TABLE OF CONTENTS

0181816	Page
ACKNOWLEDGEMENTS	iii
ENGLISH ABSTRACT	iv
THAIABSTRACT	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	XXV
CHAPTER I INTRODUCTION	1
1.1 State of significant of the problem	1
1.2 Objectives	4
1.3 Scope of Study	4
1.4 Literature Reviews	5
1.4.1 Model Drugs	5
1.4.1.1 Chlorpheniramine maleate	5
1.4.1.2 Diazepam	8
1.4.2 Tablet excipients	10
1.4.2.1 Dicalcium phosphate dihydrate	10
1.4.2.2 Lactose monohydrate	14
1.4.2.3 Croscamellose sodium	17
1.4.2.4 Polyvinyl pyrollidone K90	20
1.4.2.5 Magnesium stearate	23
Copyright [©] b1.4.2.6 Taleng Mai Univers	25
1.4.3 Solvents	27
S 1.4.3.1 Ethyl alcohol	27
1.4.3.2 Dichloromethane	29
1.4.4 Tablet Manufacturing	30

	Page
1.4.4.1 Wet granulation	30
1.4.4.2 Dry granulation	32
1.4.4.3 Direct compression	32
1.4.5 Tablet Evaluation	34
1.4.5.1 Weight variation	34
1.4.5.2 Hardness testing	35
1.4.5.3 Tablet friability	35
1.4.5.4 Tablet porosity	35
1.4.5.5 Disintegration test	36
1.4.5.6 Determination of the active ingredient	
content	37
1.4.5.7 Uniformity of dosage unit	37
1.4.6 Tablet Characterization	37
1.4.7 Improving Drug Dissolutions	40
1.4.8 Improvement of dissolution characteristic of diazepar	n 46
1.4.9 Drug-Solution-Dropping Tablet (DSDT)	50
CHAPTER II RESEARCH DESIGNS AND METHODS	
EXPERIMENTAL	57
2.1 Materials	57
2.2 Equipments	57
2.3 Methods	58
2.3.1 Preparation of blank tablet	58
2.3.2 Preparation of drug tablet by conventional method	60
2.3.3 Evaluation of blank tablet properties	60
2.3.3.1 Weight variation	60
A I I I I I I I I I I I I I I I I I I I	60 61
2.3.3.4 Tablet porosity	61
2.3.3.5 Disintegration test	61
2.3.4 Preparation of drug-solution-dropping tablet	62
2.3.5 Study of the penetration depth of drug solution	62

			Page
	2.3.6	Tablet characterization studies	63
		2.3.6.1 Morphology study by digital camera	63
		2.3.6.2 Morphology study by scanning electron	
	9	microscopy	63
		2.3.6.3 X-ray powder diffraction	63
		2.3.6.4 Differential scanning calorimetry (DSC)	63
	2.3.7	Assay of active ingredients	64
	2.3.8	Content Uniformity Testing	64
	2.3.9	Dissolution Profile Studies	64
	2.3.10	Stability Studies	65
CHAPTER III RES	SULTS		66
3.1	Evalua	ation of blank tablet properties	66
	3.1.1	Weight variation	66
C	3.1.2	Hardness testing	68
E	3.1.3	Tablet friability	69
	3.1.4	Tablet porosity	70
	3.1.5	Disintegration test	71
3.2	Study	of the penetration of solution after dropping on blar	ık
	tablet	TIMUVER	71
3.3	Tablet	characterization studies	72
	3.3.1	Morphology studies by digital camera	73
ລາວວິນ	3.3.2	Morphology studies by scanning electron	
agaiph	n'	microscope	83
Converset	3.3.3	X-ray powder diffraction of powder	106
Copyright	3.3.4	Differential scanning calorimetry	126
A 3.4	Detern	nination of the active ingredient content	131
3.5	Conter	nt uniformity	131
3.6	Dissol	ution Profiles Study	132
	3.6.1	Effect of times of solvent dropping	132
	3.6.2	Dissolution profiles of CPM-solution-dropping	
		tablet	135

