CHAPTER 3

RESULTS

3.1 Subjects

0

Twelve healthy Thai male volunteers participated in the study. All completed study protocol, however, data from one subject was excluded from analysis since caffeine was detected in his serum at baseline. The demographic characteristics of the remaining 11 subjects completed the study without protocol deviations are shown in Table 2-4. Every subject was considered healthy on the basis of medical history and physical examination.

 AI
 UNIVERSIT

 Baansurane
 UNIVERSIT

 Baansurane
 Surane

 Baansur

Subject No.#	Age (y)	Weight (kg)	Height (m)	BMI (kg/m ²)
INO.#		101015		
1	20.00	60.00	1.69	21.01
2	25.00	52.00	1.69	18.21
4	19.00	84.50	1.84	24.96
5	19.00	59.20	1.68	20.98
6	19.00	53.80	1.68	19.06
7	22.00	53.50	1.60	20.90
8	22.00	51.00	1.61	19.68
9	20.00	54.00	1.60	21.23
5 10	19.00	55.20	1.67	19.79
11	21.00	66.50	1.64	24.72
12	19.00	57.80	1.78	18.24
Mean	21.09	58.86	1.68	20.80
SD	1.97	9.58	0.07	2.27

Table 2 The demographic characteristics of subjects who completed study without protocol deviation (n=11)

Data from subject No.3 was not taken into account because caffeine concentration was detected in # Data ... plasma sample at baseline

Subject	Systolic blood pressure	Diastolic blood	Heart rate
No.#	(mmHg)	pressure (mmHg)	(beats/min)
1	117	71	80
2	112	74	89
4	110	76	69
5	114	76	75
6	110	58	85
7	114	73	80
8	113	77	89
9	106	63	66
10	114	73	89
11	122	91	68
12	108	65	61
Mean	112.73	72.45	77.36
SD	4.38	8.65	10.19

Table 3 Blood pressure and heart rate of subjects who completed study without protocol deviation (n=11)

Data from subject No.3 was not taken into account because caffeine concentration was detected in # Data ... plasma sample at baseline

Table 4 The demographic characteristics and serum antioxidant levels at baseline of the study subjects at the initiation of coffee enema (CE) phase and coffee consumption (CC) phase

		Study phase		
	CE	Ø	CC	p value
Age (y)		21.09±7.97	5	
Weight (kg)		58.86±9.58		
Height (m)		1.68 ± 0.07		
BMI (kg/m ²)		20.80±2.27		
SBP (mmHg)	112.40±6.87		114.82±8.11	0.485
DBP (mmHg)	73.00±8.52		74.36±7.60	0.709
HR (beat/min)	69.20±12.62		66.82±9.90	0.632
Baseline GSH (µmol/L)	5.230±1.390		4.961±1.307	0.645
Baseline MDA (mmol/L)	0.011±0.005		0.017±0.009	0.056
Baseline TEAC (mmol/L)	1.584±0.095		1.509±1.963	0.020

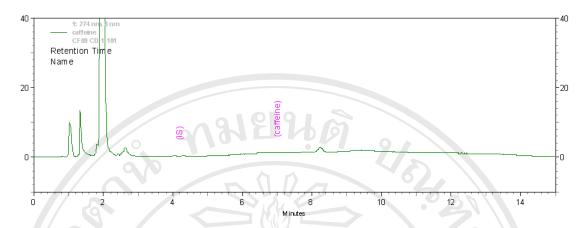
Data represents mean \pm SD

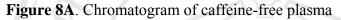
Data from subject No.3 was not taken into account because caffeine concentration was detected in plasma sample at baseline

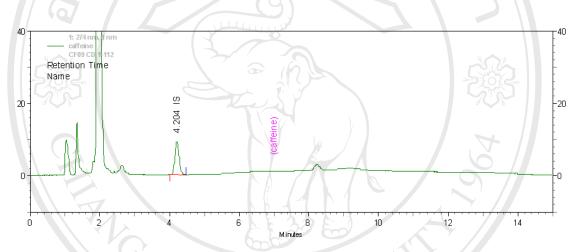
BMI, Body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; GSH, glutathione; MDA, malondialdehyde; TEAC, trolox equivalent antioxidant capacity

3.2 Caffeine content in coffee solutions

Six servings of each coffee solution were measured for caffeine contents. The mean caffeine contents were 107.24 ± 2.22 mg/500 ml for coffee enema solution and 96.34 ± 1.39 mg/180 ml for coffee consumption solution (Table 5). These mean values of caffeine contents were not statistically different between caffeine solution prepared for coffee enema or coffee consumption (p=0.972).


Table 5 Mean value of caffeine contents in 6 servings of coffee solution used in this study (n=6)


582 2	Lot No.	Caffeine content (mg/serving)
Coffee enema (500 mL)	50851	107.24±2.22
Coffee consumption (180 mL)	363A41	96.34±1.39
Data represents mean \pm SD		


3.3 Validation of HPLC method

3.3.1 Specificity

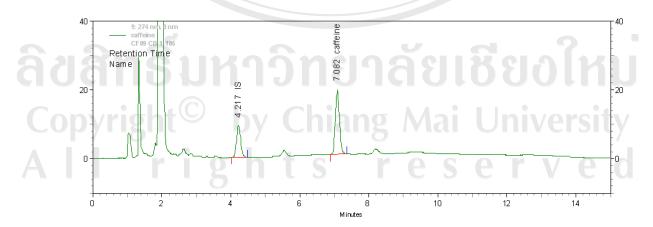
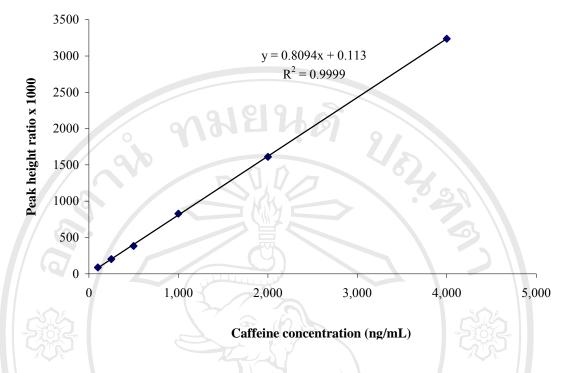

Chromatogram of caffeine-free plasma is shown in Figure 8A, whereas chromatogram of plasma containing 4,000 ng/mL of acetaminophen (internal standard) is presented in Figure 8B. The chromatogram of plasma containing 4,000 ng/mL of caffeine and 4,000 ng/mL of acetaminophen (internal standard, IS) are presented in Figure 8C. The retention time of acetaminophen and caffeine were about 4.204 min and 7.082 min, respectively. All peaks were clearly separated and no interference from endogeneous substances was observed.

Figure 8B. Chromatogram of plasma sample containing 4,000 ng/mL of IS (retention Time= 4.204 min)

Figure 8C. Chromatogram of plasma sample containing 4,000 ng/mL of internal standard (IS) (retention time= 4.217 min) and 4,000 ng/mL caffeine (retention time = 7.082 min)

3.3.2 Linearity of calibration curve


Calibration curve of standard plasma containing 100-4,000 ng/mL of caffeine was constructed from the measured peak heights ratio of caffeine and acetaminophen chromatograms. Linearity of the calibration curve was determined by regression and correlation coefficient (r^2) analyses. The data of plasma caffeine used for constructing calibration curve are shown in Table 6. The regression equation for testing the linearity of standard calibration curve is shown below:

$$y = 0.8094x + 0.113, \quad r^2 = 0.9999$$

The linearity with good correlation coefficient (r^2) of calibration curves was also demonstrated (Figure9A). Pooled calibration causes from 5 replicated calibration data of caffeine are shown in Figure 9B.

		Caffeine	Peak height of	Peak height of	Caffeine/IS
	No.	concentration	caffeine	IS	peak height ratio
		(ng/mL)	UNI	En	x 1000
	1	100	691	7812	88.45
	2	250	1340	6599	203.06
<u> </u>		500	2330	6082	383.10
μU		1,000	6197	7473	829.25
Co	ovr ⁵ gh	2,000	11697	7258	1,611.60
	6	4,000	24647	7610	3,238.76
ΑΙ	IS, Internal standa	ard 2 N	ts r	ese	rvea

Table 6. Calibration curve data of caffeine in plasma

Figure 9A. A standard calibration curve of caffeine/internal standard peak height ratio versus plasma caffeine concentrations

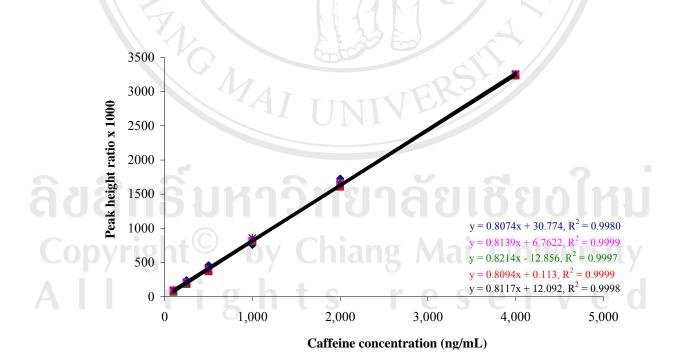


Figure 9B. Pooled calibration curve from 5 replicated calibration data

3.3.3 Precision and accuracy

Intra-day and inter-day precision were determined using 3 quality control (QC) samples of caffeine in plasma (300, 1900, 3800 ng/mL). Intra-day precision was determined in one day by assaying 5 replicates of each concentration whereas interday precision was determined daily with one sample of each concentration for 5 days. The precision was reported as the percentage of coefficient of variation (% CV) which was calculated as follow:

% CV =
$$\left(\frac{\text{SD}}{\overline{X}}\right) x 100$$

Where SD = standard deviation

 $\overline{\mathbf{X}}$ = mean value of caffeine concentration in plasma

The deviation was expressed as the percentage of inaccuracy calculated by the following equation:

% Deviation = $(Measured concentration-Spiked concentration)_{x 100}$ Spiked concentration

The % CV of intra-day precision for low (100 ng/mL), medium (1900 ng/mL), and high (3800 ng/mL) plasma caffeine concentrations ranged from 1.69-3.91 (Table 7), whereas the % CV of inter-day ranged from 4.47-5.78% (Table 8). Likewise, the % deviation in intra-day and inter-day assay from low, medium, and high plasma caffeine concentrations ranged from -8.45 to 2.00% (Table 7) and -3.43 to 5.78%, respectively (Table 8). All these values were within rang of $\pm 15\%$ recommended by U.S. Food and Drug Administration guidance for bio-analytical method validation.

