
CHAPTER 3

FIRST DEGREE APPROXIMATION

In this chapter, we will present some results in the approximation of the cone

of copositive matrices theory, we divided into 2 sections. In section 3.1, we shall

establish some theory of the sum of squares decompositions. In section 3.2, we will

present a system of linear matrix inequalities LMI’s in case r = 1 for approximat-

ing the copositive programming. For detail of the prove see [3].

Since any y ∈ R
n
+ can be written as y = x ◦ x for some x ∈ R

n, we can

represent the copositivity requirement for an n × n symmetric matrix M as

P (x) := (x ◦ x)T M(x ◦ x) =
n∑

i,j=1

Mijx
2
i x

2
j ≥ 0 for all x ∈ R

n. (3.1)

We can represent the polynomial P as a homogeneous polynomial of degree four,

where the coefficients of (xixj)(xkxl) are nonzero for i �= j �= k �= l.

P (x) = x̃T M̃ x̃ (3.2)

where x̃ = [x2
1, ..., x

2
n, x1x2, x1x3, ..., xn−1xn]T and M̃ is a symmetric matrix of order

n + 1
2
n(n − 1), then M̃ is not uniquely determined. The non-uniqueness follows

from the identities:

(xixj)
2 = (xi)

2(xj)
2

(xixj)(xixk) = (xi)
2(xjxk)

(xixj)(xkxl) = (xixk)(xjxl) = (xixl)(xjxk).

3.1 Sum of Squares Decompositions : S.O.S

Polynomial P (x) is called the sum of squares decompositions (S.O.S) if and

only if P (x) =
∑n

i=1 fi(x)2 for some polynomial functions fi(x), i = 1, ..., n.

Note. For any x ∈ R
n and any multi-index m ∈ N

n
0 (where N0 = {0, 1, 2, ...})we

define |m| =
∑

i mi and xm =
∏

i x
mi
i the corresponding monomial of degree |m|.
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And In(s) = {m ∈ N
n
0 : |m| = s} refers to the set of all possible exponents of

monomials of degree s (there are d =


 n + s − 1

s


) and 2In(s) = {2m : m ∈

In(s)}. Finally, given a set of multi-indices I and a vector x ∈ R
n, we define

[xm]m∈I as the vector with components xm =
∏

i

xmi
i for each m ∈ I.

Lemma 3.1.1. If P (x) is a homogeneous polynomial of degree 2s in n variables

x = [x1, ..., xn]T , which has a representation

P (x) =
l∑

i=1

fi(x)2

for some polynomials fi(x)(i = 1, ..., n) ,then there are polynomials hi(x) which are

homogeneous of degree s for all i such that P (x) =
∑t

i=1 hi(x)2 with 1 � t � l.

Further, P has a s.o.s representation as above if and only if there is a symmetric

positive-semidefinite matrix d × d matrix M̃ ∈ S+
d such that

P (x) = x̃T M̃ x̃

where d =


 n + s − 1

s


 and x̃ = [xk]k∈In(s) ∈ R

d.

Lemma 3.1.2. Let P (x) =
∑

m∈In(s) Amx2m be a homogeneous polynomial of degree

2s in n variables x = [x1, ..., xn]T and define M̃ ∈ Sd and x̃ ∈ R
d as in Lemma

(3.1.1). Then P (x) = x̃T M̃ x̃ if and only if

∑
(j,k)∈[In(s)]2:j+k=2m

M̃j,k = Am forall m ∈ In(s) (3.3)

∑
(j,k)∈[In(s)]2:j+k=n

M̃j,k = 0 forall n ∈ In(2s)\2In(s). (3.4)

We define the cone K0
n := S+

n + Nn = D∗
n, the cone dual dual to that of all doubly

nonnegative matrices.

Theorem 3.1.1. (Parrilo [8]). P (x) = (x ◦ x)T M(x ◦ x) allows for a polynomial

s.o.s if and only if M ∈ K0
n , i.e., if and only if M = S + T for matrices S ∈ S+

n

and T ∈ Nn.
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Higher order sufficient conditions can be derived by the polynomial:

P (r)(x) = P (x)(
n∑

k=1

x2
k)

r =
n∑

i,j=1

Mijx
2
i x

2
j(

n∑
k=1

x2
k)

r (3.5)

and we can consider P (r)(x) has a sum of squares decomposition (S.O.S) from

Lemma (3.1.1).