			Page
	3.6.3	Dissolution profiles of DZP-solution-dropping	
		tablet	139
	3.6.4	Effect of compression force on drug dissolution	
	9	of DSDT	144
	3.6.5	Comparison of DSDT dissolution profiles of table	ts
		prepared from DC and from WG blank tablet	147
3.7	Stabili	ty Studies	150
8.	3.7.1	Drug contents	150
6	3.7.2	Dissolution profiles	150
CHAPTER IV DISC	CUSSI	ON	159
4.1	Evalua	tion of blank tablet properties	159
785	4.1.1	Weight variation	159
	4.1.2	Hardness testing	159
C	4.1.3	Tablet friability	160
E	4.1.4	Tablet porosity	160
	4.1.5	Disintegration test	161
4.2	Study	of the depth of solution after dropping on blank	
	tablet	SIT	162
4.3	Tablet	characterization studies	162
	4.3.1	Morphology studies by digital camera	162
	4.3.2	Morphology studies by scanning electron	
ວາອີກວິນ		microscope	163
agaiph	n	4.3.2.1 Morphology of tablet surface	163
Convright	b	4.3.2.2 Morphology of powder scratched from	
Copyright	U	superficial and deeper surface of	bity
All ri	g h	drug-solution-dropping tablet	164
	4.3.3	XRPD of powder of the tablet compositions and	
		the powder from DSDT	165
	4.3.4	Differential scanning calorimetry analysis	167
4.4	Detern	nination of the active ingredient content	168
4.5	Conter	nt uniformity testing	168

	Page
4.6 Dissolution studies	168
4.6.1 Effect of time of solvent dropping	168
4.6.2 Dissolution profiles of CPM-solution-dropping	
tablet	169
4.6.3 Dissolution profiles of DZP-solution-dropping	
tablet	170
4.6.4 Effect of compression force on drug dissolution	
of DSDT	172
4.6.5 Comparison of DSDT dissolution profiles of tabl	ets
prepared from DC and from WG blank tablet	173
4.7 Stability Studies	174
4.7.1 Drug content	174
4.7.2 Dissolution profiles	174
CHAPTER V CONCLUSION	176
REFERENCES	182
APPENDICES	195
APPENDIX A	196
APPENDIX B	197
APPENDIX C	198
APPENDIX D	213
CURRICULUM VITAE	214
ลิขสิทธิ์มหาวิทยาลัยเชียงใ	หม
Copyright [©] by Chiang Mai Univer	sity
All rights reserv	e d

LIST OF TABLES

Tab	le an el el ba	Page
1.1	Liquid -liquid partitioning data percent of chlorpheniramine maleate in	
	organic phase	7
1.2	Typical properties of dibasic calcium phosphate dihydrate	12
1.3	Typical properties of lactose monohydrate	16
1.4	Typical properties of croscamellose sodium	18
1.5	Typical properties of povidone	21
1.6	Typical properties of magnesium stearate	24
1.7	Typical properties of tale	26
1.8	Typical properties of absolute alcohol	29
1.9	Approaches to improving the dissolution properties of poorly soluble drug	;s
	to be given orally	41
2.1	The DC blank tablet formulation	59
2.2	The WG blank tablet formulation	59
3.1	Weight variation of DC and WG blank tablet of all tested CF	67
3.2	Weight Variation Tolerances for Uncoated Tablets	68
3.3	Hardness of DC and WG blank tablet of all tested CF	69
3.4	Friability of DC and WG blank tablet of all tested CF	70
3.5	The amount of CPM and DZP in 10 tablets of CPM- and DZO-solution-	
306	dropping tablet which prepared from DC blank tablet at 1000 kg of CF	132
3.6	The amount of CPM and diazepam in DSDT after 0, 1, 2 and 3 months	
Copy	of the storage by Chiang Mai University	150
A1	Porosity of DC and WG blank tablet of all tested CF	196
B1	Disintegration time of DC and WG blank tablet of all tested CF	197
C1	Average percent dissolved of CPM from DSDT prepared from DC blank	
	tablet of 1000 kg CF following 0, 2, 4 and 6 times of dropping solvent	198

