
CHAPTER 2

PRELIMINARIES

In this chapter, we give some basic definitions, notations, lemmas and

results which will be used in the later chapters. For more details of such lemmas

and definition see [1] and [9].

2.1 Notations

The following are notations of a few important convex cones which we use in this

thesis.

N − the set of all non-negative integer numbers,

R − the set of all real numbers,

R
n − the n dimensional Euclidean space,

R
n
+ − the set of all n × n positive real matrices,

R
n×n − the set of all n × n real matrices,

diag(·)− the (block) diagonal matrix,

Diag(·)− the vector defined by the diagonal elements,

trX− the trace of square matrix X, defined as the sum of its diagonal elements,

< X, Y > − the inner product: < X, Y >= tr(XT Y ),

G • H = tr(GT H),

x ◦ x − the Hadamard product: x ◦ x = [x2
1 , x2

2 , x2
3 , ... , x2

n]T ,

where x = [x1 , x2 , x3 , ... , xn]T and xi ∈ R,
 k

n


− the binomial coefficient,


 k

n


 .

=
n!

(n − k)!k!
,

min - minimize,

max - maximize,

P - the primal problem,

D - the dual problem,

LP - the linear programming,

SDP - the semidefinite programming.
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2.2 Inner Product

Definition 2.2.1. Let V be a vector space over the field F , then 〈·, ·〉 : V ×V −→ F

is called inner product on V if for all u, v, w ∈ V and k ∈ R satisfies four basic

properties:

1. 〈v, v〉 � 0 and 〈v, v〉 = 0 if and only if v = 0

2. 〈u, v〉 = 〈v, u〉
3. 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉
4. 〈ku, v〉 = k〈u, v〉.

2.3 Types of Matrix

AT − the transpose of matrix A,

Sn − the n × n symmetric matrices,

S+
n − the n × n symmetric positive semidefinite matrices,

S+
n = {X ∈ Sn, y

T Xy ≥ 0 , ∀y ∈ R
n},

Cn − the n × n symmetric copositive matrices,

Cn = {X ∈ Sn, y
T Xy ≥ 0 ,∀y ∈ R

n
+},

C∗
n − the n × n symmetric completely positive matrices,

C∗
n = {x =

∑k
i=1 yiy

T
i , yi ∈ R

n
+, (i = 1, 2, ..., k)},

Nn − the n × n symmetrical nonnegative matrices,

Nn = {X ∈ Sn, Xij ≥ 0, (i, j = 1, 2, ..., n)},
Dn − the n × n symmetric doubly nonnegative matrices: Dn = S+

n ∩ Nn,

X 	 0 − means that X is a symmetric completely positive matrices,

X � 0 − means that X is a symmetric positive definite matrices,

X � Y − means that X − Y � 0,

Definition 2.3.1. (Trace) The sum of its diagonal elements A = [aij]n,n defined as

tr(A) = a11 + a22 + · · · + ann.

Definition 2.3.2. (Symmetric Matrix) A real n×n matrix A is called symmetric if

AT = A
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which is a vector space with dimension n(n + 1)/2.

Definition 2.3.3. (Ortonormal matrix) A real n× n matrix A is called ortonormal

matrix if

A−1 = AT .

Remark 2.3.4. Sn
+ = {X ∈ Sn|X � 0} is a closed convex cone in R

n2
of dimension

n × (n + 1)/2.

Recall the following properties of symmetric matrices:

Lemma 2.3.5. A symmetric matrix is positive semidefinite (definite) matrix if all

of its eigenvalues are nonnegative (positive)

Lemma 2.3.6. A symmetric matrix is negative semidefinite (definite) matrix if all

of its eigenvalues are nonpositive (negative).

Lemma 2.3.7. If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and

some diagonal matrix D.

Lemma 2.3.8. If X = QDQT as above, then the columns of Q form a set of n

orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal

entries of D.

Lemma 2.3.9. X � 0 if and only if X = QDQT where the eigenvalues (i.e., the

diagonal entries of D) are all nonnegative.

Lemma 2.3.10. X 	 0 if and only if X = QDQT where the eigenvalues (i.e., the

diagonal entries of D) are all positive.

Lemma 2.3.11. If X � 0 and if Xii = 0, then Xij = Xji = 0 for all j = 1, ..., n.