Table 7. Intra-day assay validation of caffeine in plasma

No.	Spiked concentration (ng/mL)	Peak height of caffeine	Peak height of IS	Caffeine /IS peak height ratio x 1000	Calculated concentration of caffeine (ng/mL)	Deviation (%)			
1	300	2518	9677	260.20	306.51	2.17			
2	300	2690	9717	278.83	324.92	8.31			
3	300	2160	8737	247.22	292.14	-2.62			
4	300	2495	9639	258.84	305.00	1.67			
5	300	2661	10409	255.64	301.46	0.49			
	Mean	2504.80	9635.80	259.75	301.01	2.00			
	SD	210.86	564.55	10.80	11.96				
	% CV	8.42	6.17	4.16	3.91				
IS, Interr	IS, Internal standard								
AL THERST									

Low concentration

Medium concentration

				Caffeine		
	Spiked	Peak	Peak	/IS	Calculated	
No.		height of	height	peak	concentration	Deviation
INO.	concentration	caffeine	of IS	height	of caffeine	(%)
	(ng/mL)		2.0	ratio	(ng/mL)	
				x 1000	600	
1	1,900	14073	8608	1634.87	1828.68	-3.75
2	1,900	13491	8424	1601.50	1791.72	-5.70
3	1,900	14402	8757	1644.63	1839.48	-3.19
4	1,900	14336	8809	1627.43	1820.43	-4.19
5	1,900	13469	8541	1576.98	1764.57	2 -7.13
170	Mean	13954.20	8627.8 0	1617.08	1808.97	-4.79
	SD	450.11	157.31	27.54	30.49	
	% CV	3.23	1.82	1.70	1.69	

IS, Internal standard

High concentration

			Caffeine						
Quiltad	Peak	Peak	/IS	Calculated					
_	height of	height	peak	concentration	Deviation				
	caffeine	of IS	height	of caffeine	(%)				
(ng/mL)		2 2	ratio	(ng/mL)					
			x 1000	5 gg					
3,800	28031	8780	3192.60	3553.54	-6.49				
3,800	27783	8872	3131.54	3485.93	-8.27				
3,800	27323	8588	3181.53	3541.29	-6.81				
3,800	29465	9512	3097.67	3448.42	-9.25				
3,800	28312	9368	3022.20	3364.86	2-11.45				
Mean	28182.80	9024	3125.11	3478.81	-8.45				
SD	803.57	396.62	69.14	76.56	. //				
% CV	2.85	4.40	2.21	2.20					
al standard				2					
Z									
MAX TERSY									
THI UNIVE.									
	3,800 3,800 3,800 3,800 3,800 Mean SD % CV al standard	Spiked concentration (ng/mL) height of caffeine 3,800 28031 3,800 28031 3,800 27783 3,800 27323 3,800 29465 3,800 28312 Mean 28182.80 SD 803.57 % CV 2.85	Spiked concentration (ng/mL) height of caffeine height of IS 3,800 28031 8780 3,800 27783 8872 3,800 27783 8872 3,800 27323 8588 3,800 29465 9512 3,800 28312 9368 Mean 28182.80 9024 SD 803.57 396.62 % CV 2.85 4.40 al standard 500 500	Spiked concentration (ng/mL)Peak height of caffeinePeak height of ISJake peak height ratio x 10003,8002803187803192.603,8002778388723131.543,8002778388723131.543,8002732385883181.533,8002946595123097.673,8002831293683022.20Mean28182.8090243125.11SD803.57396.6269.14% CV2.854.402.21al standard34003400	Spiked concentration (ng/mL)Peak height of caffeinePeak height/IS peak peak heightCalculated concentration of caffeine (ng/mL)3,8002803187803192.603553.543,8002778388723131.543485.933,8002778385883181.533541.293,8002946595123097.673448.423,8002831293683022.203364.86Mean28182.8090243125.113478.81SD803.57396.6269.1476.56% CV2.854.402.212.20al standard3438434403.21				

Spiked		Calculated concentration of caffeine (ng/mL)							Deviation
concentration (ng/mL)	day 1	day 2	day 3	day 4	day 5	Mean	SD	(% CV)	(%)
300 (n=5)	306.01±11.96	328.80±8.10	340.20±2.44	313.82±23.58	293.95±7.92	316.56	18.29	5.78	5.52
1,900 (n=5)	1808.97±30.49	1944.62±16.38	2002.25±36.02	1788.10±35.35	1901.42±36.31	1889.07	90.36	4.78	-0.58
3,800 (n=5)	3478.81±76.56	3759.32±70.54	3712.78±62.86	3525.94±52.94	3871.85±72.30	3669.74	164.21	4.47	-3.43

Table 8. Inter-day assay validation of caffeine in plasma

A AI

44

3.3.4 Lower limit of quantification (LLQ)

The LLQ was defined as the lowest concentration on the calibration curve (100 ng/mL) that could be measured with acceptable precision (% CV of less than \pm 20%) and accuracy (% deviation of less than \pm 20%). The LLQ was determined by analyzing a series of 5 replicated samples of gradually lowering concentrations until the lowest concentration with acceptable precision and accuracy was obtained. The % CV and % deviation of LLQ were 2.34% and 10.52%, respectively (Table 9).

			102				
	2	2	K		Caffeine	52	2
		Spilrod	Peak	Peak	/IS	Calculated	
	Na	Spiked	height of	height of	peak	concentration	Deviation
	No.	concentration	caffeine	IS	height	of caffeine	(%)
		(ng/mL)			ratio	(ng/mL)	
				66623	x 1000		
-	1	100	714	7833	91.51	112.48	12.48
	2	100	699	7743	90.28	111.39	11.39
	3	100	719	7933	90.63	111.84	11.84
	4	100	701	7801	89.86	110.88	10.88
	5	100	657	7646	85.93	106.02	6.02
U	GH	Mean		ПО	89.57	110.52	10.52
` ∩ı	nvr	SD	hv C	'hian	2.09	2.58	arsitv
		5 % CV			5 2.33	2.34	
1	IS, Intern	nal standard	ht	S	re	serv	

Table 9. The LLQ of caffeine in plasma

3.3.5 Recovery

Recovery was determined by comparing the peak height ratios of caffeine/acetaminophen extracted from plasma with that of caffeine/acetaminophen standard sample in mobile phase from 5 sets of 3 different concentrations of QC samples. The mean recoveries (%) of caffeine in plasma from the extraction procedure are presented in Table10. The mean recoveries (%) at the concentrations of 300, 1900 and 3800 ng/mL were 104.51, 97.65 and 88.75, respectively and their mean recoveries was 96.97%.

	Concentration	Peak height	of caffeine	Peak heigh	t of IS
	(ng/mL)	in mobile phase	in plasma	in mobile phase	in plasma
Low	300	2299	2320	9066	9645
	300	2364	2352	8939	9465
	300	2278	2418	8735	8833
5	300	2323	2547	9107	8793
	300	2260	2407	8695	8548
	Mean	2305	2409	8908	9057
200	SD	40.60	87.03	187.63	472.01
	% Recovery		104.51	No.	101.67
Medium	1,900	13136	13432	8189	8368
	1,900	13146	13126	8197	8057
1 5	1,900	12701	12792	7903	7872
	1,900	14542	13103	9086	8430
	1,900	13336	12838	8316	8138
	Mean	13372	13058	8338	8173
	SD	694.12	257.72	444.77	228.78
	% Recovery		97.65		98.02
High	3,800	28148	25205	8781	7931
Jar	3,800	28587	25336	8929	8117
ovri	3,800	27436	24788	8597	7914
J Y Y	3,800	28111	24795	8692	8006
	3,800	29540 S	25742	9043	7931
	Mean	28364	25173	8808	7980
	SD	775.33	400.77	179.28	84.56
	% Recovery		88.75		90.59

Table 10. Recovery of caffeine in plasma

3.3.6 Freeze/thaw (F/T) stability

The freeze/thaw stability of caffeine in plasma was obtained by 3 repeating analyses of plasma caffeine concentrations in QC samples (300 and 3,800 ng/mL) kept frozen at -20 °C after 3 freeze-thaw cycles compared to caffeine concentrations in freshly prepared QC samples without freeze-thaw processing. The stability of caffeine in plasma after three freeze and thaw cycles is presented in Table 11. The percentages of caffeine remaining were 105.46 and 104.92, respectively, with overall percentage remaining of 105.19

Table 11. Concentrations of caffeine in plasma before and after 3 cycles of freeze and thaw (F/T) stability test

		Before F/T	After F/T
		Caffeine (ng/mL)	Caffeine (ng/mL)
Low concentration	300	301.51	313.72
(ng/mL)	300	293.94	307.27
	300	301.37	324.81
	Mean	298.94	315.27
	SD	4.33	8.87
12.5.	% Remaining ¹		105.46
High concentration	3,800	3418.35	3567.55
(ng/mL)	3,800	3482.85	3654.07
_opyright ~	3,800	3395.05	3581.19
All ri	Mean	3432.08	3600.94
	SD SD	45.48	46.51
	% Remaining ¹		104.92
Av	erage F/T stability (%	(0) ²	105.19

¹ (mean value of concentration after F/T) x100/(mean value of concentration before F/T)

 2 (% remaining of low concentration + % remaining of high concentration)/2

3.4 Pharmacokinetics of caffeine after single dose of coffee enema or coffee consumption

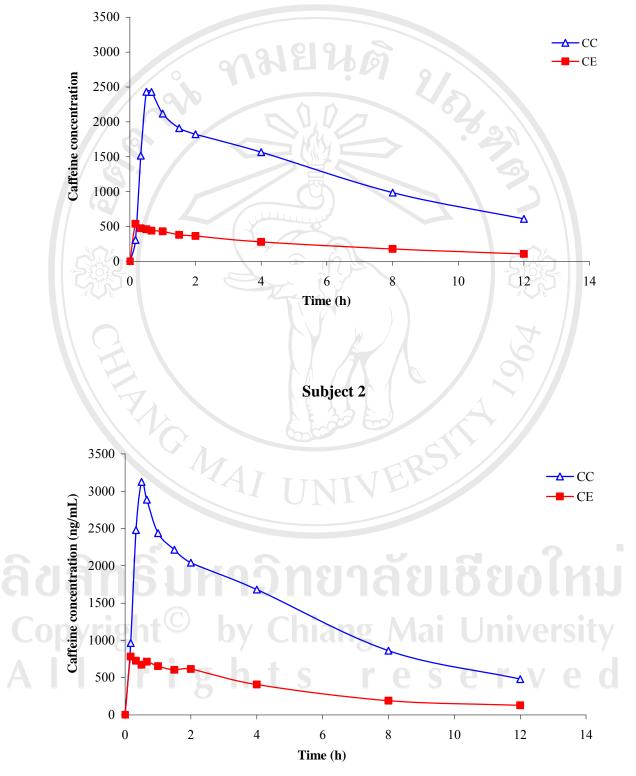
The individual as well as mean plasma caffeine concentration-time profiles from 11 subjects after single dose of coffee enema or coffee consumption are presented in Table 12A and 12B, respectively. The plasma concentration-time curves of caffeine of each subject are shown in Figure 10.

