TABLE OF CONTENTS

	D
Acknowledgement	Page iii
Abstract in English	v
Abstract in thai	vii
List of Tables	xii
List of Figures	xiv
Chapter 1 Introduction	1
1.1 Fuel cell and bipolar plate	1
1.2 Metallic bipolar plate coating	3
Chapter 2 Basic principles	6
2.1 Fuel cell basic	6
2.1.1 Proton exchange membrane fuel cell	7
2.1.2 Fuel cell bipolar plate	12
2.2 Principle of plasma processing	14
ODVMg 2.2.1 Cathodic arc ang Mai Univers	15
2.2.2 Plasma nitriding	16
2.2.3 Magnetron sputtering	18
2.3 Coating characterization and testing	20
2.3.1 Raman spectroscopy	21
2.3.2 Glow discharge optical emission spectroscopy	23
2.3.3 Surface energy and contact angle	26

2.3.4 Corrosion measurement	29
2.3.5 Fuel cell test station	35
Chapter 3 Experimental	40
3.1 Thin film preparation techniques	41
3.1.1 Filtered cathodic vacuum arc (FCVA)	41
3.1.2 Reactive magnetron sputtering	44
3.1.3 Plasma immersion	45
3.2 Interfacial contact resistance (ICR) measurement	49
3.3 Static water contact angle measurement	52
3.4 Corrosion measurement	53
3.5 PEM fuel cell single cell test	54
Chapter 4 Results and discussions	56
4.1 Properties of a-C:Mo film	56
4.1.1 Film resistance	56
4.1.2 Film activation energy	60
4.1.3 Film microstructure	63
4.2 Properties of ZnO:Al, ZnO, Nitride and Carbide	65
4.2.1 Interfacial contact resistance (ICR)	67
4.2.2 Atomic concentration depth profile	74
4.2.3 Static water contact angle	76
4.2.4 Potentiodynamic polarization curve	77
4.2.5 Coated AISI 304 fuel cell bipolar plates	79
4.2.6 Fuel cell polarization curve	82
Chapter 5 Conclusions	85
5.1 a-C:Mo thin film	85
5.2 Fuel cell bipolar plates application	85

References

Х

87

95
96
96
97
103
110
110
111
112
115

117

Curriculum Vitae

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Гable	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Page
2.1	Corrosion rate constants (Gamry instrument, 2009).	34
3.1	Chemical composition of AISI 304 stainless steel (wt%).	44
3.2	Gas flow rate in N ₂ +C ₂ H ₂ plasma immersion.	47
3.3	Gas flow rate, working pressure and treatment time, nitriding by Pinnacle plus power supply.	47
3.4	Gas flow rate, working pressure and treatment time, nitriding by Cober power supply.	48
3.5	Gas flow rate in N ₂ +CH ₄ plasma immersion.	49
4.1	Condition and results of film deposition at different Mo:C pulse ratio with no bias.	58
4.2	Conditions and results of film deposition at $Mo:C = 1:20$ pulse with different bias voltage.	59
4.3	Experimental conditions and results of ZnO:Al thin film.	65
4.4	Experimental conditions and results of ZnO thin film.	66

4.5 Experimental conditions of $N_2+C_2H_2$ plasma immersion.	66
4.6 Experimental conditions of AISI304 plasma nitriding by	
"Pinnacle plus" power supply.	66
4.7 Experimental conditions of AISI304 plasma nitriding by	
Cober power supply.	67
4.8 Experimental conditions of N_2 and CH_4 gases plasma immersion.	67
4.9 Corrosion current and corrosion rate.	79
4.10 Fuel cell resistance with coated bipolar plates (BP).	84

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

I	Figur		Page
	2.1	Cross section of a proton exchange membrane fuel cell (Cooper et al., 2005).	7
	2.2	Representative fuel cell performance curve at 25 °C, 1 atm (Cooper et al., 2005).	10
	2.3	Bipolar plate connects and separates two adjacent cells (Cooper et al., 2005).	13
	2.4	(a) A conventional cathodic arc source. (b) A repetitively "triggerless" cathodic arc source (Anders et al., 1999).	16
	2.5	C and N elements near the surface of the specimen nitrocarburized in the mixture gas of $N_2/H_2 = 4/1$ with 2% CH ₄ addition, at 570 °C, 560 Pa for 5 h (Chang and Chen, 2003).	18
	2.6	Interactions due to ion bombardment (pvd-coatings.co.uk, 2009)	19
	2.7	The principle of the sputtering process (Institute of Physics of the RWTH Aachen University, 2009)	20
	2.8	Principle of Raman acattering (Andor learning, 2009).	22
	2.9	Simplified energy diagram (Andor learning, 2009).	22

2.10 Schematic Raman spectrum (Andor learning, 2009).	23
2.11 Schematic of the glow-discharge lamp and associated process (Long, 2001).	25
2.12 A drop of liquid describe Young's equation (Ramehart, 2009)	28
2.13 Liquid drop of hydrophobic and hydrophilic (Ramehart, 2009).	29
2.14 Corrosion Process Showing Anodic and Cathodic Current Components with Classic Tafel Analysis (Gamry instruments, 2009).	30
2.15 Diagram of the fuel cell control system designed by Michael Rhodes.	37
2.16 A fuel cell polarization curve with three distinct regions (Barbir, 2005).	37
3.1 A schematic diagram of the dual sources pulsed cathodic arc.	42
3.2 Photo of the dual sources cathodic arc plasma deposition experiment setup.	43
3.3 Photo of reactive magnetron sputtering setup.	45
3.4 Nitridation and Carburization experiment setup.	46
3.5 Schematic of the test assembly for interfacial contact resistance.	50
3.6 Schematic of ICR measurements of carbon paper and copper plate.	50
3.7 Schematic of ICR measurements of specimen and carbon paper.	52

xv

3.8	A liquid droplet in contact with a solid surface.	53
3.9	Photo of the corrosion test experiment.	54
3.10	O Schematic of fuel cell test experiment set up (a) and a photo of the single cell test (b).	55
4.1	Film resistance during deposition process of Mo/C pulse was 0.05,	
	with no bias (a) and carbon selective bias at -100 volt (b).	57
4.2	Film resistivity and conductivity after deposition at different Mo:C	
	pulse ratio with no bias.	58
4.3	Film resistivity and conductivity after deposition at $Mo:C = 1:20$	
	pulse with different bias voltage.	59
4.4	Arrhenius plot of the film conductivity at (a) varies Mo/C deposition	
	pulse ratio without bias and (b) under different substrate bias voltage	
	at constant Mo/C deposition pulse ratio of 0.05.	61
4.5	Electrical activation energy and pre-exponential factor of a-C:Mo	
	film deposited at (a) different Mo/C deposition pulse ratios without	
	bias and (b) different carbon selective bias voltage at constant Mo/C	
	deposition pulse ratio of 0.05.	62
4.6	Raman spectra of the film prepared at (a) various Mo/C pulse ratio	
	and (b) various bias voltage.	e ⁶³
4.7	Variation of the Raman intensity ratio, D and G peaks, as a function of	
	(a) various Mo/C deposition pulse ratios without bias and (b) various	
	carbon selective bias voltages at constant Mo/C deposition ratio of 0.05.	64

xvi

4.8 Interfacial contact resistance (ICR) of carbon	paper and copper plate. 68
4.9 Interfacial contact resistance (ICR) of bare AI	SI 304 and copper plate. 68
4.10 Interfacial contact resistance (ICR) of ET10	graphite and carbon paper. 69
4.11 Interfacial contact resistance (ICR) of AISI 3 film and carbon paper.	304 coated with ZnO:Al 69
4.12 Interfacial contact resistance (ICR) of AISI 3 film and carbon paper.	304 coated with ZnO 70
4.13 Interfacial contact resistance (ICR) of C ₂ H ₄ a AISI 304 and carbon paper.	and N ₂ plasma treated 70
4.14 Interfacial contact resistance (ICR) of AISI 3 by Pinnacle plus power supply and carbon pa	304 plasma nitrided aper. 71
4.15 Interfacial contact resistance (ICR) of AISI 3 by Cober power supply and carbon paper.	304 plasma nitrided 71
4.16 Interfacial contact resistance (ICR) of CH_4 a AISI 304 and carbon paper.	nd N ₂ plasma treated
4.17 The best ICR of the specimens relevant to E	T10 graphite 72
4.18 Optical microscopic picture of the most best	treated ICR specimens. 73
4.19 ICR (bars) at the compaction force of 140 N/	/cm ² . 74
4.20 Depth profile of bare AISI 304 analyze by G Emission Spectroscopy (GDOES).	low Discharge Optical 75

4.21	Depth profile of AISI 304 plasma nitrided exp 225 (the same	
	condition as exp135).	75
4.22	Depth profile of AISI 304 plasma nitrided exp 224 (the same	
	condition as exp 162).	76
4.23	Static water contact angle of different treated surface.	77
4.24	Polarization curve of the coated surface.	79
4.25	Photo of ZnO:Al coating bipolar plate (a) and ZnO coating	
	bipolar plate (b) by reactive magnetron sputtering.	80
4.26	Photo of plasma nitriding bipolar plate (a) and plasma	
	nitrocarburizing bipolar plate (b).	80
4.27	Photo of ET10 graphite bipolar plate.	80
4.28	Temperature during bipolar plate treatment of plasma nitriding (a)	
	and plasma nitrocarburizing (b).	81
4.29	Current-voltage and current-power density performance of PEMFC	
	with ZnO and ZnO:Al coated SS304 bipolar plates comparison with	
	ET-10 graphite and bare SS304 bipolar plates.	82
4.30	Current-voltage and current-power density performance of PEMFC	
	with treated SS304 bipolar plates comparison with ET-10 graphite	
	and bare SS304 bipolar plates.	83

xviii