CHAPTER 2
PRELIMINARIES

In this chapter, we give some basic definitions, notations, lemmas and
results which will be used in the later chapters. For more details of such lemmas

and definition see [1] and [9].

2.1 Notations

The following are notations of a few important convex cones which we use in this
thesis.

N — the set of all non-negative integer numbers,

R — the set of all real numbers,

R™ — the n dimensional Euclidean space,

R? — the set of all n x n positive real matrices,

R™ ™ — the set of all n x n real matrices,

diag(-)— the (block) diagonal matrix,

Diag(-)— the vector defined by the diagonal elements,

tr X — the trace of square matrix X, defined as the sum of its diagonal elements,
< X,Y > — the inner product: < XY >=tr(XTY),

GeH=1tr(G'H),

x o x — the Hadamard product: xox = [z3 , 23 , 23, ..., 22]7,
where x = [21 , 2o, 23, ..., 7|7 and x; € R,
k n!

— the binomial coefficient, =
n n

min - minimize,

max - maximize,

P - the primal problem,

D - the dual problem,

LP - the linear programming,

SDP - the semidefinite programming.



2.2 Inner Product

Definition 2.2.1. Let V' be a vector space over the field F', then (-,-) : VXV — F
1s called inner product on V' if for all u,v,w € V and k € R satisfies four basic
properties:

1.

{
2. (
3. (u+v,w) = (u, w) + (v, w)
4

2.3 Types of Matrix

AT — the transpose of matrix A,
S, — the n x n symmetric matrices,
S — the n x n symmetric positive semidefinite matrices,
St={XeS,y'Xy>0,6VyecR"}
C, — the n x n symmetric copositive matrices,
C,={X €5,y Xy >0,Vy e R} },
C» — the n x n symmetric completely positive matrices,
Cr={e=Y" vyl v, €R}, (i=12,..k)},
N,, — the n x n symmetrical nonnegative matrices,
N,={X € 5,,X;; >0, (i,j=1,2,...,n)},
D,, — the n x n symmetric doubly nonnegative matrices: D,, = S;* N N,,,
X > 0 — means that X is a symmetric completely positive matrices,
X =0 — means that X is a symmetric positive definite matrices,

X =Y — means that X —Y >0,

Definition 2.3.1. (Trace) The sum of its diagonal elements A = [aij],,n defined as
tr(A) =ay +ag + -+ apy.

Definition 2.3.2. (Symmetric Matriz) A real n X n matriz A is called symmetric if

AT = A



which is a vector space with dimension n(n + 1)/2.

Definition 2.3.3. (Ortonormal matriz) A real n x n matriz A is called ortonormal

matrix if

A= AT,

Remark 2.3.4. S? = {X € S"|X = 0} is a closed convex cone in R of dimension

nx (n+1)/2.
Recall the following properties of symmetric matrices:

Lemma 2.3.5. A symmetric matriz is positive semidefinite (definite) matriz if all

of its eigenvalues are nonnegative (positive)

Lemma 2.3.6. A symmetric matrix is negative semidefinite (definite) matriz if all

of its eigenvalues are nonpositive (negative).

Lemma 2.3.7. If X € S", then X = QDQ" for some orthonormal matriz QQ and

some diagonal matrix D.

Lemma 2.3.8. If X = QDQ" as above, then the columns of QQ form a set of n
orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal

entries of D.

Lemma 2.3.9. X = 0 if and only if X = QDQT where the eigenvalues (i.e., the

diagonal entries of D) are all nonnegative.

Lemma 2.3.10. X > 0 if and only if X = QDQT where the eigenvalues (i.e., the

diagonal entries of D) are all positive.

Lemma 2.3.11. If X = 0 and of X;; =0, then X;; = X;; =0 forall j=1,...,n.

2.4 Linear Programming Problem: LP

Linear programming problem is an optimization problem(maximizing or minimiz-

ing) of a linear function subject to linear constraints. The constraints may be



equalities or inequalities.

Consider the linear programming problem in standard form:
min Z i, (objective function)
j=1

n
subject to the constraint Z a;jr; = b;
j=1

;>0 ,i=1,...,m and j=1,..,n

LP can be written as the matrix form:

min ¢’z (objective function)

subject to the constraint Ax =b

x>0

where
e 1 € R” is the design vector,
e y € R™ is the design vector,
e ¢ R"is a given vector of coefficients of the objective function ¢!z,

e Ais a given m X n constraint matrix,

e b R™is a given right-hand side of the constraints.

Definition 2.4.1. If x satisfies Az = b,z > 0, then x is called a feasible solution .

And the set of all feasible solution is called a feasible set.

Definition 2.4.2. (LP) is called feasible if its feasible set F' = {x|Ax — b > 0}
is monempty set such that a point x € F is called a feasible solution to (LP).
(Conversely, (LP) is called infeasible.)

Definition 2.4.3. (LP) is called bounded below if its objective ¢ x is bounded below
on F and unbounded below if for all X\ € R there exists x* such that cTx* < \.

Definition 2.4.4. (LP) is called solvable if it is feasible and bounded below and the
optimal value is attained,i.c., there exists x € F with c'x = 2*. An x of this type

is called an optimal solution to (LP).



Equivalent form
A minimum problem can be changed to a maximum problem by multiplying the
objective function by —1

min c¢'z<  max—clr.

Similarly, constraints of the form

n

n
Zaijmj = bz = Zaijxj 2 bz
Jj=1

i=1

can be changed into the form

Duality
For every linear programming problem, there is a dual linear programming
problem with which it is intimately connected. We call the first problem that
primal problem (P) and second problem that dual problem (D).
(P) min 'z
Axr =0,
z >0

(D) max by
ATy+s=c,
s>0
where
e 1 € R" is the design vector,
e y € R™ is the design vector,
e ¢ € R"is a given vector of coefficients of the objective function ¢’ x,

e Ais a given m X n constraint matrix,

e b R™is a given right-hand side of the constraints.