Subject No.#			Plasma	a concentrat	tion of caffe	eine (ng/mL) at various	sampling ti	me (h)		
Subject No.#	0.00	0.17	0.33	0.50	0.67	1.00	1.50	2.00	4.00	8.00	12.00
1	<llq< td=""><td>538.93</td><td>473.77</td><td>460.58</td><td>440.71</td><td>432.06</td><td>380.95</td><td>363.53</td><td>278.91</td><td>179.91</td><td>108.67</td></llq<>	538.93	473.77	460.58	440.71	432.06	380.95	363.53	278.91	179.91	108.67
2	<llq< td=""><td>782.77</td><td>727.91</td><td>673.06</td><td>714.53</td><td>653.53</td><td>603.86</td><td>614.94</td><td>407.91</td><td>191.21</td><td>129.55</td></llq<>	782.77	727.91	673.06	714.53	653.53	603.86	614.94	407.91	191.21	129.55
4	<llq< td=""><td>372.11</td><td>723.67</td><td>592.99</td><td>607.22</td><td>550.54</td><td>482.46</td><td>463.65</td><td>346.63</td><td>206.58</td><td>126.96</td></llq<>	372.11	723.67	592.99	607.22	550.54	482.46	463.65	346.63	206.58	126.96
5	<llq< td=""><td>403.39</td><td>724.76</td><td>782.07</td><td>614.94</td><td>570.17</td><td>573.36</td><td>504.54</td><td>356.21</td><td>148.61</td><td><llq< td=""></llq<></td></llq<>	403.39	724.76	782.07	614.94	570.17	573.36	504.54	356.21	148.61	<llq< td=""></llq<>
6	<llq< td=""><td>884.75</td><td>701.97</td><td>644.65</td><td>586.07</td><td>528.03</td><td>465.79</td><td>457.60</td><td>399.99</td><td>126.26</td><td><llq< td=""></llq<></td></llq<>	884.75	701.97	644.65	586.07	528.03	465.79	457.60	399.99	126.26	<llq< td=""></llq<>
7	<llq< td=""><td>750.27</td><td>865.05</td><td>817.68</td><td>714.83</td><td>750.94</td><td>675.24</td><td>645.72</td><td>484.25</td><td>285.94</td><td>158.97</td></llq<>	750.27	865.05	817.68	714.83	750.94	675.24	645.72	484.25	285.94	158.97
8	<llq< td=""><td>399.82</td><td>865.06</td><td>924.51</td><td>901.06</td><td>798.97</td><td>695.83</td><td>629.69</td><td>344.79</td><td>157.04</td><td><llq< td=""></llq<></td></llq<>	399.82	865.06	924.51	901.06	798.97	695.83	629.69	344.79	157.04	<llq< td=""></llq<>
9	<llq< td=""><td>879.54</td><td>828.98</td><td>785.26</td><td>703.55</td><td>635.77</td><td>602.45</td><td>585.33</td><td>431.83</td><td>284.13</td><td>155.50</td></llq<>	879.54	828.98	785.26	703.55	635.77	602.45	585.33	431.83	284.13	155.50
10	<llq< td=""><td>373.50</td><td>633.63</td><td>630.18</td><td>618.85</td><td>532.14</td><td>491.58</td><td>467.98</td><td>298.43</td><td>153.48</td><td><llq< td=""></llq<></td></llq<>	373.50	633.63	630.18	618.85	532.14	491.58	467.98	298.43	153.48	<llq< td=""></llq<>
11	<llq< td=""><td>742.03</td><td>857.41</td><td>748.17</td><td>694.90</td><td>706.23</td><td>705.32</td><td>663.02</td><td>570.61</td><td>402.64</td><td>271.36</td></llq<>	742.03	857.41	748.17	694.90	706.23	705.32	663.02	570.61	402.64	271.36
12	<llq< td=""><td>424.85</td><td>564.91</td><td>388.30</td><td>472.10</td><td>464.70</td><td>423.32</td><td>398.81</td><td>279.99</td><td>109.52</td><td><llq< td=""></llq<></td></llq<>	424.85	564.91	388.30	472.10	464.70	423.32	398.81	279.99	109.52	<llq< td=""></llq<>
Mean	<llq< td=""><td>595.63[†]</td><td>724.28[†]</td><td>677.04*</td><td>642.61[†]</td><td>602.10[†]</td><td>554.56[†]</td><td>526.80[†]</td><td>381.78[†]</td><td>204.12*</td><td>158.50**</td></llq<>	595.63 [†]	724.28 [†]	677.04*	642.61 [†]	602.10 [†]	554.56 [†]	526.80 [†]	381.78 [†]	204.12*	158.50**
SD	<llq< td=""><td>212.50</td><td>128.53</td><td>157.92</td><td>126.19</td><td>117.21</td><td>112.58</td><td>105.00</td><td>89.90</td><td>87.26</td><td>58.42</td></llq<>	212.50	128.53	157.92	126.19	117.21	112.58	105.00	89.90	87.26	58.42
% CV	<llq< td=""><td>35.68</td><td>17.75</td><td>23.32</td><td>19.64</td><td>19.47</td><td>20.30</td><td>19.93</td><td>23.55</td><td>42.75</td><td>36.86</td></llq<>	35.68	17.75	23.32	19.64	19.47	20.30	19.93	23.55	42.75	36.86

Table 12A. Plasma concentrations of caffeine (ng/mL) after single dose of coffee enema in study subjects

Mean values calculated from 11 subjects (n=11)

^{††} Mean values calculated from 6 subjects (n=6), samples with plasma concentration below LLQ were not taken into account


Data from subject No. 3 was not taken into account because caffeine concentration was detected in plasma sample at baseline

Subject No.#			Plasma	a concentrat	Plasma concentration of caffeine (ng/mL) at various sampling time (h)												
Subject No.#	0.00	0.17	0.33	0.50	0.67	1.00	1.50	2.00	4.00	8.00	12.00						
1	<llq< td=""><td>306.24</td><td>1516.36</td><td>2431.07</td><td>2429.69</td><td>2119.89</td><td>1910.24</td><td>1823.78</td><td>1567.39</td><td>986.16</td><td>609.20</td></llq<>	306.24	1516.36	2431.07	2429.69	2119.89	1910.24	1823.78	1567.39	986.16	609.20						
2	<llq< td=""><td>965.14</td><td>2478.51</td><td>3124.12</td><td>2887.36</td><td>2438.70</td><td>2215.78</td><td>2041.81</td><td>1680.52</td><td>862.31</td><td>479.78</td></llq<>	965.14	2478.51	3124.12	2887.36	2438.70	2215.78	2041.81	1680.52	862.31	479.78						
4	<llq< td=""><td>1074.97</td><td>1791.47</td><td>1639.45</td><td>1891.85</td><td>1735.70</td><td>1598.57</td><td>1474.80</td><td>1139.87</td><td>732.69</td><td>524.93</td></llq<>	1074.97	1791.47	1639.45	1891.85	1735.70	1598.57	1474.80	1139.87	732.69	524.93						
5	<llq< td=""><td>1836.43</td><td>2215.21</td><td>2875.06</td><td>2747.64</td><td>2308.58</td><td>1759.79</td><td>1662.63</td><td>981.12</td><td>490.02</td><td>185.29</td></llq<>	1836.43	2215.21	2875.06	2747.64	2308.58	1759.79	1662.63	981.12	490.02	185.29						
6	<llq< td=""><td>1753.52</td><td>2126.82</td><td>2058.51</td><td>1924.13</td><td>1829.54</td><td>1693.74</td><td>1625.75</td><td>1057.09</td><td>540.91</td><td>221.35</td></llq<>	1753.52	2126.82	2058.51	1924.13	1829.54	1693.74	1625.75	1057.09	540.91	221.35						
7	<llq< td=""><td>422.95</td><td>2318.70</td><td>1782.97</td><td>1825.73</td><td>2129.41</td><td>1970.79</td><td>1889.20</td><td>1455.96</td><td>962.17</td><td>601.97</td></llq<>	422.95	2318.70	1782.97	1825.73	2129.41	1970.79	1889.20	1455.96	962.17	601.97						
8	<llq< td=""><td>600.14</td><td>1204.58</td><td>1729.58</td><td>2315.19</td><td>2250.31</td><td>1843.64</td><td>1720.63</td><td>1138.96</td><td>516.24</td><td>213.38</td></llq<>	600.14	1204.58	1729.58	2315.19	2250.31	1843.64	1720.63	1138.96	516.24	213.38						
9	<llq< td=""><td>1093.37</td><td>2425.24</td><td>2517.56</td><td>2446.57</td><td>2201.71</td><td>2041.28</td><td>1968.02</td><td>1372.63</td><td>909.33</td><td>545.56</td></llq<>	1093.37	2425.24	2517.56	2446.57	2201.71	2041.28	1968.02	1372.63	909.33	545.56						
10	<llq< td=""><td>1541.02</td><td>2954.58</td><td>2458.37</td><td>2437.45</td><td>2133.45</td><td>1969.77</td><td>1746.54</td><td>1268.16</td><td>696.17</td><td>390.70</td></llq<>	1541.02	2954.58	2458.37	2437.45	2133.45	1969.77	1746.54	1268.16	696.17	390.70						
11	<llq< td=""><td>1600.76</td><td>1864.52</td><td>2242.86</td><td>2134.96</td><td>2022.99</td><td>1597.73</td><td>1680.27</td><td>1282.46</td><td>924.96</td><td>650.68</td></llq<>	1600.76	1864.52	2242.86	2134.96	2022.99	1597.73	1680.27	1282.46	924.96	650.68						
12	<llq< td=""><td>1747.07</td><td>2415.40</td><td>2016.66</td><td>1830.75</td><td>1734.81</td><td>1714.91</td><td>1514.77</td><td>1055.70</td><td>438.33</td><td>204.39</td></llq<>	1747.07	2415.40	2016.66	1830.75	1734.81	1714.91	1514.77	1055.70	438.33	204.39						
Mean	<llq< td=""><td>1176.51</td><td>2119.22</td><td>2261.47</td><td>2261.03</td><td>2082.28</td><td>1846.93</td><td>1740.75</td><td>1272.71</td><td>732.66</td><td>420.66</td></llq<>	1176.51	2119.22	2261.47	2261.03	2082.28	1846.93	1740.75	1272.71	732.66	420.66						
SD	<llq< td=""><td>559.12</td><td>492.91</td><td>474.77</td><td>369.64</td><td>231.35</td><td>195.08</td><td>177.89</td><td>226.05</td><td>207.94</td><td>183.59</td></llq<>	559.12	492.91	474.77	369.64	231.35	195.08	177.89	226.05	207.94	183.59						
% CV	<llq< td=""><td>47.52</td><td>23.26</td><td>20.99</td><td>16.35</td><td>11.11</td><td>10.56</td><td>10.22</td><td>17.76</td><td>28.38</td><td>43.64</td></llq<>	47.52	23.26	20.99	16.35	11.11	10.56	10.22	17.76	28.38	43.64						

Table 12B. Plasma concentrations of caffeine (ng/mL) after single dose of coffee consumption in the study subjects

Data from subject No.3 was not taken into account because caffeine concentration was detected in plasma sample at baseline

Figure 10. Plasma concentration-time curves of caffeine after single dose of coffee enema (CE) or coffee consumption (CC)

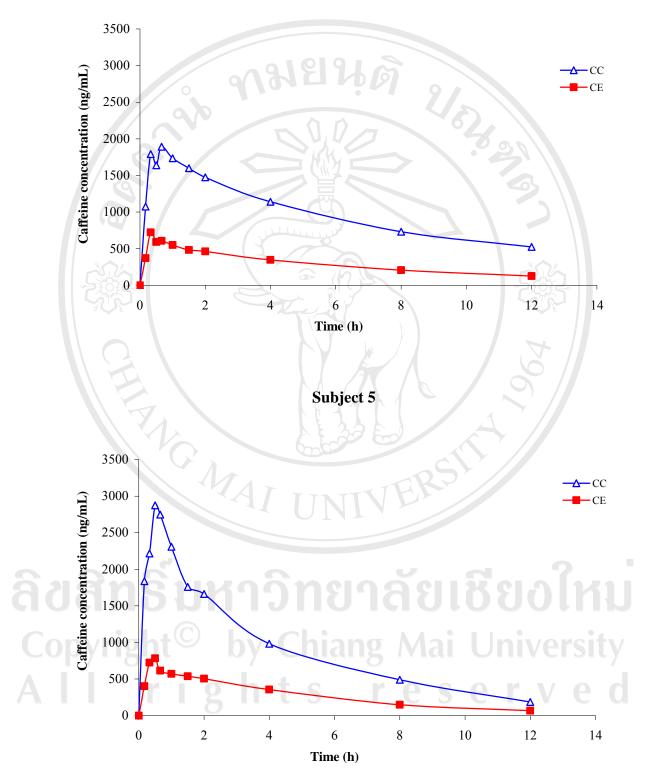


Figure 10. (Continued)