2.4 Linear Programming Problem: LP

Linear programming problem is an optimization problem(maximizing or minimiz-

ing) of a linear function subject to linear constraints. The constraints may be
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equalities or inequalities.

Consider the linear programming problem in standard form:

min
n∑

j=1

cjxj (objective function)

subject to the constraint
n∑

j=1

aijxj = bi

xj ≥ 0 , i = 1, ..., m and j = 1, ..., n

LP can be written as the matrix form:

min cT x (objective function)

subject to the constraint Ax = b

x ≥ 0

where

• x ∈ R
n is the design vector,

• y ∈ R
m is the design vector,

• c ∈ R
n is a given vector of coefficients of the objective function cT x,

• A is a given m × n constraint matrix,

• b ∈ R
m is a given right-hand side of the constraints.

Definition 2.4.1. If x satisfies Ax = b, x ≥ 0, then x is called a feasible solution .

And the set of all feasible solution is called a feasible set.

Definition 2.4.2. (LP) is called feasible if its feasible set F = {x|Ax − b ≥ 0}
is nonempty set such that a point x ∈ F is called a feasible solution to (LP).

(Conversely, (LP) is called infeasible.)

Definition 2.4.3. (LP) is called bounded below if its objective cT x is bounded below

on F and unbounded below if for all λ ∈ R there exists x∗ such that cT x∗ ≤ λ.

Definition 2.4.4. (LP) is called solvable if it is feasible and bounded below and the

optimal value is attained,i.e., there exists x ∈ F with cT x = z∗. An x of this type

is called an optimal solution to (LP).
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Equivalent form

A minimum problem can be changed to a maximum problem by multiplying the

objective function by −1

min cT x ⇔ max−cT x.

Similarly, constraints of the form
n∑

j=1

aijxj = bi ⇔
n∑

j=1

aijxj � bi

can be changed into the form
n∑

j=1

(−aij)xj � −bi.

Duality

For every linear programming problem, there is a dual linear programming

problem with which it is intimately connected. We call the first problem that

primal problem (P ) and second problem that dual problem (D).

(P ) min cT x

Ax = b,

x ≥ 0

(D) max bT y

AT y + s = c,

s ≥ 0

where

• x ∈ R
n is the design vector,

• y ∈ R
m is the design vector,

• c ∈ R
n is a given vector of coefficients of the objective function cT x,

• A is a given m × n constraint matrix,

• b ∈ R
m is a given right-hand side of the constraints.

Note. The inequalities constraints can be written as the equalities constraints by

adding slack variable (s) such that

aT
i x ≤ b ⇔ aT

i x + si = bi , si ≥ 0.
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Theorem 2.4.1. (Duality gap) The value of the dual objective at every dual feasible

solution y is less or equal to the value of the primal objective at every primal feasible

solution x, so that the duality gap

cT x − bT y

is non-negative at every primal-dual feasible pair (x, y).

Theorem 2.4.2. (Weak duality) Given a feasible solution x and (y, s) of (LP), the

duality gap is cT x − bT y = sx ≥ 0. If cT x − bT y = 0, then x and (y, s) are each

optimal solutions to (LP), and furthermore sx = 0.

Theorem 2.4.3. (Strong duality) Let z∗P and z∗D denote the optimal objective func-

tion values of (LP). Suppose that there exists a feasible solution x̂ such that x̂ > 0,

and (ŷ, ŝ) such that ŝ > 0. Then (LP) attains optimal solutions, and

z∗P = z∗D.

2.5 Semidefinite Programming Problem: SDP

Consider a class of well know optimization problems known as semidefinite

programming problem and its dual

(P ) min C • X

s.t. Ai • X = bi, i = 1, 2, ..., m

X � 0

(D) min bT y

s.t.

m∑
i=1

yiAi + Z = C

Z � 0

where C ∈ Sn, Ai ∈ Sn, i = 1, 2, . . . , m, b = (b1, b2, . . . , bm)T ∈ Rm and

X ∈ S+
n , (y, Z) ∈ Rm × S+

n is primal and dual feasible solution respectively.

Note. Sn refer to symmetric matrices n × n.

S+
n refer to symmetric positive definite matrices n × n.
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X � 0 refer to X is a symmetric positive definite matrices.

X 	 0 refer to X is a symmetric completely positive matrices.