Definition 3.1.1. (De Klerk and Pasechnik [5]). The convex cone Kr
n consists of

the matrices for which P (r)(x) in (3.5) allows a polynomial sum of squares decom-

position.

Obviously, these cones are contained in each other: Kr
n ⊆ Kr+1

n for all r. This

follows from

P (r+1)(x) =
∑

k

x2
kP

(r)(x) =
∑
i,k

[fi(x)xk]
2.

By explicitly calculating the coefficients Am(M) of the homogeneous polynomial

P (r)(x) of degree 2(r + 2) and summarizing the above auxiliary results, we arrive

at a characterization of Kr
n which has not appeared in the literature before.

Theorem 3.1.2. (Bomze [3]). Let n, r ∈ N , d =


 n + r + 1

r + 2


 , m(i, j) =

m − ei − ej for any m ∈ R
n and introduce the multinomial coefficients

c(m) = |m|!/
∏

i

(mi)! if m ∈ N
n
0 ,

c(m) = 0 if m ∈ R
n \ N

n
0 .

(3.6)

For a symmetric matrix M ∈ Sn, define

Am(M) =
∑
i,j

c(m(i, j))Mij. (3.7)

Then M ∈ Kr
n if and only if there is a symmetric positive-semidefinite d × d

M̃ ∈ S+
d such that

∑
(j,k)∈[In(r+2)]2:j+k=2m

M̃j,k = Am(M) for all m ∈ In(r + 2)

∑
(j,k)∈[In(r+2)]2:j+k=n

M̃j,k = 0 for all n ∈ In(2r + 4) \ 2In(r + 2)

(3.8)
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Lemma 3.1.3. (Bomze [3]). Let M be an arbitrary n × n matrix and denote by

diagM (i) = [Mii]i ∈ R
n the vector obtained by extracting the diagonal elements of

M . If Am(M) is defined as in (3.7), then

Am(M) =
c(m)

s(s − 1)
[mT Mm − mT diagM ] for all m ∈ In(s), s ∈ N. (3.9)

For M = En, we have, from mT Enm = (eT m)2 = |m|2, thus

Am(En) =
c(m)

s(s − 1)
[s2 − s] = c(m) for all m ∈ In(s), s ∈ N. (3.10)

Parrilo [8] showed that M ∈ K1
n if the following system of linear matrix inequalities

has a solution

M − M (i) ∈ S+
n , i = 1, ..., n,

M
(i)
ii = 0 , i = 1, ..., n,

M
(j)
ii + 2M

(i)
ij = 0 , i �= j,

M
(i)
jk + M

(j)
ik + M

(k)
ij ≥ 0 , i < j < k

where M (i) ∈ Sn for i = 1, ..., n.

3.2 First Degree Approximation of the Cone of Copos-

itive Matrices

In this section, we present system of linear matrix inequalities in case r = 1

for approximating the copositive programming.

Theorem 3.2.1. M ∈ K1
n if and only if there are n symmetric n × n matrices

M (i) ∈ Sn for i = 1, ..., n such that the system of LMI’s is satisfied.

M − M (i) ∈ S+
n , i = 1, ..., n,

M
(i)
ii = 0 , i = 1, ..., n,

M
(j)
ii + 2M

(i)
ij = 0 , i �= j,

M
(i)
jk + M

(j)
ik + M

(k)
ij ≥ 0 , i < j < k

(3.11)

where M (i) ∈ Sn for i = 1, ..., n.
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Proof. First assume that M ∈ K1
n. By Theorem 3.1.2 there exists a M̃ ∈ S+

d

satisfying 3.8 such that

P (1)(x) =
n∑

i,j=1

Mijx
2
i x

2
j

( n∑
k=1

x2
k

)
= x̃T M̃x̃

where x̃ = [xk]k∈In(3) ∈ R
d and d =


 n + 2

3


 .

By(3.9) , we have Aiii(M) = Mii while Aiij(M) = 2Mij + Mii and Aijk(M) =

2(Mij + Mik + Mjk) if 1 � i < k � n. Similarly, the left-hand side of (3.8) read in

case n = 2m,

M̃iii,iii , if n = 6ei

M̃iij,iij + 2M̃iii,ijj , if n = 4ei + 2ej

M̃ijk,ijk + 2(M̃iij,jkk + M̃iik,jjk + M̃ijj,ikk) , if n = 2(ei + ej + ek), i < j < k