Note. The inequalities constraints can be written as the equalities constraints by

adding slack variable (s) such that

alr<b & alz+s,=b ;s >0.



Theorem 2.4.1. (Duality gap) The value of the dual objective at every dual feasible
solution y is less or equal to the value of the primal objective at every primal feasible

solution x, so that the duality gap

e —bly

is non-negative at every primal-dual feasible pair (z,vy).

Theorem 2.4.2. (Weak duality) Given a feasible solution x and (y,s) of (LP), the
duality gap is 'z — 0Ty = sx > 0. If 'z — 0Ty = 0, then x and (y,s) are each

optimal solutions to (LP), and furthermore sz = 0.

Theorem 2.4.3. (Strong duality) Let z} and z}, denote the optimal objective func-
tion values of (LP). Suppose that there ezists a feasible solution T such that T > 0,

and (Y, s) such that s > 0. Then (LP) attains optimal solutions, and

2.5 Semidefinite Programming Problem: SDP

Consider a class of well know optimization problems known as semidefinite

programming problem and its dual

(P) min C e X
s.t. Ai.X:bi, i:1,2,...,m
X =0
(D) min by

s.t. in:yZAl + Z = C
i=1

Z%0

where C € S,,, A; € Spyi=1,2,....m, b= (by,bs,...,b,,)T € R™ and
X €S (y,Z) € R™ x S is primal and dual feasible solution respectively.
Note. S, refer to symmetric matrices n x n.

S+ refer to symmetric positive definite matrices n x n.



X = 0 refer to X is a symmetric positive definite matrices.

X > 0 refer to X is a symmetric completely positive matrices.
X=YrefertoX—-Y =0
GeH=1tr(G"H)

If X satisfied constraint condition A; ¢ X =b; and (y,Z) satisfied

constraint condition Z y;Ai+Z = C wherei =1,2,...,m then wesay X and (y, Z)
i=1
are feasible solutions.
The following theorem states that weak duality must hold for the primal and

dual of (SDP):

Theorem 2.5.1. (Duality gap) The value of the dual objective at every dual feasible
solution y is less or equal to the value of the primal objective at every primal feasible

solution X, so that the duality gap
CeX —0bly
is non-negative at every primal-dual feasible pair (X,y).

Theorem 2.5.2. (Weak duality) Given a feasible solution X and (y, Z) of (SDP),
the duality gap is Ce X —bTy=ZeX > 0. IfCeX —bly =0, then X and (y, Z)
are each optimal solutions to (SDP), and furthermore ZX = 0.

Theorem 2.5.3. (Strong duality) Let z} and z3, denote the optimal objective func-
tion values of (SDP). Suppose that there exists a feasible solution X such that
X =0, and (3§, Z) such that Z = 0. Then (SDP) attains optimal solutions, and

* *

2.6 Conic Programming: CP

Let K be a cone in R™ (convex, pointed, closed, and with nonempty interior).
Given an objective ¢ € R™, an m X n constraint matrix A, and a right-hand side
b € R™, consider the optimization problem

min 'z
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Note. Az — b >k 0 means that Az — b € K.

The set K must be a pointed convex cone, i.e., it must satisfy the following condi-
tions:

1. K is nonempty and closed under addition:
a,a/ e K=a+d €K
2. K is a conic set:
acKAX>0= X e K

3. K is pointed:

acK —acK=a=0

Note. 1. Nonstrict inequality
a>>kb<—=a—-b>k0<—=a—-beK
2. Strict inequality
a>k b= a—-b>k 0 <= a—bcintK

where intK is the interior of cone K.

Conic duality theorem

Consider a conic problem

¢* = min{c"z| Az >x b} (CP)
along with its conic dual

b* = max{b'y|A"y = c,y >k, 0}. (D)

where ¢ € R, y € K*, A is m x n matrix, K is a cone in R™, and K* is a dual
cone which satisfy the following conditions:

Let K C R™ and K be a nonempty set,
i. Aset K" ={yeR™:y"a>0,Va € K} is a closed convex cone.
ii. If int K is a nonempty set, then K* is pointed.

iii. If a set K is a closed convex pointed cone, then int K is a nonempty set.
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iv. If a set K is closed convex cone, then K* is a closed convex cone and the

dual cone of K* is K ((K*)* = K).

Note. 1. The duality is symmetric: the dual problem is conic, and the problem
dual to dual is (equivalent to) the primal.

2. The value of the dual objective at every dual feasible solution y is <
the value of the primal objective at every primal feasible solution z, so that the
duality gap

e —bly

is nonnegative at every primal-dual feasible pair (z,y).

3.1. If the primal(CP) is bounded below and strictly feasible (i.e., Az >k b
for some z), then the dual(D) is solvable and the optimal values in the problem
are equal to each other: ¢* = b*.

3.2. If the dual(D) is bounded above and strictly feasible (i.e., y >x, 0
such that ATy = ¢), then the primal(CP) is solvable and ¢* = b*.

4. Assume that at least one of the problems (CP), (D) is bounded and
strictly feasible. Then a primal-dual feasible pair (z,y) is a pair of optimal solutions
to the respective problems

4.1. if and only if
Wly =z

4.2. if and only if
yT[Az —b] = 0.

We shall refer to conic programming (CP) as a conic problem associated with
the cone K. In the case K = R™, the conic problem remains to the linear program-

ming (LP) and if K = S, it remains to the semidefinite programming (SDP).