T	able	Page
С	2 Average percent dissolved of CPM from DSDT prepared from WG blank	
	tablet of 1000 kg CF following 0, 2, 4 and 6 times of dropping solvent	198
С	Average percent dissolved of DZP from DSDT prepared from DC blank	
	tablet of 1000 kg CF following 0, 2, 4 and 6 times of dropping solvent	199
C	Average percent dissolved of DZP from DSDT prepared from WG blank	
	tablet of 1000 kg CF following 0, 2, 4 and 6 times of dropping solvent	199
С	5 Average percent dissolved of CPM from DSDT prepared from DC blank	
	tablet of all tested CF and the commercial CPM tablet	200
С	6 Average percent dissolved of CPM DC tablet of all tested CF and the	
	commercial CPM tablet	200
C	7 Average percent dissolved of CPM from DSDT prepared from WG blank	
	tablet of all tested CF and the commercial CPM tablet	201
С	Average percent dissolved of CPM WG tablet of all tested CF and the	
	commercial CPM tablet	201
C	Average percent dissolved of DZP from DSDT prepared from DC blank	
	tablet of all tested CF and the commercial DZP tablet	202
С	10 Average percent dissolved of DZP DC tablet of all tested CF and the	
	commercial DZP tablet	202
С	11 Average percent dissolved of DZP from DSDT prepared from WG blank	
	tablet of all tested CF and the commercial DZP tablet	203
С	2 Average percent dissolved of DZP WG tablet of all tested CF and the	
8 11	commercial DZP tablet	203
CC	13 Average percent dissolved of CPM from DSDT prepared from DC blank	ЛIJ
Con	tablet of 1000 kg CF at the beginning (0), 1, 2 and 3 months storage	204
COC	14 Average percent dissolved of CPM from DSDT prepared from DC blank	ILY
	tablet of 1400 kg CF at the beginning (0), 1, 2 and 3 months storage	204
С	15 Average percent dissolved of CPM from DSDT prepared from DC blank	
	tablet of 1800 kg CF at the beginning (0), 1, 2 and 3 months storage	205
C	16 Average percent dissolved of CPM from CPM DC tablet of 1000 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	205

Tab	le	Page
C17	Average percent dissolved of CPM from CPM DC tablet of 1400 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	206
C18	Average percent dissolved of CPM from CPM DC tablet of 1800 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	206
C19	Average percent dissolved of CPM from DSDT prepared from WG blank	
	tablet of 1000 kg CF at the beginning (0), 1, 2 and 3 months storage	207
C20	Average percent dissolved of CPM from DSDT prepared from WG blank	
	tablet of 1400 kg CF at the beginning (0), 1, 2 and 3 months storage	207
C21	Average percent dissolved of DZP from DSDT prepared from DC blank	
	tablet of 1000 kg CF at the beginning (0), 1, 2 and 3 months storage	208
C22	Average percent dissolved of DZP from DSDT prepared from DC blank	
	tablet of 1400 kg CF at the beginning (0), 1, 2 and 3 months storage	208
C23	Average percent dissolved of DZP from DSDT prepared from DC blank	
	tablet of 1800 kg CF at the beginning (0), 1, 2 and 3 months storage	209
C24	Average percent dissolved of DZP from DZP DC tablet of 1000 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	209
C25	Average percent dissolved of DZP from DZP DC tablet of 1400 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	210
C26	Average percent dissolved of DZP from DZP DC tablet of 1800 kg CF	
	at the beginning (0), 1, 2 and 3 months storage	210
C27	Average percent dissolved of DZP from DSDT prepared from WG blank	
8 8	tablet of 1000 kg CF at the beginning (0), 1, 2 and 3 months storage	211
C C28	Average percent dissolved of DZP from DSDT prepared from WG blank	NU
Cara	tablet of 1400 kg CF at the beginning (0), 1, 2 and 3 months storage	211
CO C29	Average percent dissolved of DZP from DSDT prepared from WG blank	SILY
	tablet of 1800 kg CF at the beginning (0), 1, 2 and 3 months storage	212

