TABLE OF CONTENTS

	Pages
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SCHEMES	xi
ABBREVIATIONS AND SYMBOLS	xii
CHAPTER I INTRODUCTION	
1. Information and significant of the problem	1
2. List of compound from <i>Ophiorrhiza</i> genus	4
3. Characteristic of <i>Ophiorrhiza</i> species	13
CHAPTER II REVIEW OF LITERATURES	
1. General knowledge of anticancer	16
1.1 History of camptothecin	18
1.2 Camptothecin Biosynthesis	23
2. Antioxidants and its mechanism	25
2.1 Free radicals and active oxygen species	25
2.2. Mechanism of Antioxidants	26
2.3 Radical-scavenging methods	28

3. Antimicrobial	29
3.1 Antibacterial	30
3.2 Antifungal	30
CHAPTER III MATERIALS AND METHODS	
1. Plant Materials	32
2. Chemical	32
3. Instruments and Apparatus	33
4. Phytochemical screening	33
5. Extraction of O. trichocarpon Bl., O. rugosa Wall. and	34
O. aff. nutans Cl. ex Hk. f.	
5.1 Isolation the dichloromethane extract of	35
O. aff. nutans Cl. ex Hk. f.	
5.1.1 Isolation of fraction G	37
5.1.2 Isolation of fraction P	38
5.2 Isolation the ethyl acetate extract of	39
O. aff. nutans Cl. ex Hk. f.	
5.2.1 Isolation of fraction H	40
5.2.2 Isolation of fraction I	41
6. Bioactivity Determination	42
6.1 Antioxidant activity Assessment by DPPH [•] method	42
6.2. Antibacterial and antifungal activity	43
6.3. Cytotoxicity and Anticancer studies	44
7. Identification	45
CHAPTER IV RESULTS AND DISCUSSION	
1. Extraction yield	46
2. Phytochemical screening studies	48
3. Bioactivity studies	49
3.1 Antioxidant activity	49
3.2 Antimicrobial activity	50
3.3 Cytotoxicity and Anticancer activity	52

4. Structure elucidation of the isolated compounds	54
4.1 Compound form crude dichloromethane extract	54
4.1.1 Compound G6P	54
4.1.2 Compound P6bP	56
4.1.3 Compound P6fP	58
4.2 Compound form crude ethyl acetate extract	59
4.2.1 Compound H4d1P	59
4.2.2 Compound I8eP	60
CHAPTER V CONCLUSION REFERENCES	62 64
APPENDIX	78
VITA	89

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
1. List of compound from <i>Ophiorrhiza</i> genus.	4
2. Active Oxygen and Related Species	27
3. Percentage yield of crude extract from three <i>Ophiorrhiza</i> species.	46
 Percentage yield of crude extract of three <i>Ophiorrhiza</i> species in various solvents. 	47
5. Phytochemical screening of crude methanolic extracts of three <i>Ophiorrhize</i> species.	a 48
6. Antioxidant activities of crude methanolic extracts of O. trichocarpon Bl.,	49
O. rugosa Wall. and O. aff. nutans Cl. ex Hk. f. extract by DPPH [•] assay.	
7. Antioxidant activities of crude extracts of Ophiorrhiza aff. nutans Cl.	50
ex Hk. f. by DPPH [•] assay.	
8. Antimicrobial activities of crude methanolic extrtacts of three <i>Ophiorrhiza</i> species.	51
9. Antimicrobial activities of each crude <i>Ophiorrhiza</i> aff. <i>nutans</i> Cl. <i>ex</i> Hk. f extract.	52
10. Anticancer activity of crude ethyl acetate extract of O. trichocarpon Bl.,	53
O.rugosa Wall. and O. aff. nutans Cl. ex Hk.f.	
11. ¹³ C NMR analysis and relative ¹³ C-enrichment of β -sitosterol and	55
tigmasterol of compound G6P from crude dichloromethane of	
O. aff. nutans Cl. ex Hk.f. compare with reference.	
12. ¹ H and ¹³ C NMR analysis of compound P6bP from crude	57
dichloromethane of O. aff. nutans Cl. ex Hk.f. compare with reference.	
13. ¹ H and ¹³ C NMR analysis of compound P6fP from crude	58
dichloromethane of O. aff. nutans Cl. ex Hk.f. compare with reference.	
14. ¹ H and ¹³ C NMR analysis of compound H4d1P from crude	60
ethyl acetate of O. aff. nutans Cl. ex Hk.f. compare with reference.	
15. ¹ H and ¹³ C NMR analysis of compound I8eP from crude	61
ethyl acetate of O. aff. nutans Cl. ex Hk.f. compare with reference.	

LIST OF FIGURES

Figure Pa	
1. Ophiorrhiza trichocarpon Blume. Queen Silikit Botanic Gade	en. 13
Mea rim district Chiang Mai province, Thailand.	
2. Ophiorrhiza rugosa Well. Queen Silikit Botanic Gaden. Mea	rim 14
district Chiang Mai province, Thailand.	
3. Ophiorrhiza aff. nutans Cl. ex Hk. f. Doitung mountain forest	15
Maephaloung district, Chiang Rai Province.	
4. The Camptothecin skeleton and its numbering system.	18
5. The 20S chiral carbon and a dynamic equilibrium between the	e 19
closed ring lactone and open-ring carboxylic acid form.	
6. Topotecan, the side-chain at carbon 9 of the A ring was found	1 22
water-soluble.	
7. Structure of irinotecan.	22
8. Biosynthetic pathway for TIAs in CPT-producing plants.	24
9. Chain reaction of Lipidperoxidation.	27
10. Structure of Stigmasterol and β - sitosterol (G6P).	54
11. Structure of Ursolic acid (P6BP).	55
12. Structure of Scopoletin (P6FP).	56
13. Structure of Blumenol A (H4D1P).	57
14. Structure of Haman (I8EP).	58
15. The 600 MHz ¹ H-NMR spectrum of compound G6P	80
16. The 150 MHz ¹³ C-NMR spectrum of compound G6P	81
17. The 600 MHz ¹ H-NMR spectrum of compound P6BP	82
18. The 600 MHz ¹ H-NMR spectrum of compound P6FP	83
19. The 150 MHz ¹³ C-NMR spectrum of compound P6FP	84
20. The 600 MHz ¹ H-NMR spectrum of compound H4D1P	85
21. The 150 MHz ¹³ C-NMR spectrum of compound H4D1P	86
22. The 600 MHz ¹ H-NMR spectrum of compound I8EP	87
23. The 150 MHz ¹³ C-NMR spectrum of compound I8EP	88

LIST OF SCHEMES

Schemes Pa		
1. Extraction of whole powdered plant of Ophiorrhiza species	35	
2. Isolation of dichloromethane extract of O. aff. nutans Cl. ex Hk. f.	36	
3. Isolation scheme of compound G6P	37	
4. Isolation of compound P and repeats separation for purified P6bP and P6fP	38	
5. Isolation of ethyl acetate extract of <i>O</i> . aff. <i>nutans</i> Cl. <i>ex</i> Hk. f.	39	
6. Isolation of fraction H for purified of H4d1P	40	
7. Isolation of compound I	41	
8. Isolation of fraction I8 for purified of I8eP	42	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVATIONS AND SYMBOLS

AIDS	Acquired immune deficiency syndrome
ANTH	Anthranilate
AS	anthranilate synthase
br	Broad band
°C	Degree Celsius
cm	Centimeter
CC	Column chromatography
CDC ₁₃	Deuterochloroform
СРТ	Camptothecin
DNA	Deoxyribonucleic acid
DMAPP	dimethylslallyl pyrophosphate
DMSO	Dimethyl sulphoxide
DPPH	1,1-diphenyl-2-picrylhydrazyl
DXP	1-Deoxy-D-xylulose 5-phosphate
DXR	1-Deoxy-D-xylulose 5-phosphate reductoisomerase
DXS	1-Deoxy-D-xylulose 5-phosphate Synthase
EtOAC	Ethyl acetate
EtOH	Ethanol
FDA	Food and Drug Administation
g	Gram
G10H	geraniol-10-hydroxylase
hr	hour hour a log
10-HGO	10-hydroxygeraniol oxidoreductase
Hex	Hexane by Chiang Mai University
HIV-I	Human immunodeficiency virus type I
¹ H NMR	Proton nuclear magnetic resonance
IC ₅₀	The concentration that resulted in 50% inhibition of the activity
IPP	Isopentenyl diphosphate
ISC	Iscador
J	Coupling constant

LDL	Low density lipoprotein
m	Multiplet
Me	Methyl group
MEP	2C-methyl-d-erythritol-4-phosphate
МеОН	Methanol
MHz	Megahertz
mg	Milligram
mL	Milliliter
mm	Millimeter
MPLC	Medium pressure liquid chromatography
MVA	Mevalonate
MECS	2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase
NMR	Nuclear Magnetic Resonance Spectoscopy
OD	Diameter
REMA	Resazurin microplate assay
ROS	Reactive oxygen species
S	Singlet
SDA	Sabouraud dextrose agar
SHK	shikimic acid
SRB	Sulforhodamine B
SSS	strictosidine synthase
SLS	secologanin synthase
t	Triplet
TIAs	terpenoid indole alkaloid biosynthesis parthway
TMS	Tetramethylsilane
TLC	Thin layer chromatography
Trp	Tryptophan
TSB	b-subunit of tryptophan synthase
TDC	tryptophan decarboxylase
μg	Microgram
μL	Microliter
UK	United state of Kingdom

- USA United state of America
- USFDA The United States Food and Drug Administration
- UV Ultraviolet
- δ Chemical shift relative to TMS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved