101	Page
ACKNOWLEDG	GEMENT	iii
ABSTRACT (IN	ENGLISH)	iv
ABSTRACT (IN	THAI)	vi
LIST OF TABLE		xiii
LIST OF FIGUR	ES	XV
LIST OF ABBRE	EVIATIONS	xviii
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE REVIEW	6
	2.1 Coccidiosis	8
	2.1.1 Life cycle	10
	2.1.2 Etiology	13
	2.1.3 Coccidiosis and Microflora	14
	2.1.4 Immunity development during coccidiosis	16
	2.1.5 Control of coccidiosis	22
	2.2 Probiotics	26
	2.2.1 Definition of probiotics	27
	2.2.2 Selection for probiotics	29
	2.2.3 Microbial community in gastrointestinal trac	t 30
	2.2.4 Microbe – microbe interaction	33
	2.2.5 Probiotic and Immunity	35
CHAPTER 3	MATERIALS AND METHODS	41

	Page
3.1 Isolation and identification of probiotic lactic acid	41
bacteria from poultry's coacal swap	
3.1.1 Materials	41
3.1.2 Methods	44
3.1.2.1 Sample collections	44
3.1.2.2 Isolation of probiotic lactic acid	44
bacteria	
3.1.2.3 Probiotics properties examinations	45
3.2 The effect of selected probiotic bacteria on	48
productive performances and humoral immunity in	
male broilers	
3.2.1 Materials	48
3.2.2 Methods	50
3.2.2.1 Effect of selected probiotic bacteria	50
on productive performances and humoral	
immunity in male broilers	
3.2.2.2 Haemagglutination inhibition test	51
3.2.3 Statistical analysis	52
3.3 The effect of selected probiotic bacteria on inhibition	53
of <i>E.tenella</i> infection, anti-coccidial antibody and	
cytokine levels related with <i>E.tenella</i> infection	

3.3.1 Materials

		Page
	3.3.2 Methods	56
	3.3.2.1 The effect of selected probiotic	56
	bacteria on inhibition of <i>E. tenella</i> infection	
	3.3.2.2 The effect of selected probiotic	57
	bacteria on anti-coccidial antibody and	
	cytokine levels related with E.tenella infecti	ion
	3.3.3 Statistical analysis	60
CHAPTER 4	RESULTS	61
	4.1 Isolation and identification of probiotic lactic acid	61
	bacteria from poultry's coacal swap	
	4.1.1 Isolation of probiotic lactic acid bacteria	61
	from poultry's coacal swap	
	4.1.2 Probiotics Properties examinations	64
	4.1.2.1 Bile salt tolerance	64
	4.1.2.2 Acid - Base tolerance	66
	4.1.2.3 Utilization of protein, starch and fat	67
	4.1.2.4 Antibacterial activity to	70
	enteropathogenic bacteria	
	4.1.3 Identification by 16S-rDNA-sequence	71
	g h t analysis r e s e r v e	
	4.2 The effect of selected probiotic bacteria on	72
	productive performances and humoral immunity in male	

broilers

	Page
4.2.1 The effect of selected probiotic	72
bacteria on productive performances	
4.2.2 Effect of selected probiotic bacteria	80
on humoral immunity in male broilers	
4.3 The effect of selected probiotic bacteria on inhibition	82
of <i>E.tenella</i> infection, anti-coccidial antibody and cytokine	e
levels related with <i>E.tenella</i> infection	
4.3.1 The effect of selected probiotic	82
bacteria on inhibition of <i>E. tenella</i> infection	
4.3.2 The effect of selected probiotic bacteria	86
on caecal tonsil and bursa of fabricius	
4.3.3 The effect of selected probiotic bacteria	90
on anti-coccidial antibody and cytokine levels	
related with E.tenella infection	
DISCUSSIONS	120
5.1 Isolation and identification of probiotic lactic acid	120
bacteria from poultry's coacal swap	
5.2 The effect of selected probiotic bacteria on	124
productive performances and humoral immunity in male	
broilers tS reserve	
5.2.1 The effect of selected probiotic bacteria	124

on productive performance

CHAPTER 5

	1 age
5.2.2 The effect of selected probiotic bacteria	128
on humoral immunity in male broilers	
5.3 The effect of selected probiotic bacteria on inhibition	130
of <i>E.tenella</i> infection, anti-coccidial antibody and cytokine	;
levels related with <i>E.tenella</i> infection	
5.3.1 The effect of selected probiotic bacteria	130
on inhibition of <i>E.tenella</i> infection	
5.3.2 The effect of selected probiotic bacteria	133
on caecal tonsil and bursa of fabricius	
5.3.3 The effect of selected probiotic bacteria	136
on anti-coccidial antibody and cytokine levels	
related with <i>E.tenella</i> infection	
CHAPTER 6 CONCLUSION	144
REFERENCE	147
CURRICULUM VITAE	181