LIST OF FIGURES

Figure	Page
1.1 Chemical Structure of Chlorphenamine maleate	6
1.2 Chemical Structure of Diazepam	9
1.3 Structure Formula of DCP dihydrate	11
1.4 SEM of dibasic calcium phosphate dihydrate, coarse grade	12
1.5 Structure Formula of α lactose monohydrate	14
1.6 SEM of Pharmatose	15
1.7 Structure Formula of Carboymethylcellulose sodium	17
1.8 SEM of Croscarmellose sodium (Ac-Di-Sol [®])	18
1.9 Structure Formula of Povidone	20
1.10 SEM of Povidone K-30 (Plasdone K-30)	21
1.11 SEM of Magnesium stearate	23
1.12 SEM of Talc (Purtalc)	26
1.13 Structure Formula of ethyl alcohol	28
1.14 Structure Formula of dichloromethane	29
1.15 Diagram of wet granulation process	30
1.16 Diagram of dry granulation process	32
1.17 Diagram of direct compression	33
1.18 A force-porosity diagram	36
C 1.19 Characterization of amorphous form	39
3.1 Effect of compression force on the porosity of DC and WG blank tablet	70
3.2 Effect of compression force on disintegration time of DC and WG blank	SITY
tablet3.3 The DC blank tablet at 1000 kg of CF after dropping 0.1% fast green FCH	e 71
in alcohol	72
3.4 The aspect of the surface of DC blank tablet of all test CF after dropping	
the solvent without drug	74

Fig	ure	Page
3.5	The surface of WG blank tablet at all tested CF after dropping CPM	
	solution using a mixture of absolute alcohol and dichloromethane (1:3 by	
	volume) as the solvent	75
3.6	The surface of DSDT compared with DC blank tablet of 1000 kg CF	76
3.7	The surface of DSDT compared with DC blank tablet of 1400 kg CF	77
3.8	The surface of DSDT compared with DC blank tablet of 1800 kg CF	78
3.9	The surface of DSDT compared with WG blank tablet of 1000 kg CF	79
3.10) The surface of DSDT compared with WG blank tablet of 1400 kg CF	80
3.11	The surface of DSDT compared with WG blank tablet of 1800 kg CF	81
3.12	2 Layer cover of the surface of CPM-solution-dropping tablet prepared from	
	WG blank tablet of 1800 kg CF	82
3.13	3 Small crystals of diazepam on the surface of DZP-solution-dropping tablet	
	prepared from WG blank tablet of 1800 kg CF	82
3.14	The SEM morphology of upper surface of the tablet compressed at 1000 kg	5
	CF:- (a) DC blank tablet, (b) CPM-solution-dropping tablet and (c)	
	DZP-solution-dropping tablet prepared from DC blank tablet	85
3.15	5 The SEM morphology of the surface of the tablet compressed at 1400 kg	
	CF:- (a) DC blank tablet, (b) CPM-solution-dropping tablet and (c)	
	DZP-solution-dropping tablet prepared from DC blank tablet	86
3.16	5 The SEM morphology of the surface of the tablet compressed at 1800 kg	
	CF:- (a) DC blank tablet, (b) CPM-solution-dropping tablet and (c)	
8	DZP-solution-dropping tablet prepared from DC blank tablet	87
3.17	7 The SEM morphology of the surface of the tablet compressed at 1000 kg	1U
Carro	CF:- (a) WG blank tablet, (b) CPM-solution-dropping tablet and (c)	
Copy	DZP-solution-dropping tablet prepared from DC blank tablet	88
3.18	3 The SEM morphology of the surface of the tablet compressed at 1400 kg	h
	CF:- (a) WG blank tablet, (b) CPM-solution-dropping tablet and (c)	
	DZP-solution-dropping tablet prepared from DC blank tablet	89
3.19	The SEM morphology of the surface of the tablet compressed at 1800 kg	
	CF:- (a) WG blank tablet, (b) CPM-solution-dropping tablet and (c)	
	DZP-solution-dropping tablet prepared from DC blank tablet	90