Now put S
(i)
jk = M̃ijj,ikk for all triples (ijk). Then S(i) ∈ S+

n since it is a principal

submatrix of the positive-semidefinite matrix M̃ . Hence setting M (i) = M − S(i)

we see that the first condition of 3.11 is satisfied. It remains to show that 3.11

hold. Now

M
(i)
ii = Mii − S

(i)
ii

= Aiii(M) − M̃iii,iii

= M̃iii,iii − M̃iii,iii

� 0

and similarly

M
(j)
ii + 2M

(i)
ij = Mii + 2Mij − S

(j)
ii − 2S

(i)
ij

= Aiij(M) − M̃iij,iij − 2M̃iii,ijj

= M̃iij,iij + 2M̃iii,ijj − M̃iij,iij − 2M̃iii,ijj

= 0,

whereas
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M
(i)
jk + M

(j)
ik + M

(k)
ij = Mij + Mik + Mjk − S

(i)
jk − S

(j)
ik − S

(k)
ij

= 1
2
Aijk(M) − M̃ijj,ikk − M̃iij,jkk − M̃iik,jjk

= M̃iij,iij + M̃iii,ijj − M̃iij,iij − M̃iii,ijj

= 1
2
M̃ijk,ijk

� 0,

because the diagonal entries of M̃ cannot be negative. Thus we have con-

structed a solution to the system of LMI’s 3.11.

Conversely, assume that a solution to 3.11 is given. Observe that

P (1)(x) =
n∑

i=1

x2
i (x ◦ x)T M(x ◦ x)

=
n∑

i=1

x2
i (x ◦ x)T (M − M (i))(x ◦ x) +

n∑
i=1

x2
i (x ◦ x)T (M (i))(x ◦ x).

The first sum is obviously a s.o.s., since M −M (i) ∈ S+
n for every i. The second

sum can likewise be written as a s.o.s. because of
n∑

i=1

x2
i

(
x ◦ x)T M (i)(x ◦ x)

=
∑
i,j,k

M
(i)
jk x2

i x
2
jx

2
k

=
∑

i

M
(i)
ii x6

i +
∑
i�=j

(M
(j)
ii + 2M

(i)
ij )x4

i x
2
j

+
∑

i<j<k

(2M
(i)
jk + 2M

(j)
ik + 2M

(k)
ij )x2

i x
2
jx

2
k

=
∑

i

(

√
M

(i)
ii x3

i )
2 +

∑
i�=j

(

√
M

(j)
ii + 2M

(i)
ij x2

i xj)
2

+
∑

i<j<k

(

√
2(M

(i)
jk + M

(j)
ik + M

(k)
ij )xixjxk)

2,

where we have used the non-negativity of the last condition of 3.11 to obtain the

last equality. Note that the first two sums of the last expression vanish due to the

second and the third condition of 3.11. Thus P (1)(x) is represented as a s.o.s.

We can change the SDP approximations of the copositive cone to arrive at a

series of LP approximations of copositive cone. These approximation are weaker

than the SDP, but can be solved more easily.
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Note. If the polynomial P (r)(x) has only nonnegative coefficient, then it is already

allows a sum of squares decomposition.

Definition 3.2.1. (De Klerk and Pasechnik [5]) The convex cone Cr
n consists of the

matrices for which P (r)(x) in (3.5) has no nonnegative coefficient. Hence for any

r, we have Cr
n ⊆ Kr

n.

Obviously, these cones are contained in each other: Cr
n ⊆ Cr+1

n for all r.

Theorem 3.2.2. For any m ∈ R
n, define Diagm as the n × n diagonal matrix

containing m as its diagonal, i.e., satisfying diag(Diagm) = m. Then for all

R ∈ N0 and n ∈ N,

Cr
n = {M ∈ Sn : mT Mm − mT diagnalM ≥ 0 for all m ∈ In(r + 2)}

= {M ∈ Sn : 〈mmT − Diagm,M〉 ≥ 0 for all m ∈ In(r + 2)}.

We can also establish an alternative characterization of Cr
n similar to Theorem

3.2.1

Theorem 3.2.3. M ∈ C1
n if and only if there are n symmetric n × n matrices

M (i) ∈ Sn for i = 1, ..., n such that the following system of linear inequalities has

a solution:

M − M (i) ∈ Nn , i = 1, ..., n,

M
(i)
ii = 0 , i = 1, ..., n,

M
(j)
ii + 2M

(i)
ij = 0 , i �= j,

M
(i)
jk + M

(j)
ik + M

(k)
ij ≥ 0 , i < j < k.