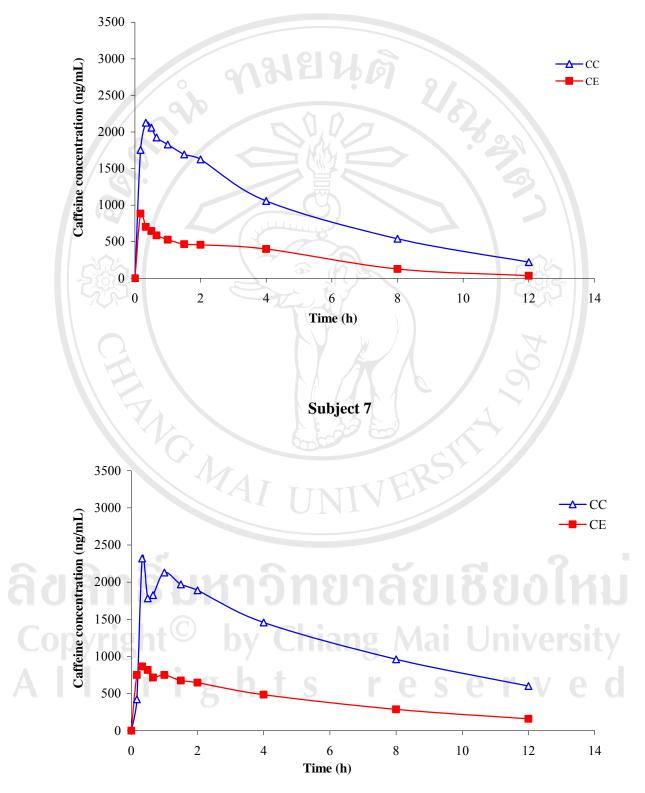


Figure 10. (Continued)

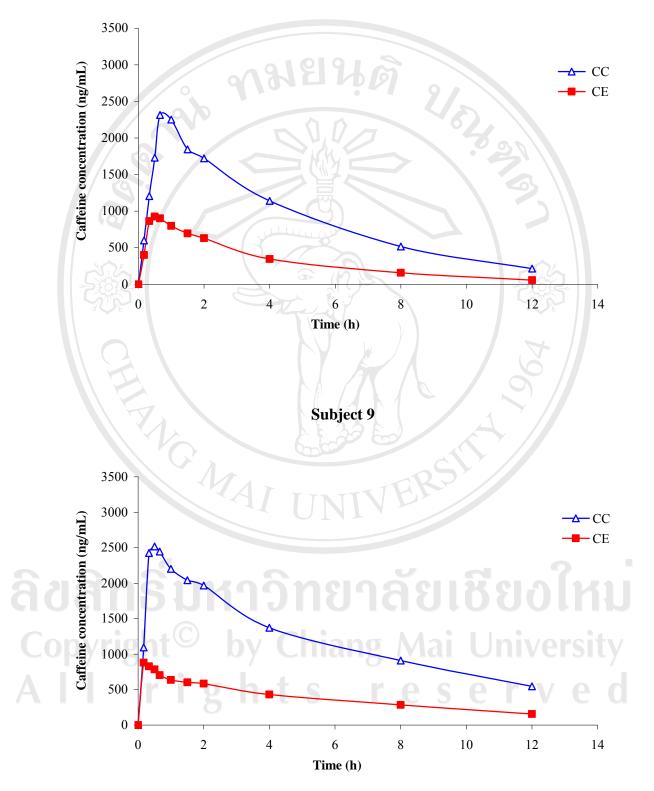


Figure 10. (Continued)

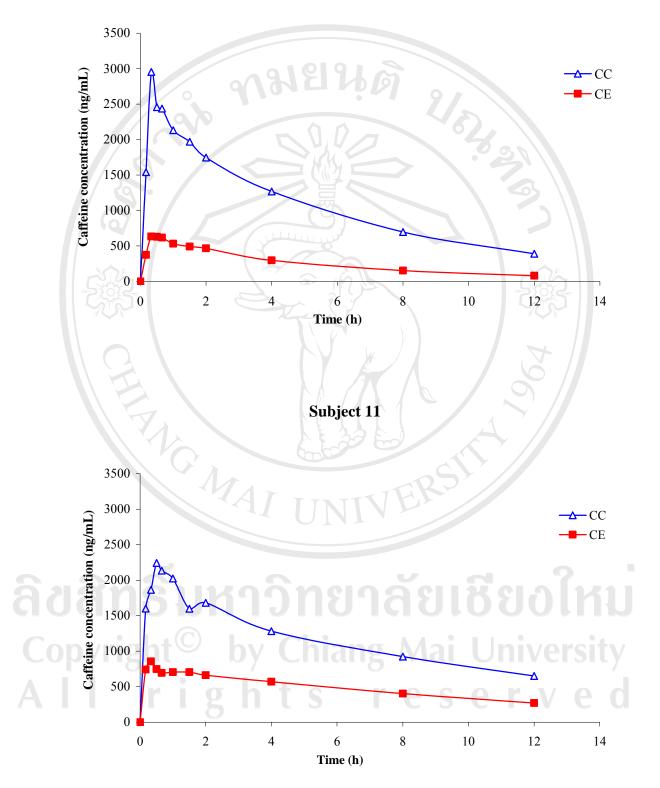
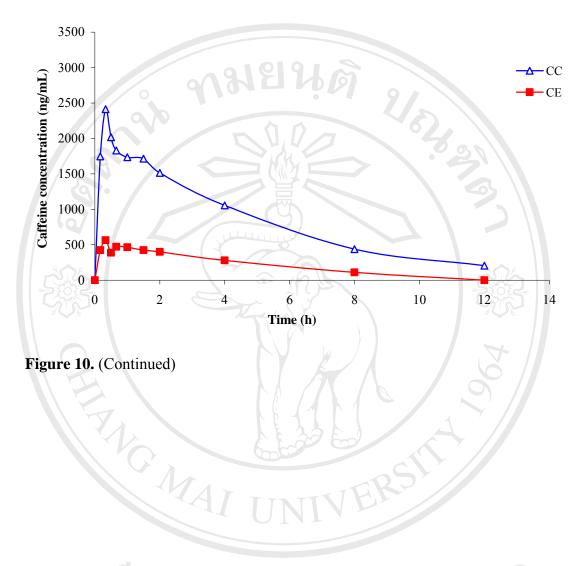
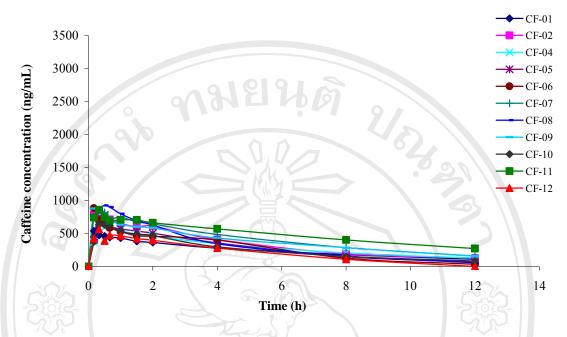
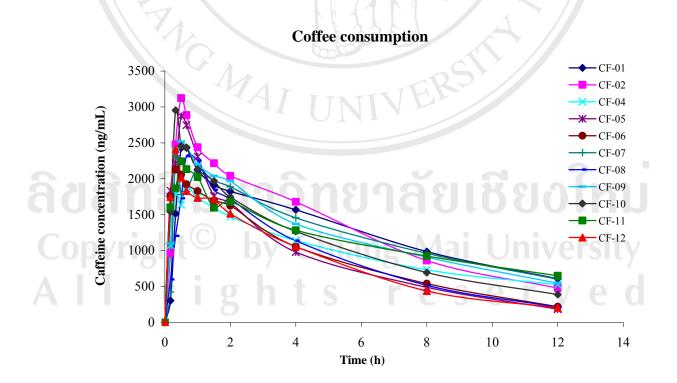
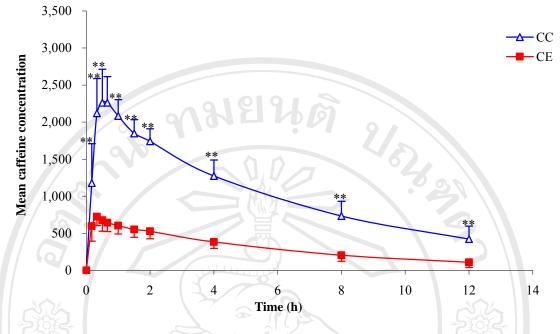



Figure 10. (Continued)




Individual plasma caffeine concentration-time curves of 11 subjects after single dose of coffee enema or coffee consumption are respectively depicted in Figures 11A and 11B. Their mean concentration-time profiles are also presented in Figure 11C. The pharmacokinetic parameters of caffeine (C_{max} , AUC_{0-12} , $AUC_{0-\infty}$, T_{max} , $t_{1/2}$) after single dose of coffee enema or coffee consumption were determined and are shown in Table 13.

When pharmacokinetic parameters of caffeine from coffee enema were determined in comparison to those of coffee consumption (Table 13), the mean maximum plasma caffeine concentrations (C_{max} , ng/mL) were 757.18 versus 2465.45. The times of their occurrences (Tmax, h) were 0.30 versus 0.44. The elimination $t_{1/2}$ (h) was 4.68 versus 4.87. The AUC₀₋₁₂ (ng.h/ml) was 3685.58 versus 13046.26. The AUC_{0- ∞} (ng.h/ml) was 4731.85 versus 16323.12. The pharmacokinetic parameters of caffeine from coffee enema and coffee consumptions (C_{max} , T_{max} , AUC₀₋₁₂ and AUC_{0- ∞}), except $t_{1/2}$, were reach statistically significant differences (Table 13).