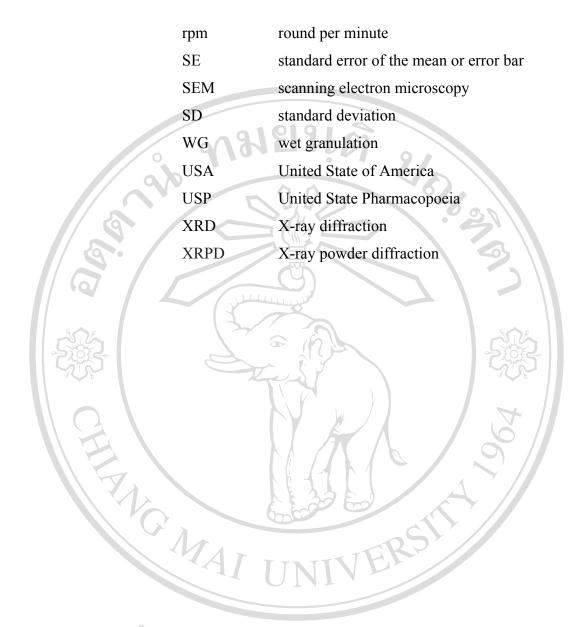
Figure	Page
3.20 SEM morphology of DCP dihydrate with magnification	
(a) 100X (b) 500X (c) 1000X	92
3.21 SEM morphology of Ac-Di-Sol [®] with magnification	
(a) 100X (b) 500X (c) 1000X	93
3.22 SEM morphology of Pharmatose [®] with magnification	
(a) 100X (b) 500X (c) 1000X	94
3.23 SEM morphology of magnesium stearate with magnification	
(a) 100X (b) 500X (c) 1000X	95
3.24 SEM morphology of talcum with magnification	
(a) 100X (b) 500X (c) 1000X	96
3.25 SEM morphology of CPM with magnification	
(a) 100X (b) 500X (c) 1000X	97
3.26 SEM morphology of diazepam with magnification	
(a) 100X (b) 500X (c) 1000X	98
3.27 SEM morphology of powder scratched from near and deeper surface of	
CPM-solution-dropping tablet prepared from DC blank tablet	
compressed at 1000 kg CF	99
3.28 SEM morphology of powder scratched from near and deeper surface of	
CPM-solution-dropping tablet prepared from DC blank tablet	
compressed at 1400 kg CF	100
3.29 SEM morphology of powder scratched from near and deeper surface of	
CPM-solution-dropping tablet prepared from DC blank tablet	
C C C compressed at 1800 kg CF	101
3.30 SEM morphology of powder scratched from near and deeper surface of	
CPM-solution-dropping tablet prepared from WG blank tablet	SILY
compressed at 1000 kg CF	102
3.31 SEM morphology of powder scratched from near and deeper surface of	
CPM-solution-dropping tablet prepared from WG blank tablet	
compressed at 1400 kg CF	103