X � Y refer to X − Y � 0

G • H = tr(GT H)

If X satisfied constraint condition Ai • X = bi and (y, Z) satisfied

constraint condition
m∑

i=1

yiAi+Z = C where i = 1, 2, ..., m then we say X and (y, Z)

are feasible solutions.

The following theorem states that weak duality must hold for the primal and

dual of (SDP):

Theorem 2.5.1. (Duality gap) The value of the dual objective at every dual feasible

solution y is less or equal to the value of the primal objective at every primal feasible

solution X, so that the duality gap

C • X − bT y

is non-negative at every primal-dual feasible pair (X, y).

Theorem 2.5.2. (Weak duality) Given a feasible solution X and (y, Z) of (SDP),

the duality gap is C •X − bT y = Z •X ≥ 0. If C •X − bT y = 0, then X and (y, Z)

are each optimal solutions to (SDP), and furthermore ZX = 0.

Theorem 2.5.3. (Strong duality) Let z∗P and z∗D denote the optimal objective func-

tion values of (SDP). Suppose that there exists a feasible solution X̂ such that

X̂ 	 0, and (ŷ, Ẑ) such that Ẑ 	 0. Then (SDP) attains optimal solutions, and

z∗P = z∗D.

2.6 Conic Programming: CP

Let K be a cone in R
m (convex, pointed, closed, and with nonempty interior).

Given an objective c ∈ R
n, an m × n constraint matrix A, and a right-hand side

b ∈ R
m, consider the optimization problem

min cT x

Ax − b ≥K 0.
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Note. Ax − b ≥K 0 means that Ax − b ∈ K.

The set K must be a pointed convex cone, i.e., it must satisfy the following condi-

tions:

1. K is nonempty and closed under addition:

a, a′ ∈ K ⇒ a + a′ ∈ K

2. K is a conic set:

a ∈ K, λ ≥ 0 ⇒ λa ∈ K

3. K is pointed:

a ∈ K,−a ∈ K ⇒ a = 0

Note. 1. Nonstrict inequality

a ≥K b ⇐⇒ a − b ≥K 0 ⇐⇒ a − b ∈ K

2. Strict inequality

a >K b ⇐⇒ a − b >K 0 ⇐⇒ a − b ∈ intK

where intK is the interior of cone K.

Conic duality theorem

Consider a conic problem

c∗ = min{cT x|Ax ≥K b} (CP )

along with its conic dual

b∗ = max{bT y|AT y = c, y ≥K∗ 0}. (D)

where c ∈ R
n, y ∈ K∗, A is m × n matrix, K is a cone in R

m, and K∗ is a dual

cone which satisfy the following conditions:

Let K ⊂ R
m and K be a nonempty set,

i. A set K∗ = {y ∈ R
m : yT a ≥ 0, ∀a ∈ K} is a closed convex cone.

ii. If int K is a nonempty set, then K∗ is pointed.

iii. If a set K is a closed convex pointed cone, then int K is a nonempty set.
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iv. If a set K is closed convex cone, then K∗ is a closed convex cone and the

dual cone of K∗ is K ((K∗)∗ = K).

Note. 1. The duality is symmetric: the dual problem is conic, and the problem

dual to dual is (equivalent to) the primal.

2. The value of the dual objective at every dual feasible solution y is ≤
the value of the primal objective at every primal feasible solution x, so that the

duality gap

cT x − bT y

is nonnegative at every primal-dual feasible pair (x, y).

3.1. If the primal(CP) is bounded below and strictly feasible (i.e., Ax >K b

for some x), then the dual(D) is solvable and the optimal values in the problem

are equal to each other: c∗ = b∗.

3.2. If the dual(D) is bounded above and strictly feasible (i.e., y >K∗ 0

such that AT y = c), then the primal(CP) is solvable and c∗ = b∗.

4. Assume that at least one of the problems (CP), (D) is bounded and

strictly feasible. Then a primal-dual feasible pair (x, y) is a pair of optimal solutions

to the respective problems

4.1. if and only if

bT y = cT x

4.2. if and only if

yT [Ax − b] = 0.

We shall refer to conic programming (CP) as a conic problem associated with

the cone K. In the case K = R
m, the conic problem remains to the linear program-

ming (LP) and if K = Sn, it remains to the semidefinite programming (SDP).