Coffee enema

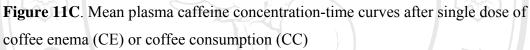


Figure 11A. Plasma caffeine concentration-time curves of individual subject (n=11) after single dose of coffee enema (CE)

Figure 11B. Plasma caffeine concentration-time curves of individual subject (n=11) after single dose of coffee consumption (CC)

** Statistically significant between group (p < 0.05, paired t-test)

ne study w	ithout protoco	I deviation		23		-				
Subject	C _{max} (ng/mL)		AUC ₀₋₁₂ (ng.h/ml)		AUC _{0-∞}	(ng.h/ml)	T _{max}	_x (h)	$t_{1/2}(h)$	
No.#	CE	CC	CE	CC	CE	CC	CE	CC	CE	CC
1	539.00	2430.00	2953.33	15299.69	3828.98	20836.36	0.17	0.50	5.59	6.30
2	783.00	3120.00	4132.04	15940.29	4966.65	19123.05	0.17	0.50	4.47	4.60
4	724.00	1790.00	3602.60	11988.44	4543.37	16678.30	0.33	0.33	5.14	6.19
5	782.00	2880.00	2973.60	11031.62	3746.01	11857.10	0.50	0.50	3.60	3.09
6	885.00	2130.00	2993.85	10886.02	3616.72	12056.45	0.17	0.33	3.42	3.67
7	865.00	2320.00	4954.77	14864.74	6122.02	20208.53	0.33	0.33	5.09	6.15
8	925.00	2320.00	3405.53	11088.29	4065.17	12112.85	0.50	0.66	2.91	3.33
9	880.00	2520.00	4630.28	14859.32	5792.21	19103.40	0.17	0.50	5.18	5.39
10	634.00	2950.00	2681.38	13191.44	3508.53	15650.49	0.33	0.33	3.74	4.36
11	857.00	2240.00	5910.18	14073.02	9037.99	20610.62	0.33	0.50	7.99	6.96
12	565.00	2420.00	2303.76	10285.98	2822.66	11317.21	0.33	0.33	3.38	3.50
Mean	767.18	2465.45**	3685.58	13046.26**	4731.85	16323.12**	0.30	0.44**	4.68	4.87
SD	134.97	387.72	949.84	2059.61	1740.89	3885.00	0.12	0.11	1.36	1.39
Median	783.00	2420.00	3405.65	13191.44	4065.17	16678.30	0.33	0.50	4.47	4.60

Table 13. Pharmacokinetic parameters of caffeine after single dose of coffee enema (CE) or coffee consumption (CC) in 11 subjects completed the study without protocol deviation

** Statistically significant between group (p<0.05, paired t-test)

Data from subject No.3 was not taken into account because caffeine concentration was detected in plasma sample at baseline

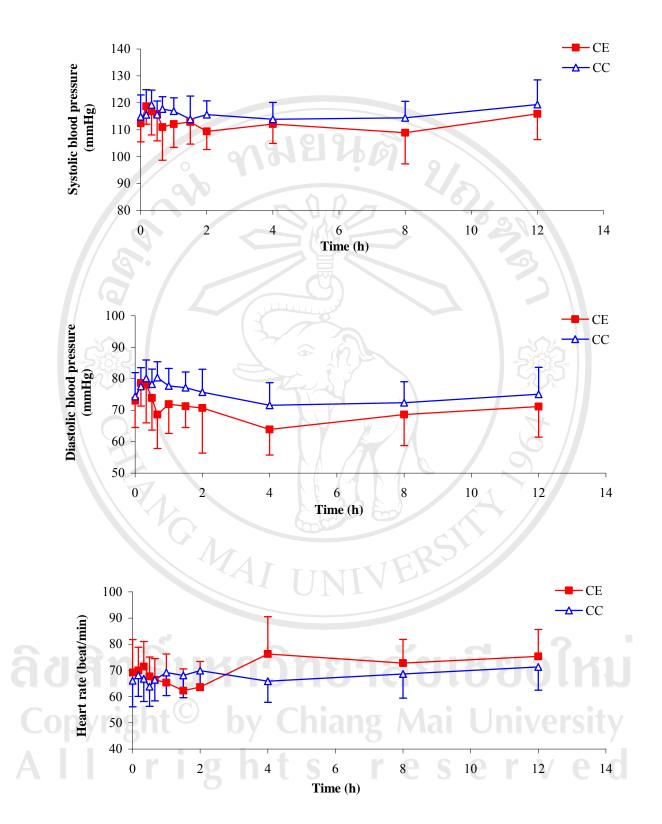
 C_{max} , Mean maximum plasma caffeine concentrations; AUC₀₋₁₂, area under the concentration-time curve from administration to 12 hours; AUC_{0- ∞}, area under the concentration-time curve from administration and extrapolation to infinity; T_{max} , time to reach maximum concentration; $t_{1/2}$, half life

61

3.5 Cardiovascular effects after single dose of coffee enema and coffee consumption

Blood pressure and heart rate

The mean values of systolic blood pressure, diastolic blood pressure and heart rate before and after single doses of coffee enema or coffee consumptions are shown in Table 14 and depicted in Figure 12, respectively. Single administration of either coffee enema or coffee consumption produced no statistical change in systolic blood pressure, diastolic blood pressure and heart rate when compared to their own baseline values. In addition, the mean changes from baseline of these hemodynamic parameters were not statistically different between the two coffee procedures (data not shown).



Parameter	Systolic blood p	ressure (mmHg)	Diastolic blood p	pressure (mmHg)	Heart rate (beat/min)			
Time (h)	CE	CC	CE	CC	CE	CC		
0	112.40±6.87	114.82±8.11	73.00±8.52	74.36±7.60	69.20±12.62	66.82±9.90		
0.17	118.73±6.68	115.55±9.34	78.64±7.34	77.55±5.96	70.00±8.88	68.18±8.09		
0.33	116.82±8.73	119.27±5.45	78.09±12.11	80.09±5.88	71.45±9.63	66.82±8.68		
0.50	115.91±10.06	115.64±5.01	73.91±10.25	78.27±4.79	67.73±7.40	63.82±7.52		
0.66	111.00±12.32	117.73±4.57	68.64±10.80	80.36±5.03	66.45±8.08	66.45±8.05		
1.00	112.09±8.66	116.91±4.93	71.91±9.31	77.73±5.56	65.36±10.95	69.18±8.79		
1.50	112.91±8.23	113.91±8.63	71.27±6.78	77.18±4.97	62.27±8.33	68.09±8.47		
2.00	109.36±6.69	115.64±5.09	70.73±14.37	75.73±7.29	63.64±9.80	69.91±7.53		
4.00	112.09±7.15	113.91±6.24	63.91±8.18	71.55±7.19	76.27±14.25	65.91±8.08		
8.00	108.91±11.63	114.45±6.11	68.64±9.91	72.36±6.68	72.82±9.06	68.64±9.18		
12.00	115.91±9.59	119.36±9.18	71.18±9.76	75.09±8.51	75.36±10.28	71.36±8.90		

Table 14. Blood pressure and heart rate before and after single dose of coffee enema (CE) or coffee consumption (CC) in 11 subjects competed the study without protocol deviation

Data represents mean ± SD by Chiang Mai University All rights reserved

63

Figure 12. Effects of single dose of coffee enema or (CE) coffee consumption (CC) on systolic blood pressure, diastolic blood pressure and heart rate at various time points. Data represents mean±SD

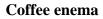
3.6 Effects of coffee enema or coffee consumption on serum GSH concentrations

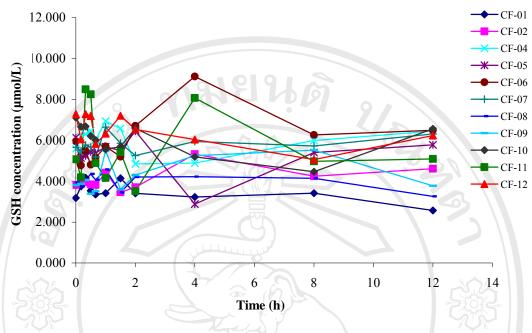
The individual as well as mean serum GSH concentration-time profiles from 11 subjects before and after single dose of coffee enema and coffee consumption are shown in Tables 15A-B and depicted in Figures 13A-B, respectively. Their mean concentration-time profiles are also presented in Figure 13C. Individual serum GSH concentrations of 11 subjects before and after multiple doses of coffee enema and coffee consumption are shown in Tables 16A-B and depicted in Figures 14A-B, respectively. Their mean concentration-time profiles are also presented in Figures 14A-B, and percentages of mean change of serum GSH concentrations from baseline at day 6 and day 12 after multiple doses of coffee enema or coffee consumption are shown in Table 17.

The average serum concentrations of GSH at baseline were not statistically significant different between subjects assigned to coffee enema and coffee consumption (5.230±1.390 versus 4.961±1.307 µmol/L, p=0.645) (Tables 15A-B). Single dose of coffee enema or coffee consumption did not significantly alter serum concentrations of GSH at any time points (Tables 15A-B) comparing to their own baseline values. After multiple doses of coffee enema, serum concentrations of GSH insignificantly changed from the baseline value of 5.230±1.390 µmol/L to µmol/L (22.13±25.339% 6.160±1.152 increase) and 5.767±1.456 µmol/L (16.16±38.781% increase) at day 6 and 12, respectively (Tables 16A, 17 and Figure 14C). Likewise, multiple doses of coffee consumption insignificantly changed the serum concentrations of GSH from the baseline value of 4.961±1.307 µmol/L to 5.942±1.275 µmol/L and 5.861±1.213 µmol/L at day 6 and 12, accounting to mean

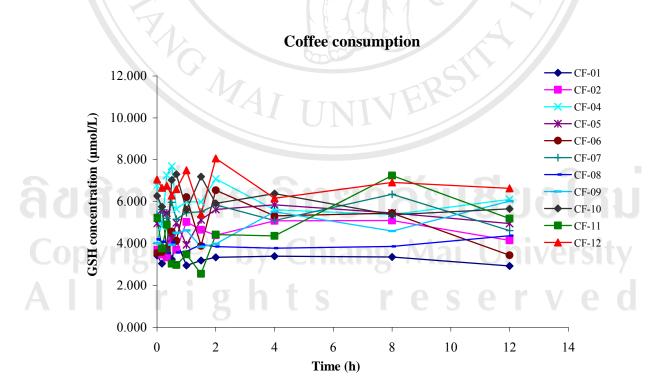
changes of +25.59±40.390% and +23.54±37.358%, respectively (Tables 16B, 17 and Figure 14C).

The percentages of mean changes from baseline of serum GSH concentrations at day 6 and day 12 after multiple doses of coffee consumption were not significantly different from treatment with coffee enema (Table 17).

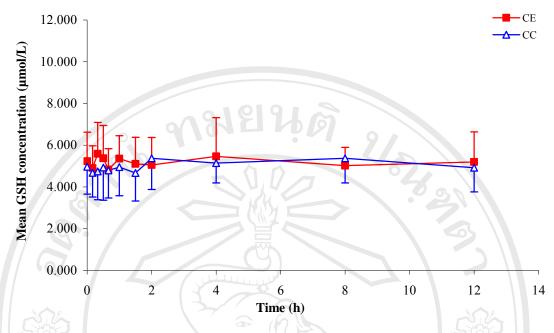

Subject				Serum GS	H concentra	ation (µmol	/L) at vario	us time (h)			
No. #	0.00	0.17	0.33	0.50	0.67	1	1.5	2	4	8	12
1	3.180	3.752	4.165	3.530	3.353	3.410	4.143	3.406	3.226	3.410	2.564
2	3.808	4.090	3.947	3.846	3.812	4.414	3.459	3.703	5.320	4.241	4.609
4	5.586	6.173	6.301	6.459	6.015	6.932	6.579	4.846	4.883	5.985	6.447
5	6.139	5.132	5.233	5.429	5.368	5.684	5.492	6.451	2.880	5.398	5.778
6	5.951	4.774	5.481	4.808	5.154	5.699	5.199	6.707	9.120	6.263	6.489
7	5.650	5.489	5.771	5.669	5.180	6.643	5.857	5.256	5.944	5.722	- 6.312
8	3.940	3.744	4.071	4.353	4.060	4.568	3.447	4.207	4.218	4.413	3.259
9	3.805	3.868	4.056	3.383	3.504	5.492	3.602	4.301	5.244	5.519	3.771
10	7.109	6.662	6.680	6.211	6.015	5.560	5.692	6.583	5.188	4.462	6.556
11	5.075	4.192	8.492	8.248	4.883	4.154	5.417	3.511	8.071	4.974	5.086
12	7.282	6.045	7.278	7.184	5.823	6.323	7.203	6.530	6.038	5.056	6.233
Mean	5.230	4.902	5.589	5.375	4.834	5.353	5.099	5.045	5.467	5.016	5.191
SD	1.390	1.064	1.501	1.567	0.994	1.100	1.280	1.322	1.856	0.874	1.443