Figure	Page
3.32 SEM morphology of powder scratched from near surface of DZP-solution	1-
dropping tablet prepared from DC blank tablet (magnification 1000X)	
compressed at (a) 1000 kg (b) 1400 kg (c) 1800 kg	104
3.33 SEM morphology of powder scratched from near surface of DZP-solution	1-
dropping tablet prepared from WG blank tablet (magnification 1000X)	
compressed at (a) 1000 kg (b) 1400 kg (c) 1800 kg	105
3.34 Powdered X-ray diffraction pattern of CPM	107
3.35 Powdered X-ray diffraction pattern of diazepam	107
3.36 Powdered X-ray diffraction pattern of DCP dihydrate	108
3.37 Powdered X-ray diffraction pattern of Pharmatose®	108
3.38 Powdered X-ray diffraction pattern of Ac-Di-Sol®	109
3.39 Powdered X-ray diffraction pattern of magnesium stearate	109
3.40 Powdered X-ray diffraction pattern of talcum	110
3.41 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from DC blank tablet of 1000 kg CF	110
3.42 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from DC blank tablet of 1400 kg CF	111
3.43 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from DC blank tablet of 1800 kg CF	111
3.44 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from WG blank tablet of 1000 kg CF	112
3.45 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from WG blank tablet of 1400 kg CF	112
3.46 Powdered XRD pattern of scratched surface powder from CPM-solution-	
dropping tablet prepared from WG blank tablet of 1800 kg CF	S 113
3.47 Powdered XRD pattern of scratched surface powder from DZP-solution-	h a
dropping tablet prepared from DC blank tablet of 1000 kg CF	113
3.48 Powdered XRD pattern of scratched surface powder from DZP-solution-	
dropping tablet prepared from DC blank tablet of 1400 kg CF	114
3.49 Powdered XRD pattern of scratched surface powder from DZP-solution-	
dropping tablet prepared from DC blank tablet of 1800 kg CF	114

Figu	re	Page
3.50	Powdered XRD pattern of scratched surface powder from DZP-solution-	
	dropping tablet prepared from WG blank tablet of 1000 kg CF	115
3.51	Powdered XRD pattern of scratched surface powder from DZP-solution-	
	dropping tablet prepared from WG blank tablet of 1400 kg CF	115
3.52	Powdered XRD pattern of scratched surface powder from DZP-solution-	
	dropping tablet prepared from WG blank tablet of 1800 kg CF	116
3.53	Single crystal XRD pattern of powder from the surface of DC blank tablet	
	compressed at 1000 Kg CF	117
3.54	Single crystal XRD pattern of powder from the surface of DC blank tablet	
	compressed at 1400 Kg CF	118
3.55	Single crystal XRD pattern of powder from the surface of DC blank tablet	
5	compressed at 1800 Kg CF	118
3.56	Single crystal XRD pattern of powder from the surface of WG blank tablet	
	compressed at 1000 Kg CF	119
3.57	Single crystal XRD pattern of powder from the surface of WG blank tablet	
	compressed at 1400 Kg CF	119
3.58	Single crystal XRD pattern of powder from the surface of WG blank tablet	
	compressed at 1800 Kg CF	120
3.59	Single crystal XRD pattern of the powder from the surface of CPM-	
	solution-dropping tablet prepared from DC blank tablet compressed at	
	1000 Kg of CF	120
3.60	Single crystal XRD pattern of the powder from the surface of CPM-	
a 0a	solution-dropping tablet prepared from DC blank tablet compressed at	1U
C	1400 Kg of CF	121
3.61	Single crystal XRD pattern of the powder from the surface of CPM-	SITY
	solution-dropping tablet prepared from DC blank tablet compressed at	e d
	1800 Kg of CF 🗢	121
3.62	Single crystal XRD pattern of the powder from the surface of DZP-	
	solution-dropping tablet prepared from DC blank tablet compressed at	
	1000 Kg of CF	122