Ροπο

LIST OF TABLES

Table		Page
1	Sample source of healthy antibiotic-free poultry	45
2	Percentage composition of diets fed to broilers	51
3	Average Daily Gain (ADG) of broilers in 1-38 day of aged	74
4	Feed Intake (FI) of broilers in 1 - 38 day of aged	75
5	Feed Conversion Ratio (FCR) of broilers in 1-38 day of aged	77
6	Feed Efficiency (FE) of broilers in 1 - 38 day of aged	78
7 9	Percent Mortality of broilers in 1 - 38 day of aged	79
8	Haemagglutination Inhibition Titer (HI Titer) of Newcastle disease	81
9	Oocyst Shedding in fecal material ground on days 6, 7, 8, 9, 10 after	87
	infection	
10	Average Oocyst Shedding in fecal material ground on days 6 – 10	85
11	Caecal tonsil: Body weight ratio on days 0, 3, 6, 9, 12 after infection	87
12	Bursa of Farbricius: Body weight ratio on days 0, 3, 6, 9, 12 after	89
	infection	
13	Anti-coccidial antibody in serum on days 0, 3, 6, 9, 12 after infection	93
14	Anti-coccidial antibody in intestinal wash on days 0, 3, 6, 9, 12 after	96
	infection	
15	Anti-coccidial antibody in lymphocyte supernatant with Con A 12.5	99
	mg/ml on days 0, 3, 6, 9, 12 after infection	
16	Anti-coccidial antibody in lymphocyte supernatant with Con A 25	101
	mg/ml on days 0, 3, 6, 9, 12 after infection	

Table		Page
17	IFN-v in collected serum on days 0, 3, 6, 9, 12 after infection	104
18	IFN-v in intestinal wash on days 0, 3, 6, 9, 12 after infection	106
19	IFN-v in lymphocyte supernatant with Con A 12.5 mg/ml on days 0,	108
	3, 6, 9, 12 after infection	
20	IFN-v in lymphocyte supernatant with Con A 25 mg/ml on days 0,	110
	3, 6, 9, 12 after infection	
21	IL-2 in serum on days 0, 3, 6, 9, 12 after infection	113
22	IL-2 in intestinal wash on days 0, 3, 6, 9, 12 after infection	115
23	IL-2 in lymphocyte supernatant with Con A 12.5 mg/ml on days 0,	117
	3, 6, 9, 12 after infection	
24	IL-2 in lymphocyte supernatant with Con A 25 mg/ml on days 0,	119
	3, 6, 9, 12 after infection	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figur		Page
1	Overview of the various stages of <i>E. tenella</i> , which is typical for the	11
	genus Eimeria	
2	Stages of the life cycle take place in the external environment and in	12
	the host.	
3	Location of the lesions caused by different Eimeria species in the	14
	gastrointestinal tract	
4 %	Life cycle of E. tenella and intestinal host immune response to parasites	21
5	Sample colletion by coacal swap	61
6	Bacterial strains change the media color around colony to yellow	62
7	A total of 1200 representative strains, changed the media color around	63
	colony to yellow, divided by source of regions	
8	A total of 1200 representative strains, changed the media color around	63
	colony to yellow, divided by gram strain	
9	A total of 1200 representative strains, changed the media color around	64
	colony to yellow, divided by catalase activity	
10	Bile salt tolerance tests	65
11	Bile salt tolerance tests of 242 strains which represent gram positive	65
	and catalase negative represent resistance to Bile salts	
12	Acid – Base Tolerance test	66
13	Acid – Base Tolerance test of 116 strains which grown on bile salt plated	l 67
14	Protein, starch, fat utilization test	68

Figures		Page
15	Protein, starch, fat utilization test of 19 strains which had acid – base	69
	Tolerance	
16	Antibacterial activities of bacteria to Escherichia coli	70
17	Antibacterial activities of bacteria to Salmonella typhimurium	71
18	Oocyst shedding in fecal material ground each group on days 6, 7, 8,	83
	9, 10 after inoculated	
19	Caecal tonsil: Body weight ratio on days 0, 3, 6, 9, 12 after infection	88
20	Bursa of Farbricius: Body weight ratio on days 0, 3, 6, 9, 12 after	90
	infection	
21	Anti-coccidial antibody in serum on days 0, 3, 6, 9, 12 after infection	92
22	Anti-coccidial antibody in intestinal wash on days 0, 3, 6, 9, 12 after	95
	infection	
23	Anti-coccidial antibody in lymphocyte supernatant with Con A 12.5	98
	mg/ml on days 0, 3, 6, 9, 12 after infection	
24	Anti-coccidial antibody in lymphocyte supernatant with Con A 25	100
	mg/ml on days 0, 3, 6, 9, 12 after infection	
25	IFN-v in collected serum on days 0, 3, 6, 9, 12 after infection	103
26	IFN-v in intestinal wash on days 0, 3, 6, 9, 12 after infection 111	105
27	IFN-v in lymphocyte supernatant with Con A 12.5 mg/ml on days 0,	e ₁₀₇
	3, 6, 9, 12 after infection	
28	IFN-v in lymphocyte supernatant with Con A 25 mg/ml on days 0,	109
	3, 6, 9, 12 after infection	

Figures		Page
29	IL-2 in serum on days 0, 3, 6, 9, 12 after infection	112
30	IL-2 in intestinal wash on days 0, 3, 6, 9, 12 after infection	114
31	IL-2 in lymphocyte supernatant with Con A 12.5 mg/ml on days 0,	116
	3, 6, 9, 12 after infection	
32	IL-2 in lymphocyte supernatant with Con A 25 mg/ml on days 0,	118
	3, 6, 9, 12 after infection	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

BHI	Brain heart infusion
CFU	Colony forming unit
Con A	Concanavalin A
E.	Eimeria
FCR	Feed conversion ratio
FE	Feed efficiency
FI	Feed intake
Ft ²	Foot square
g.	gram
GIT	Gastrointestinal tract
НА	Haemagglutination
ні	Haemagglutination inhibition test
IFN	Interferon
Ig	Immunoglobulin
IL	Interleukin
LANSU	Lactobacillus
LAB	Lactic acid bacteria
МНС	Major histocompatibility
MRS	de Man Rogasa and Sharpe
RBC	Red blood cell
PCR	Polymerase chain reaction
VFA	Volatile fatty acid