Table 15A. Serum GSH concentrations after single dose of coffee enema in 11 subjects completed the study without protocol deviation

Subject				Serum GS	H concentra	ation (µmol	/L) at vario	ous time (h)			
No. #	0.00	0.17	0.33	0.50	0.67		1.5	2	4	8	12
1	3.429	3.041	3.368	3.252	4.117	2.951	3.184	3.380	3.391	3.353	2.929
2	3.699	3.470	3.331	4.113	3.703	5.030	4.654	4.398	5.086	5.102	4.154
4	6.782	4.812	7.263	7.692	5.639	6.011	5.974	7.086	5.613	5.380	6.109
5	4.955	5.609	5.455	4.248	4.989	3.936	5.128	5.628	5.846	5.455	4.951
6	3.545	3.583	3.756	4.571	4.132	6.214	3.880	6.545	5.320	5.447	- 3.436
7	5.391	5.620	5.203	5.966	5.162	5.474	5.511	5.850	5.102	6.353	4.613
8	4.207	4.079	3.549	4.049	3.568	3.620	3.955	3.850	3.778	3.857	4.368
9	4.015	5.034	4.895	3.936	4.508	4.624	3.846	3.985	5.519	4.590	6.026
10	6.278	5.752	3.688	7.034	7.308	5.613	7.195	5.917	6.383	5.376	5.658
11	5.214	3.763	4.910	3.034	2.970	3.481	2.556	4.425	4.361	7.244	5.192
12	7.053	6.654	6.756	6.293	6.598	7.500	5.398	8.064	6.158	6.917	6.635
Mean	4.961	4.674	4.734	4.926	4.790	4.950	4.662	5.317	5.141	5.370	4.916
SD 🤇	1.307	1.162	1.363	1.563	1.321	1.378	1.342	1.496	0.949	1.180	1.156


Table 15B. Serum GSH concentrations after single dose of coffee consumption in 11 subjects completed the study without protocol deviation

89



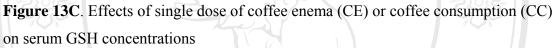


Figure 13A. Effects of single dose of coffee enema on serum GSH of individual subject (n=11)

Figure 13B. Effects of single dose of coffee consumption on serum GSH concentrations of individual subject (n=11)

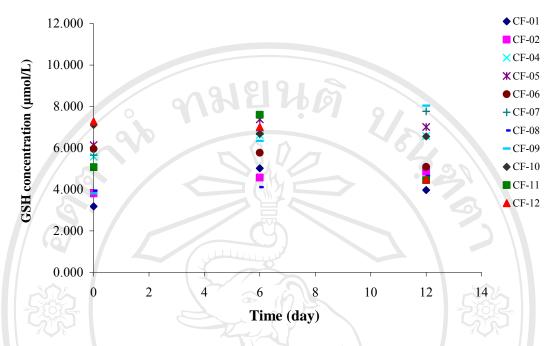

Subject No.#	Serum (GSH concentration (µ	umol/L)		
Subject No.#	day 0	day 6	day 12		
1	3.180	5.019	3.970		
2	3.808	4.571	4.850		
4	5.586	6.628	6.579		
5	6.139	7.383	7.011		
6	5.951	5.771	5.086		
	5.650	6.650	7.771		
8	3.940	4.150	4.647		
9	3.805	6.338	8.041		
70510	7.109	6.684	6.553		
11	5.075	7.598	4.447		
12	7.282	7.015	4.481		
Mean	5.230	6.160	5.767		
SD	1.390	1.152	1.456		

Table 16A. Effects of multiple doses of coffee enema (6 administrations within 12days) on serum GSH concentrations

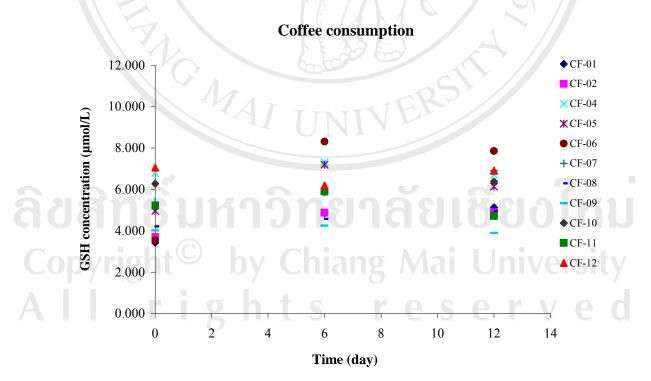

Subject No.#	Serum	GSH concentration (µ	umol/L)		
Subject No.#	day 0	day 6	day 12		
1	3.429	4.842	5.128		
2	3.699	4.876	4.891		
4	6.782	7.320	6.711		
5	4.955	7.195	6.132		
6	3.545	8.312	7.853		
	5.391	6.038	6.914		
8	4.207	4.571	4.959		
9	4.015	4.248	3.895		
50510	6.278	5.872	6.380		
11	5.214	5.898	4.711		
12	7.053	6.188	6.902		
Mean	4.961	5.942	5.861		
SD	1.307	1.275	1.213		

Table 16B. Effects of multiple doses of coffee consumption (24 consumptions within12 days) on serum GSH concentrations

Coffee enema

Figure 14A. Effects of multiple doses of coffee enema on serum GSH concentrations of individual subject (n=11)

Figure 14B. Effects of multiple doses of coffee consumption on serum GSH concentrations of individual subject (n=11)

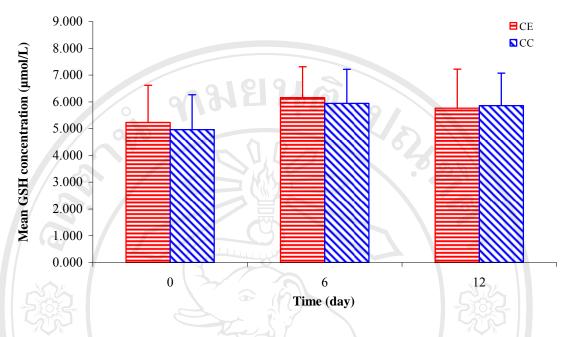


Figure 14C. Effects of multiple doses of coffee enema (CE) or coffee consumption (CC) on serum concentrations of GSH

Table 17. Percentages of mean change from baseline of serum GSH concentrations atday 6 and day 12 after multiple doses of coffee enema (CC) or coffee consumption(CC)

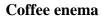
	% mean cha	inge of serum GS	H concentration fr	om baseline
Subject No.#	da	y 6 9	day	r 12
	СЕ	CC	CE	CC
1	57.830	41.207	24.843	49.548
2	20.037	31.819	27.363	32.225
4	18.654	7.933	17.777	-1.047
5	20.264	45.207	14.204	23.754
6	-3.025	134.471	-14.535	121.523
27	17.699	12.001	37.540	28.251
385	5.330	8.652	17.944	17.875
9	66.570	5.803	111.327	-2.989
10	-5.978	-6.467	-7.821	1.625
11	49.714	13.119	-12.374	-9.647
12	-3.667	-12.264	-38.465	-2.141
Mean	22.130	25.589	16.164	23.543
SD	25.339	40.390	38.781	37.358
p value	0.8	312	0.6	54

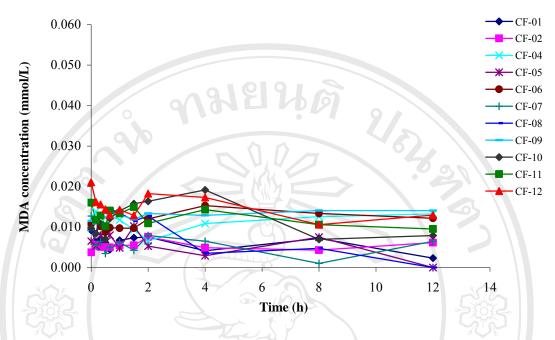
3.7 Effects of coffee enema or coffee consumption on serum MDA concentrations

The individual as well as mean serum MDA concentration-time profiles from 11 subjects before and after single dose of coffee enema and coffee consumptions are shown in Tables 18A-B and depicted in Figures 15A-B, respectively. Their mean concentration-time profiles are also presented in Figure 15C. Individual serum MDA concentration of 11 subjects before and after multiple doses of coffee enema and coffee consumption are shown in Tables 19A-B and depicted in Figures 16A-B, respectively. Their mean concentration-time profiles are also presented in Figures 16A-B, and depicted in Figures 16A-B, respectively. Their mean concentration-time profiles are also presented in Figures 16A-B, respectively. Their mean concentration-time profiles are also presented in Figure 16C and percentages of mean change from baseline of serum MDA concentrations at day 6 and day 12 after multiple doses of coffee enema or coffee consumption are shown in Table 20.

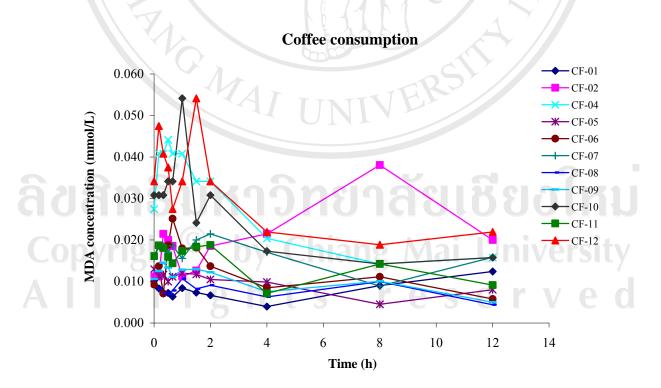
The average serum concentrations of MDA at baseline were not statistically significant different between subjects assigned to coffee enema and coffee consumption (0.011±0.005 mmol/L versus 0.017±0.009 mmol/L, p=0.056) (Tables 18A-B and Figures 15A-C). Single administration of neither coffee enema nor coffee consumption did not significantly affect serum concentrations of MDA at any time points (Tables 18A-B) when compared to their own baseline values. Multiple doses of coffee enema showed a trend towards insignificant increase in serum concentrations of MDA from the baseline value of 0.011±0.005 mmol/L to 0.013±0.009 mmol/L and 0.017±0.010 mmol/L at day 6 and 12, respectively (Table 19A and Figure 16C). While multiple doses of coffee consumption insignificantly changed serum concentrations of MDA from the baseline value of 0.017±0.009 mmol/L to 0.017±0.009 mmol/L to 0.014±0.005 mmol/L and 0.017±0.009 mmol/L at day 6 and 12, respectively (Table 19A and Figure 16C).

The percentages of mean change from baseline of serum MDA concentrations at day 6 and day 12 after multiple doses of coffee consumption were not significantly from coffee enema (Table 20).


Subject				Serum MD	A concentr	ation (mmo	l/L) at vario	ous time (h			
No. #	0.00	0.17	0.33	0.50	0.67	1	1.5	2	4	8	12
1	0.009	0.006	0.007	0.006	0.004	0.007	0.007	0.008	0.004	0.007	0.002
2	0.004	0.006	0.005	0.005	0.005	0.005	0.005	0.008	0.005	0.004	0.006
4	0.010	0.014	0.011	0.010	0.013	0.012	0.009	0.007	0.011	0.013	0.013
5	0.007	0.005	0.008	0.009	0.008	0.005	0.010	0.005	0.003	0.008	0.000
6	0.011	0.012	0.010	0.009	0.010	0.010	0.010	0.012	0.015	0.013	0.012
7	0.013	0.005	0.006	0.003	0.005	0.006	0.004	0.008	0.007	0.001	- 0.006
8	0.009	0.008	0.013	0.014	0.014	0.014	0.011	0.013	0.004	0.005	0.000
9	0.012	0.011	0.013	0.012	0.013	0.013	0.012	0.013	0.013	0.014	0.014
10	0.010	0.008	0.011	0.007	0.012	0.014	0.016	0.016	0.019	0.007	0.008
11	0.016	0.012	0.013	0.010	0.014	0.013	0.015	0.011	0.014	0.011	0.010
12	0.021	0.016	0.016	0.014	0.013	0.014	0.013	0.018	0.017	0.011	0.013
Mean	0.011	0.009	0.010	0.009	0.010	0.010	0.010	0.011	0.010	0.008	0.008
SD	0.005	0.004	0.003	0.003	0.004	0.004	0.004	0.004	0.006	0.004	0.005
# Data from	n subject No	3 was not take			feine concent	ration was det	ected in plasm	na sample at	baseline	niv	ers
						S					


Table 18A. Serum MDA concentrations after single dose of coffee enema in 11 subjects completed the study without protocol deviation

Subject				Serum MD	A concentra	ation (mmo	l/L) at vario	ous time (h)				
No. #	0.00	0.17	0.33	0.50	0.67		1.5	2	4	8	12	
1	0.010	0.008	0.007	0.007	0.006	0.008	0.007	0.007	0.004	0.009	0.012	
2	0.011	0.011	0.021	0.020	0.019	0.011	0.013	0.019	0.021	0.038	0.020	
4	0.027	0.041	0.041	0.044	0.041	0.041	0.034	0.034	0.020	0.014	0.016	
5	0.013	0.011	0.012	0.010	0.011	0.012	0.012	0.010	0.010	0.005	0.008	
6	0.009	0.014	0.007	0.019	0.025	0.018	0.018	0.014	0.008	0.011	0.006	
7	0.016	0.019	0.019	0.017	0.019	0.016	0.020	0.021	0.017	0.009	0.016	
8	0.010	0.008	0.007	0.007	0.008	0.011	0.008	0.009	0.006	0.010	0.004	
9	0.011	0.013	0.014	0.013	0.011	0.013	0.013	0.012	0.008	0.010	0.005	
10	0.031	0.031	0.031	0.034	0.034	0.054	0.024	0.031	0.017	0.014	0.016	
11	0.016	0.019	0.018	0.016	0.014	0.017	0.018	0.019	0.007	0.014	0.009	
12	0.034	0.047	0.041	0.037	0.027	0.034	0.054	0.034	0.022	0.019	0.022	
Mean	0.017	0.020	0.020	0.020	0.020	0.021	0.020	0.019	0.013	0.014	0.012	
SD	0.009	0.014	0.013	0.013	0.011	0.015	0.014	0.010	0.007	0.009	0.006	
# Data from	n subject No.:	3 was not take	n into accoun	t because caf	feine concent	ration was det	ected in plasm	na sample at l	baseline	r	v e	


Table 18B. Serum MDA concentrations after single dose of coffee consumption in 11 subjects completed the study without protocol deviation

79

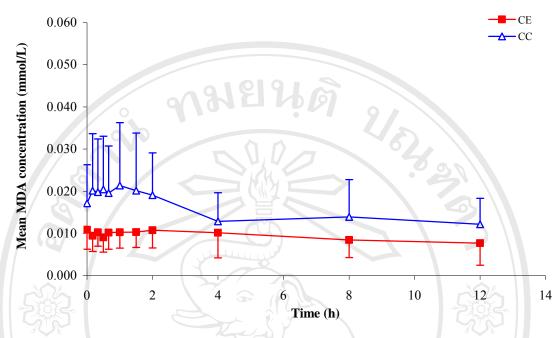
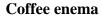


Figure 15A. Effects of single dose of coffee enema on serum MDA concentrations of individual subject (n=11)

Figure 15B. Effects of single dose of coffee consumption on serum MDA concentrations of individual subject (n=11)


Figure 15C. Effects of single dose of coffee enema (CE) or coffee consumption (CC) on serum MDA concentrations

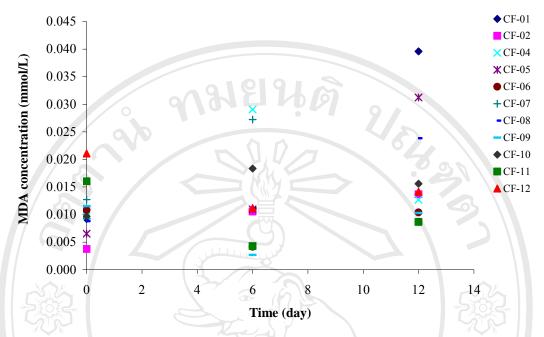

Subject No.#	Serum I	MDA concentration (1	nmol/L)		
Subject No.#	day 0	day 6	day 12		
1	0.009	0.011	0.040		
2	0.004	0.011	0.014		
4	0.010	0.029	0.013		
5	0.007	0.011	0.031		
6	0.011	0.004	0.010		
	0.013	0.027	0.009		
8	0.009	0.011	0.024		
9	0.012	0.003	0.010		
70510	0.010	0.018	0.016		
11	0.016	0.004	0.009		
12	0.021	0.011	0.014		
Mean	0.011	0.013	0.017		
SD	0.005	0.009	0.010		

Table 19A. Effects of multiple doses of coffee enema (6 administrations within 12days) on serum MDA concentrations

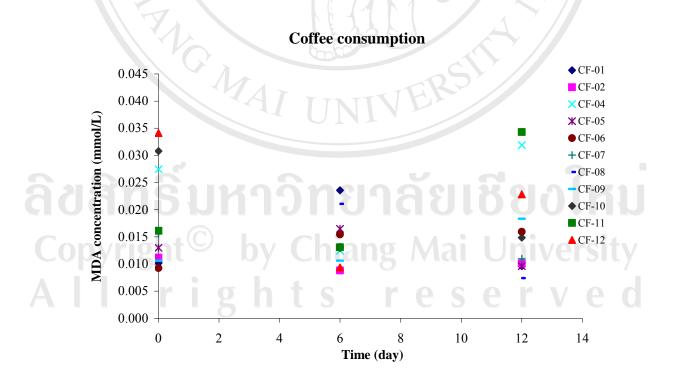

Subject No.#	Serum	MDA concentration (r	nmol/L)		
Subject No.#	day 0	day 6	day 12		
1	0.010	0.024	0.010		
2	0.011	0.009	0.010		
4	0.027	0.012	0.032		
5	0.013	0.016	0.010		
6	0.009	0.015	0.016		
	0.016	0.013	0.011		
8	0.010	0.021	0.007		
9	0.011	0.011	0.018		
70510	0.031	0.013	0.015		
11	0.016	0.013	0.034		
12	0.034	0.009	0.023		
Mean	0.017	0.014	0.017		
SD	0.009	0.005	0.009		

Table 19B. Effects of multiple doses of coffee consumption (24 consumptions within12 days) on serum MDA concentrations

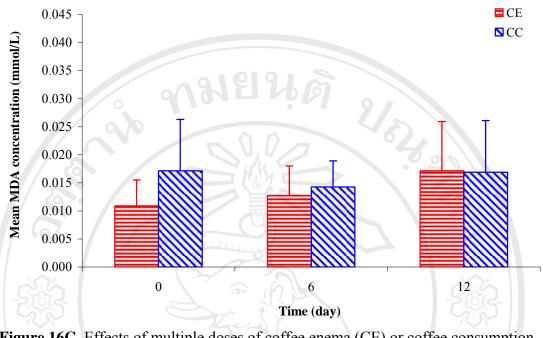


Figure 16A. Effects of multiple doses of coffee enema on serum MDA concentrations of individual subject (n=11)

Figure 16B. Effects of multiple doses of coffee consumption on serum MDA concentrations of individual subject (n=11)

Figure 16C. Effects of multiple doses of coffee enema (CE) or coffee consumption (CC) on serum MDA concentrations

Table 20. Percentages of mean change from baseline of serum MDA concentrationsat day 6 and day 12 after multiple doses of coffee enema (CE) or coffee consumption(CC)

	% me	an change of seru	im MDA concenti	ation						
Subject No.#	from baseline									
	day	7 6	day	12						
	CE	CC	CE-	CC						
1	17.960	131.744	329.734	-5.651						
2	180.559	-21.253	263.915	-9.888						
4	200.103	-54.670	31.095	16.130						
5	67.764	26.595	378.484	-26.211						
6	-61.620	66.901	-3.796	72.246						
305	114.157	-15.234	-31.852	-29.666						
8	26.534	101.385	170.795	-29.417						
9	-76.800	0.000	-10.755	73.053						
10	89.411	-57.906	60.950	-51.753						
11	-73.283	-18.915	-46.067	112.713						
12	-46.917	-72.579	-32.946	-33.133						
Mean	39.806	7.824	100.869	8.038						
SD	94.928	63.815	150.25	51.477						
p value	0.3	87	0.0	079						

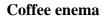
Copyright[©] by Chiang Mai University All rights reserved

3.8 Effects of coffee enema or coffee consumption on serum TEAC

The individual as well as mean serum TEAC concentration-time profiles from 11 subjects before and after single administration of coffee enema and coffee consumptions are shown in Tables 21A-B and depicted in Figures 17A-B, respectively. Their mean concentration-time profiles are also presented in Figure 17C. Individual serum TEAC concentrations of 11 subjects before and after multiple doses of coffee enema and coffee consumption are shown in Tables 22A-B and depicted in Figures 18A-B, respectively. Their mean concentration-time profiles are also presented in Figure 18C and percentages of mean change from baseline of serum TEAC concentrations at day 6 and day 12 after multiple doses of coffee enema or coffee consumption are shown in Table 23.

The average serum concentrations of TEAC at baseline were statistically significant different between subjects assigned to coffee enema and coffee consumption (1.584±0.095 mmol/L versus 1.509±0.030 mmol/L, p=0.02) (Tables 21A-B and Figures 17A-C). Single dose of coffee enema or coffee consumption did not significantly alter serum concentrations of TEAC at any time points (Tables 21A-B), comparing to their own baseline values. After multiple doses of coffee, serum concentrations of TEAC significantly changed from the baseline value of 1.584±0.095 mmol/L to 1.480±0.079 mmol/L (p=0.004) at day 12 (Table 22A and Figure 18C). Similarly, the average serum concentrations of TEAC after multiple doses of coffee consumption significantly changed from the baseline value of 1.509±0.030 mmol/L to 1.375±0.166 mmol/L (p=0.008) and 1.388±0.094 mmol/L (p=0.017) at day 6 and 12, respectively (Table 22B and Figure 18C).

The percentages of mean change from baseline of serum TEAC concentrations at day 6 and day 12 after multiple doses of coffee consumption were not significantly different from coffee enema (Table 23).