Figure	Page		
3.63 Single crystal XRD pattern of the powder from the surface of DZP-			
solution-dropping tablet prepared from DC blank tablet compressed at			
1400 Kg of CF	122		
3.64 Single crystal XRD pattern of the powder from the surface of DZP-			
solution-dropping tablet prepared from DC blank tablet compressed at			
1800 Kg of CF	123		
3.65 Single crystal XRD pattern of the powder from the surface of CPM-			
solution-dropping tablet prepared from WG blank tablet compressed at			
1000 Kg of CF	123		
3.66 Single crystal XRD pattern of the powder from the surface of CPM-			
solution-dropping tablet prepared from WG blank tablet compressed at			
1400 Kg of CF	124		
3.67 Single crystal XRD pattern of the powder from the surface of CPM-			
solution-dropping tablet prepared from WG blank tablet compressed at			
1800 Kg of CF	124		
3.68 Single crystal XRD pattern of the powder from the surface of DZP-			
solution-dropping tablet prepared from WG blank tablet compressed at			
1000 Kg of CF	125		
3.69 Single crystal XRD pattern of the powder from the surface of DZP-			
solution-dropping tablet prepared from WG blank tablet compressed at			
1400 Kg of CF	125		
3.70 Single crystal XRD pattern of the powder from the surface of DZP-			
solution-dropping tablet prepared from WG blank tablet compressed at	hl		
1800 Kg of CF	126		
3.71 DSC thermogram of CPM-solution-dropping tablet prepared from DC	sity		
blank tablet compacted at 1000 kg CF	127		
3.72 DSC thermogram of CPM	128		
3.73 DSC thermogram of DCP dihydrate	128		
3.74 DSC thermogram of CPM-solution-dropping tablet prepared from WG			
blank tablet compacted at 1000 kg CF	129		
3.75 DSC thermogram of Pharmatose [®]	129		

Figu	re	Page
3.76	DSC thermogram of DZP-solution-dropping tablet prepared from DC	
	blank tablet compressed at 1000 kg CF	130
3.77	DSC thermogram of diazepam	130
3.78	DSC thermogram of DZP-solution-dropping tablet prepared from WG	
	blank tablet compressed at 1000 kg CF	131
3.79	CPM dissolution profiles of the CPM-solution dropping tablet prepared	
	from DC blank tablet at the same 1000 kg CF after repeat blank solvent	
	dropping 0, 2, 4 or 6 times	133
3.80	CPM dissolution profiles of the CPM-solution dropping tablet	
	prepared from WG blank tablet at the same 1000 kg CF after repeat blank	
	solvent dropping 0, 2, 4 or 6 times	134
3.81	DZP dissolution profiles of the DZP-solution dropping tablet prepared	
	from DC blank tablet at the same 1000 kg CF after repeat solvent dropping	5
	0, 2, 4 or 6 times	134
3.82	DZP dissolution profiles of the DZP-solution dropping tablet prepared	
	from WG blank tablet at the same 1000 kg CF after repeat blank solvent	
	dropping 0, 2, 4 or 6 times	135
3.83	CPM dissolution profiles of CPM-solution-dropping tablet prepared	
	from DC blank tablet compared with CPM DC tablet at the same1000 kg	
	CF and commercial CPM tablet	136
3.84	CPM dissolution profiles of CPM-solution-dropping tablet prepared	
8 8	from DC blank tablet compared with CPM DC tablet at the same1400 kg	
ddd	CF and commercial CPM tablet	136
3.85	CPM dissolution profiles of CPM-solution-dropping tablet prepared	
Сору	from DC blank tablet compared with CPM DC tablet at the same1800 kg	SILY
	CF and commercial CPM tablet	137
3.86	CPM dissolution profiles of CPM-solution-dropping tablet prepared	
	from WG blank tablet compared with CPM WG tablet at the same1000 kg	
	CF and commercial CPM tablet	138