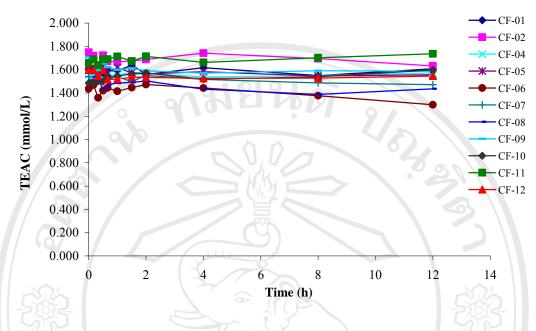

Subject				Seru	ım TEAC (ı	nmol/L) at	various tim	e (h)			
No. #	0.00	0.17	0.33	0.50	0.67	1	1.5	2	4	8	12
1	1.602	1.609	1.564	1.570	1.592	1.588	1.640	1.560	1.617	1.550	1.607
2	1.750	1.720	1.620	1.724	1.672	1.669	1.669	1.688	1.742	1.695	1.632
4	1.556	1.550	1.555	1.524	1.554	1.554	1.554	1.570	1.537	1.550	1.572
5	1.592	1.601	1.623	1.634	1.576	1.617	1.617	1.564	1.582	1.546	1.556
6	1.436	1.468	1.359	1.421	1.445	1.415	1.415	1.473	1.443	1.377	1.299
7	1.541	1.481	1.502	1.496	1.521	1.541	1.541	1.550	1.517	1.486	- 1.471
8	1.502	1.538	1.518	1.432	1.471	1.486	1.486	1.503	1.434	1.388	1.436
9	1.706	1.695	1.594	1.652	1.621	1.599	1.599	1.591	1.570	1.591	1.586
10	1.485	1.492	1.500	1.500	1.535	1.546	1.546	1.572	1.519	1.539	1.598
11	1.657	1.688	1.640	1.690	1.690	1.713	1.713	1.714	1.662	1.701	1.736
12	1.598	1.596	1.547	1.593	1.515	1.520	1.520	1.535	1.525	1.527	1.546
Mean	1.584	1.580	1.547	1.567	1.563	1.602	1.571	1.575	1.559	1.541	1.549
SD	0.095	0.098	0.079	0.102	0.077	0.116	0.075	0.071	0.091	0.103	0.114
		3 was not take	en into accour	t because caf	feine concent	ration was def	ected in plasm			niv	er
						S					

Table 21A. Serum TEAC after single dose of coffee enema in 11 subjects completed the study without protocol deviation

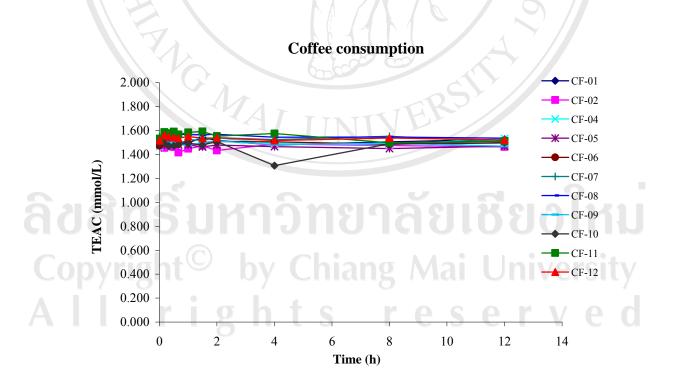

Subject				Seru	Im TEAC (1	nmol/L) at	various tim	ie (h)			
No. #	0.00	0.17	0.33	0.50	0.67	1	1.5	2	4	8	12
1	1.524	1.504	1.517	1.528	1.496	1.498	1.542	1.519	1.479	1.506	1.527
2	1.485	1.455	1.468	1.462	1.417	1.448	1.473	1.434	1.488	1.475	1.463
4	1.465	1.535	1.527	1.517	1.536	1.552	1.530	1.540	1.493	1.481	1.535
5	1.493	1.479	1.519	1.499	1.481	1.480	1.463	1.479	1.465	1.450	1.470
6	1.474	1.536	1.550	1.532	1.486	1.491	1.486	1.509	1.506	1.486	1.496
7	1.551	1.543	1.557	1.505	1.489	1.524	1.520	1.541	1.525	1.553	- 1.504
8	1.554	1.558	1.568	1.559	1.572	1.566	1.564	1.569	1.545	1.546	1.537
9	1.502	1.499	1.498	1.496	1.486	1.479	1.499	1.512	1.484	1.494	1.470
10	1.498	1.494	1.472	1.473	1.486	1.491	1.479	1.509	1.307	1.490	1.500
11	1.532	1.588	1.578	1.592	1.567	1.585	1.593	1.554	1.575	1.498	1.512
12	1.517	1.562	1.548	1.542	1.537	1.552	1.536	1.540	1.517	1.538	1.522
Mean	1.509	1.523	1.527	1.519	1.505	1.515	1.517	1.519	1.489	1.502	1.503
SD	0.030	0.040	0.037	0.038	0.045	0.043	0.041	0.038	0.068	0.032	0.027

Table 21B. Serum TEAC after single dose of coffee consumption in 11 subjects completed the study without protocol deviation

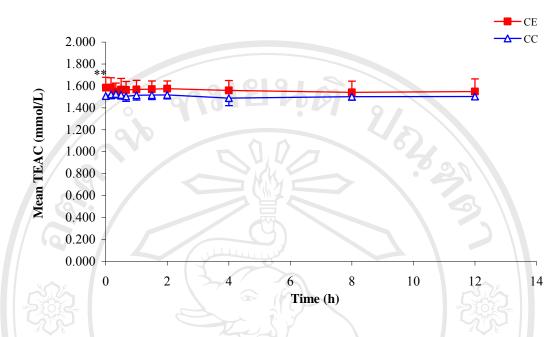


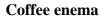
Figure 17A. Effects of single dose of coffee enema on serum TEAC of individual subject (n=11)

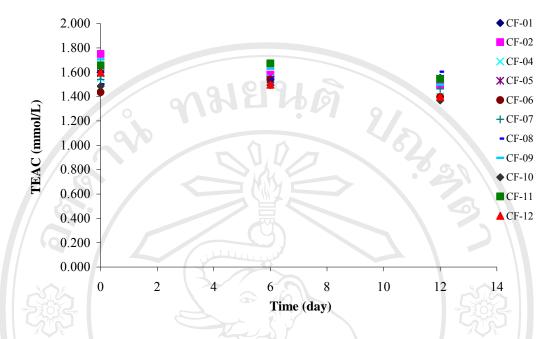
Figure 17B. Effects of single dose of coffee consumption on serum TEAC of individual subject (n=11)

Figure 17C. Effects of single dose of coffee enema (CE) or coffee consumption (CC) on serum TEAC

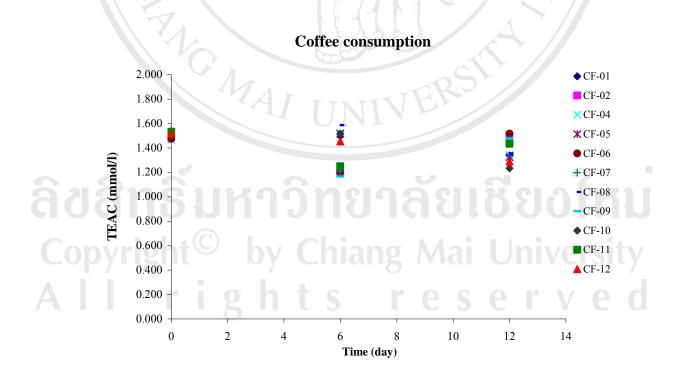
** Statistically significant between group (p<0.05, paired t-test)

Subject No.#		Serum TEAC (mmol/	L)		
Subject No.#	day 0	day 6	day 12		
1	1.602	1.564	1.554		
2	1.750	1.581	1.497		
4	1.556	1.552	1.401		
5	1.592	1.540	1.548		
6	1.436	1.540	1.398		
7	1.541	1.495	1.464		
8	1.502	1.542	1.604		
9	1.706	1.629	1.498		
70510	1.485	1.495	1.369		
11	1.657	1.672	1.545		
12	1.598	1.498	1.399		
Mean	1.584	1.555	1.480*		
SD	0.095	0.056	0.079		


Table 22A. Effects of multiple doses of coffee enema (6 administrations within 12days) on serum TEAC


* Statistically significant difference from baseline (day 0) (p < 0.05, one-way ANOVA with repeated measurement)

Subject No.#	Serum TEAC (mmol/L)			
	day 0	day 6	day 12	
1	1.524	1.498	1.338	
2	1.485	1.203	1.494	
4	1.465	1.524	1.342	
5	1.493	1.516	1.325	
6	1.474	1.200	1.517	
	1.551	1.209	1.469	
8	1.554	1.587	1.355	
9	1.502	1.167	1.476	
70510	1.498	1.517	1.233	
11	1.532	1.250	1.433	
12	1.517	1.453	1.288	
Mean	1.509	1.375*	1.388*	
SD	0.030	0.166	0.094	


Table 22B. Effects of multiple doses of coffee consumption (24 consumptions within12 days) on serum TEAC

* Statistically significant difference from baseline (day 0) (p < 0.05, one-way ANOVA with repeated measuremen

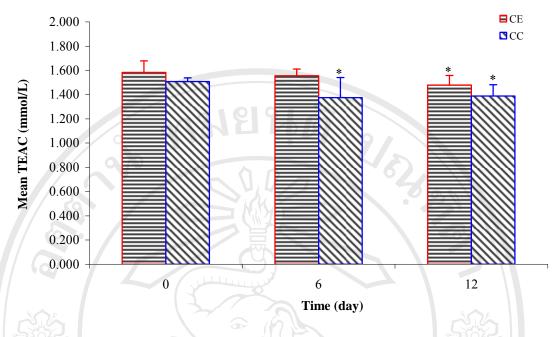


Figure 18A. Effects of multiple doses of coffee enema on serum TEAC of individual subject (n=11)

Figure 18B. Effects of multiple doses of coffee consumption on serum TEAC of individual subject (n=11)

Figure 18C. Effects of multiple doses of coffee enema (CE) or coffee consumption (CC) on serum TEAC

* Statistically significant difference from baseline (day 0) (p < 0.05, one-way ANOVA with repeated measurement

	% mean change of serum TEAC from baseline				
Subject No.#	day 6		day 12		
	CE	CC D	CE	CC	
1	-2.367	-1.706	-2.991	-12.185	
2	-9.665	-19.000	-14.444	0.583	
4	-0.290	3.970	-9.964	-8.446	
5	-3.237	1.575	-2.765	-11.194	
6	7.236	-18.556	-2.638	2.939	
7	-2.944	-22.027	-4.998	-5.267	
8	2.667	2.070	6.814	-12.818	
3	-4.515	-22.323	-12.174	-1.730	
10	0.613	1.322	-7.849	-17.686	
11	0.923	-18.417	-6.738	-6.462	
12	-6.245	-4.241	-12.485	-15.090	
Mean	-1.620	-8.848	-6.385	-7.942	
SD	4.577	11.009	6.046	6.616	
p value	0.058		0.571		

Table 23. Percentage of mean changes from baseline of serum TEAC at day 6 and

 day 12 after multiple doses of coffee enema

3.9 Adverse events after coffee enema or coffee consumption

All subjects completed the study without any adverse events. The mean values of hemodynamic parameters (systolic blood pressure, diastolic blood pressure and heart rate) following multiple doses of each coffee procedure did not significantly alter from their own baseline values (data not shown). Additionally, the mean values of blood electrolytes following multiple doses of coffee enema were 138.91±1.70 mmol/L for sodium, 3.99±0.23 mmol/L for potassium, 104.64±2.38 mmol/L for chloride, and 26.45±1.75 mmol/L for bicarbonate, in comparison to the baseline values of 140.00±2.10 mmol/L for sodium, 4.25±1.72 mmol/L for potassium, 102.82±1.72 mmol/L for chloride, and 22.09±1.30 mmol/L for bicarbonate. These differences in the mean values of blood electrolytes before and after coffee enema were not clinically significant.