Figu	re	Page
3.87	CPM dissolution profiles of CPM-solution-dropping tablet prepared from	
	WG blank tablet compared with CPM WG tablet at the same 1400 kg CF	
	and commercial CPM tablet	138
3.88	CPM dissolution profiles of CPM-solution-dropping tablet prepared from	
	WG blank tablet compared with CPM WG tablet at the same 1800 kg CF	
	and commercial CPM tablet	139
3.89	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	DC blank tablet compared with DZP DC tablet at the same 1000 kg CF	
	and commercial diazepam tablet	140
3.90	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	DC blank tablet compared with DZP DC tablet at the same 1400 kg CF	
	and commercial diazepam tablet	141
3.91	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	DC blank tablet compared with DZP DC tablet at the same1800 kg CF	
	and commercial diazepam tablet	141
3.92	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	WG blank tablet compared with DZP WG tablet at the same1000 kg CF	
	and commercial diazepam tablet	142
3.93	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	WG blank tablet compared with DZP WG tablet at the same 1400 kg CF	
	and commercial diazepam tablet	143
3.94	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
ddd	WG blank tablet compared with DZP WG tablet at the same 1800 kg CF	nIJ
Cam	and commercial diazepam CPM tablet	143
3.95	The effect of CFs on CPM dissolution profiles of CPM-solution-dropping	SILY
	tablet prepared from DC blank tablet	144
3.96	The effect of CFs on CPM dissolution profiles of CPM-solution-dropping	
	tablet prepared from WG blank tablet	145
3.97	The effect of CFs on DZP dissolution profiles of DZP-solution-dropping	
	tablet prepared from DC blank tablet	146

Figur	e	Page
3.98 The effect of CFs on DZP dissolution profiles of DZP-solution-dropping		
1	ablet prepared from WG blank tablet	146
3.99	CPM dissolution profiles of CPM-solution-dropping tablet prepared from	
	DC blank tablet and WG blank tablet at all tested CF	148
3.100	DZP dissolution profiles of DZP-solution-dropping tablet prepared from	
	DC blank tablet and WG blank tablet at all tested CF	149
3.101	Dissolution profiles of CPM-solution dropping tablet prepared from	
	DC blank tablet at all tested CF after storage 0, 1, 2 and 3 months	152
3.102	Dissolution profiles of CPM DC tablet at all tested CF after storage	
	0, 1, 2 and 3 months	153
3.103	Dissolution profiles of CPM-solution-dropping tablet prepared from WG	
	blank tablet at 1000 and 1400 kg of CF after storage 0, 1, 2 and 3 months	154
3.104	Dissolution profiles of DZP-solution-dropping tablet prepared from DC	
	blank tablet at all tested CF after storage 0, 1, 2 and 3 months	156
3.105	Dissolution profiles of DZP DC tablet at all tested CF after storage	
	0, 1, 2 and 3 months	157
3.106	Dissolution profiles of DZP-solution-dropping tablet prepared from	
	WG blank tablet of all tested CF after storage 0, 1, 2 and 3 months	158
4.1	Disintegration and dissolution pathways of solid dosage forms for	
	absorption of drug	162

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

	μL	microlitre
0	°C	degree celsius
	%	percent
	RSD	relative standard deviation (%)
	AV	average
6	BP	British Pharmacopoeia
	CF	compression force
ATCH	СРМ	chlorpheniramine maleate
	CPM-SDT	chlorpheniramine maleate-solution-dropping
000	K	tablet
	DC	direct compression
E I	DCP	dicalcium phosphate dihydrate
	DSC	differential scanning calorimetry
	DSDT	drug-solution-dropping tablet
Q, N	DZP	diazepam
	DZP-SDT	diazepam-solution-dropping tablet
	g	gram
	GPO	Government Pharmaceutical Organization
<u> </u>	kg	kilogram
ລິບສິກຣິນ		liter 1 a 8 1 8 8 0 [N]
	mg	millioram
Copyright [©]	mLOY C	milliliterg Mai University
All ri	^{mm} h t	millimeter
	PEG	polyethylene glycol

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxvi