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In this work, the dynamic fermeleciric hysteresis properties in response to dynamic
electric field of BaliO; bulk ceramics was investigated using the harmonic analysis
approach. Fourier transformation was used to analyze the periodic polarization signal
on frequency domain via each discrete harmonic. From the results, the hysteresis area
is found to depend only on the first harmonic of the real part. On the other hand,
the remnant polarization depends on all odd harmonics of the real part. Furiher. the
coercive field can be found from the phase-lag between the inverse Fourier signals
re-calculated from the first harmonic of the real part and that of the imaginary part. The
hysteresis properiies from the harmonic analysis match well with those of the original
measurement. This suggests that the harmeonic analvsis is one of the powerful technigues
which can be used to predict hysieresis behavior.

Keywords

1. Introduction

The ferroelectric hysteresis properties (i.e. hysteresis area A, remnant polarization P, and
coercive field E.) in response to the electric field parameters (i.e. filed amplitude E; and
field frequency f) has recently gained an intense interest in view of both technological and
fundamental importance [1-10]. This is since if the understanding of how the hysteresis
properties relating to the electric field perturbation is fully obtained, one may use this
knowledge in designing state ol the art ferroelectric applications with high efficiency.
Nevertheless, most previous investigations, either from experimental [1-6] or theoretical
viewpoints [7-10], focused mainly on the use of simple empirical power law scaling (non-
linear fit) to relate the hysteresis properties to the external field and relevant perturbation, In
general, a large number of input-output data is required to perform the non-linear fit. For a
limited number of input-output data, one generally encounters non-convergence problems.
To avoid, one has to extract each exponent separately while assuming that the other are
constants and repeat the procedure backward. However, this method may not be useful if
the exponents are not truly constants. For instance, ¢ may be a function of Ey, and £ may
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37 be a function of f. In this case, the simple power law scaling is no longer simple and
38 alternative applicable technigques are required for substitution.
39 In this study, we purpose an alternative approach that can be used to model the dynamic
40 hysteresis behavior. Since the hysteresis is periodic signal in time, Fourier transformation
41 can be used to analyze the hysteresis in frequency domain. Nevertheless, from literatures,
42 wery less details have aseribed its full use [11, 12]. In this work, an extensive harmonic
43 investigation on hysteresis data in modeling hysteresis properties is proposed using BaTiOs
44 bulk ceramics as an application.
45
46 2. Methodology
47 The BaTiOs bulk ceramics were prepared by a conventional mixed-oxide method hav-
48 ing diameter = 8 mm, thickness = 1 mm and 7'~ = 124.5°C. Its dynamic hysteresis
49  was measured at room temperature (25°C) by Sawyer-Tower circuit with electric field

signal (sine wave) generated by a function generator (HP 3310A). The hysteresis loop
was recorded after reaching steady state. Details of the experimental setup were ex-
plained elsewhere [1]. Then, with the measured hysteresis data, Fourier transformation,
ie Flk)y= XL,' fin)exp(—i2mank/N) where N is number of data points in 1 field pe-
riod, was applied on the data.

However, due to electronic noises, the time interval between hysteresis data point in
each loop tend to vary which limits the use of Fourier analysis. Therefore, we needed to
perform the average on the polarization data having the same electric field from many
loops. This is done by dividing the hysteresis signal into 3 intervals i.e. the interval that
electric field increases from zero to maximum, decreases from maximum to minimum, and
increases from minimum to zero. After that, the electric and polarization data were averaged
and smoothed using the Loess smoothing method. The Cubic spine interpolation was then
used to generate the discrete electric field data in a sine waveform and its corresponding
polarization signal with equal time-interval (consisting of 1024 data points per loop).
Then, the fast Fourier transformation was used to transform the periodic polarization
signal from time domain to frequency domain. After the ransformation, the relationship
between hysteresis properties and electric field parameters to each harmonic of Fourier
transformation was investigated.

3. The Analysis, Results and Discussions

In this work, the Fourier spectrums of the hysteresis signal were investigated. It should be
noted that all even harmonics of the transformed polarization signal should be zero since
the hysteresis loop is half-wave symmetry. However, as the hysteresis loop measured from
the experiment is not a perfect symmetry loop (due to electric noise), the even harmonics
exist but they are comparatively small and can ignore (see Fig. 1, bottom left). Additionally,
it is found that the polarization signal re-calculated from the inverse Fourier transformation
of the real part is out of phase with the electric field, but from the imaginary part is in-phase
with the electric field (not shown). As the hysteresis loop is originated from the phase
mismatch (lag) between the polarization and electric field signals, the hysteresis area can
then be extracted from inverse Fourier transformation of odd harmaonics of the real part
of the transformed polarization. Further, it is also found that the hysteresis area obtained
from the inverse Fourier transformation using only the first harmonic of real part are almost
equal to the measured hysteresis area. On the other hand, the hysteresis area from the
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Figure 1. The hysteresis loop (top right), measured at £, = 10 kV/em and f = 10 Hz, with its
corresponding electric field signal (bottom right), polarization signal (top left), and spectrums of
Fourier transformation (bottom left).

inverse Fourier transformation using all higher harmonics of real part are cancel or very
small in comparison Lo that of the measured hysteresis area .

In addition, the inverse Fourier transformation using only the first harmonic of the real
part shows ellipse-like hysteresis loops with an area A = 7 Eg Py (where Py is polarization
obtained from the inverse Fourier transformation of the first harmonic of real part). Since
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Figure 2. The hysteresis loop re-calculated from the inverse Fourier transform using only the first
harmoni¢ of the real part in the bottom left of Fig. 1 (right) and its polarization signal (left).
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Py can be written in term of the Fourier coefficient of the first harmonic ay 1.e. Py = 24/ N,
the hysteresis area can be rewritlen as

A= —%Eoﬂl. (1)

To verify the validity of Eq. (1), numerical comparison was evaluated. In Fig. 1, the
measured hysteresis loop has A = 133.5459 mCV/em® but from Eq. (1) A = 133.6468
mCV/em?, which agree very well. As a result, this emphasizes that the hysteresis area
depends on the field amplitude and the first harmonic of the real part of the transformed
polarization signal in following the relationship stated by Eq. (1).

On considering the remnant polarization P, as mentioned above, the polarization re-
calculated from the inverse Fourier transformation of the real part is out of phase with the
electric field so the electric field and polarization do not vanish at the same time. On other
hand, the polarization from inverse Fourier transformation of imaginary part is in-phase
with electric field, so electric field and polarization vanish together. From this harmonic
analysis, it is found that that the remnant polarization P, can be calculated from the sum of
their associated amplitude of odd harmonics of the real part, e.g. see Fig. 3.

Additionally, P, can be written in terms of Fourier coefficients of the odd harmonics of
the real part a,, so P, = 2a,/N where n are odd numbers. Consequently, the relationship
between positive/negative remnant polarizations and the harmonic of Fourier transformation
have the form

2 Nf2
Pri = TF Zan, (2)
r=1

To verify this, the hysteresis loop in Fig. 1 has the average remnant polarization (P, — P.7) /2
of 8.1887 uCfem” while the average remnant polarization calculated from Eq. (2) is
8.1887 uClem?, which are exactly the same (up to 4 digits). Therefore, it can be con-
cluded that the remnant polarization depends on all odd harmonics of real part of the
transformed polarization signal via Eq. (2).

On the coercive field E. investigation, since it describes the magnitude of the electric
field needed to cancel the polarization magnitude, £, can be found from the phase-lag ¢
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Figure 3. The hysteresis loop re-calculated from the inverse Fourier transformation vsing all har-
monics of the real part in the bottom left of Fig, 1 (right) and its polarization signal (left).
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Figure 4. The polarization signals re-calculated from the inverse Fourier transformation of the first
harmonic of the real part (solid) and of the imaginary part (dot), obtained from hysteresis loop

measured at Ey = 10 kV/cm and f = 10 Hz. The dash lines show the phase-angle at where both
signals are equal.

between electric field signal and polarization signal. The relationship between this phase-
lag and the harmonic of Fourier transformation was then investigated. The results show
that the phase-lag between electric field signal and polarization signal can be found from
o minus with the phase-angle that the polarization re-calculated from the inverse Fourier
transformation of the first harmonic of real part equals to that of the imaginary part in mag-
nitude, i.e. ¢y = tan " Y{—ay /b)) = —tan"'(a, /b)) where a; and b, are Fourier coeflicients
of the first harmonic of the real part and of the imaginary part respectively, e.g. see Fig. 4.
As ¢ =7 — ¢ and singy = sin{w — ¢ ) for ¢ = 7, then sin ¢ = singy. Therefore, the
positive/megative coercive fields can be found from

EX = L Eysing = F Ep sin(tan™"(ay /by)). 3
Note that the hysteresis loop in Fig. 1 has the average coercive field (Hc‘ — E7)2of
3.4594 kV/cm while average coercive field calculated from Eq. (3) is 3.4367 kV/em. This

therefore confirms that the coercive field depends on the electric field amplitude and the
first harmonic of real part and of imaginary part in following Eq. (3).

4. Conclusion

This study has performed the harmonic analysis on the dynamic hysteresis behavior of
the BaTiO; bulk ceramics. It is found that important hysteresis properties can be modeled
by considering parameters obtained from the Fourier transformation. As a result, this
study provides an alternative approach which can be used to predict and model the complex
hysteresis behavior, which can be enhanced to gain further understanding of the ferroelectric
materials.
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Abstract

This work performed Monte Carlo simulation of ferromagnetic Ising spins in 2
dimensions to investigate the hysteresis properties. of both symmetric and asymmetric
types. under the effects of external perturbations using the Fourier analysis. The hysteresis
loops were analyzed using the discrete Fourier transformation. Irom the results, the
hysteresis areas of both symmetric and asymmetric hysteresis depend on the amplitude of
magnetic field and the Fourier coefficient of the first harmonic of real part. Nevertheless,
the remnant magnetization of symmetric hysteresis depends only on the Fourier
coeflicients of odd harmonics of real part, while that of asymmetric hysteresis depends on
both the Fourier coeflicients of the zero and odd harmonics of real part. Additionally, the
coercive field of symmetric hysteresis depends on the amplitude of magnetic field and the
Fourier coefficients of the first harmonics of both real and imaginary parts. This suggests
that the hysteresis behavior can be classified and modeled mn frequency domain using the
Fourier analysis.

1. Introduction

Recently, ferromagnetic materials bring to many useful applications e.g. transformer
and memory. The modeling of hysteresis behavior by relate the hysteresis properties (i.e.
hysteresis area 4, remnant magnetization m, and coercive field A.) under the effects of
external perturbations (i.e. temperature 7, amplitude Ay and frequency f of the magnetic
field) has an intense investigated. This topic has been studied in view of theoretical [1-3]
and experimental [4-6], focusing mostly on the simple power law scaling to relate
hysteresis properties and external perturbations. Nevertheless, some materials may not
response well to the field in some conditions which can severely affect to the scaling. As
can be seen, the simple power law scaling is no longer simple. and the hysteresis behavior
modeling requires alternative suitable techniques. Therefore, this work proposes an
alternative technique that can be used to model the Ising hysteresis behavior of both
symmetric and asvmmetric types in steady state using the discrete Fourier transformation
[7-11]. Ising model was verified by both theoretical [12, 13] and experimental [14, 15]
studies is magnetic systems assumes spins have only two states (spin up and spin down).
The spins Hamiltonian has a form

j[:—%ZJUS,S;—h(f)ZS:-' &
(L) :

1 ; ; ; : ; ;
where ——ZJJ,SJ.S'., is the interaction energy between spin s; and its nearest neighbor
"m’) ' :
At

spins s;, and —Ii(r)z.e_, is the interaction energy between magnetic field and spin s;.

i

Magnetic field is sine wave i.e. h(t) = hgsin(2afi). where hy and [ are amplitude and



85

frequency of magnetic field respectively. In general, J was set in unit of energy so J/kg is
unit of temperature. Monte Carlo simulation on Ising spins used to generate hysteresis
under the effects of external perturbations. Then, the discrete Fourier transformation was
used to transform the periodic magnetization signal from time domain to frequency domain.
The discrete Fourier transformation has a form

F(k)=§ fln)exp(=i2mik /N). (2)

Since, exp(-i?) = cos(f) - isin(#). Eq. (3) can be rewritten as

Flk)= Ni 1 n)cos(2mk”\')—f§ f(n)sin(2mk/ N). (3)

In Eq.(3). cosine term is Fourier coefficient of the K™ harmonic of real part (ai) and sine
term is Fourier coefficient of the #™ harmonic of imaginary part (b) i.e. F(k) = aj + ibk ,
where N is number of data points per period. Afier the transformation, the relationship
between hysteresis properties and external perturbations and the Fourier coefficients was
investigated.

2. Methodology
The hysteresis under the effects of external perturbations was generated by Monte
Carlo simulation using the initial random spins 5;(0) describes on the values 1 for spin up
and -1 for spin down. Then, a spin was taken in random and the probability of spin flipping
was calculated that has a form
AL, (r)}_ @

p,(t)=e‘hp[ 7

In Eq. (4), AE(1) is the energy difference of spin flipping i.e. AE(f) =2s(0)[A(t)t X s(D)].
Alter that, a random number [0, 1) was generated and compared with the probability of spin
flipping. If' a random number equal or less then the probability of spin flipping, spin s;(7)
can be flip. Conversely. if a random number more than the probability of spin flipping, spin
5i(1) cannot be flip. The time that uses to consider all spins in system 1s mes (Monte Carlo
steps per site) was set in unit of time so mes”™ is unit of frequency of magnetic field. Details
on the simulation can be found elsewhere [1-3]. In this study, there are 1024 points per
period in hysteresis loop, so magnetization was calculated every Ar=1/ (l 024 f ) mes that

has a form
N-1

m(r)zﬁz.?_, [r), (5)

i=0

where N is the number of spins in system. The hysteresis generation is going on until 1,000
hysteresis loops to sure that it steady in time. Then, 10,000 hysteresis loops were recorded
and averaged. After that, the discrete Fourier transformation was used to transform the
magnetization from time domain to frequency domain using Eq. (3). In the transformation,
the time intervals between data points need to be equal and the numbers of data points per
period should be enough for specifying signal. The discrete Fourier transformation has then
long times to calculate. To maximize the calculation efficiency. the fast Fourier
transformation (the number of data points per period should be power of two) was used to
analyze the hysteresis behavior. After the transformation. the relationship between
hysteresis properties and external perturbations and the Fourier coefficients was
investigated,
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3. Analysis, Results and Discussions

In the study of Ising ferromagnetic hysteresis behavior of both symmetric and
asymmetrie types in 2 dimensions (e.g. see Fig. 1), the Fourier coefficients (Ja‘_ + bi) of
both hysteresis types are somewhat different (e.g. see Fig. 2). For symmetric hysteresis, the
Fourier coefficients present only odd harmonics since symmetric hysteresis is half wave
symmetry i.e. f(1)=—f(t+P/2)=-f(t+P/2), where P is signal period. For asymmetric
hysteresis, the Fourier coefficients present all harmonics, but that of the zero harmonic is
extremely larger than the other harmonics. Since the zero harmonic implies that some spins
are inactive to temperature and magnetic field, and its Fourier coefficient is extremely

larger than the other harmonics. so it is shown that both temperature and magnetic field
afTect slightly on spins flipping.
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Figure 1. Symmetric hysteresis (left) at 7" = 2.00 J/&p, hy = 4.00 J and f=0.01 mes™, and
asymmetric hysteresis (right) at 7= 1.00 J/kg, hg = 2.00J and = 0.10 mes™.
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Figure 2. Fourier coeflicients of symmetric hysteresis (left), and asymmetric hysteresis

(right) in Fig. 1.

On considering of the hysteresis arca (4). the magnetization re-calculated from
inverse Fourier transformation of the imaginary part (sine term in Eq. (3)) is in-phase with
magnetic field, so hysteresis area is equal to zero. Then, the hysteresis area re-calculated
from inverse Fourier transformation of the real part (cosine term in Eq. (3)) was
investigated in details. It is found that the hysteresis arca of both hysteresis types
re-calculated from inverse Fourier transformation of the first harmonic of real part is
almost equal to the real hysteresis area. On the other hand, the hysteresis areas from
inverse Fourier transformation of other harmonics of real part nearly cancel out and are
very small in comparison to the real hysteresis area. Further. the hysteresis re-calculated
from inverse Fourier transformation of the first harmonic of real part is ellipse-like (e.g.
see Fig. 3). The hysteresis area is then equal to mhym "¢ (where m,"® is the magnetization
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amplitude re-calculated from inverse Fourier transformation of the first harmonic of real
part). Additionally, m™ can be written as m "¢ = -2a1/N. The hysteresis area of both
symmetric and asymmetric hysteresis can be rewritten as

27
A= —Wkoai ) (6)

Thus, the hysteresis area depends on the amplitude of magnetic field and the Fourier
coefficient of the first harmonic of real part.
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Figure 3. The hysteresis loops re-calculated from the inverse Fourier transform of the first
harmonic of real part of symmetric hysteresis (left). and asymmetric hysteresis (right) in

Fig. 1.

On determining of the remnant magnetization (m,), the magnetization re-calculated
from inverse Fourier transformation of the real part (cosine term in Eq. (3)) is out of phase
with magnetic field. so magnetization and magnetic field magnitude does not vanish at the
same time. Since the magnetization re-calculated from inverse Fourier transformation of
the imaginary part (sine term in Eq. (3)) is in-phase with magnetic field. magnetization and
magnetic field magnitude vanishes together. The remnant magnetization re-calculated from
the inverse Fourier transformation of the real part was then investigated in details. From
the results. the remnant magnetization of symmetric hysteresis can be calculated from the
sum of the magnetization amplitude re-calculated from inverse Fourier transformation of
odd harmonics of real part (nuRe), as shown in Fig. 4(left). Additionally, mE can be
written as m¢ = -2ax /N, where k are odd integers. Therefore, the remnant magnetization
of symmetric hysteresis can be wrilten as

3 2
m=F—>" a,. 7
- (7)

Niz
1

k=

Thus. the remmant magnetization of symmetric hysteresis depends only on the Fourier
coefficients of odd harmonics of real part. On the other hand, the remnant magnetization of
asymmeilric hysteresis can be calculated partly same as symmetric hysteresis. Specifically,
it requires to shift the magnetization (re-calculated from inverse Fourier transformation of
the zero harmonic of real part (mo"%) as shown in Fig. 4(right)) with the amount " =
ao/N. Therefore, the remnant magnetization of asymmetric hysteresis can be written as

J/\l.r 1. 1

m? :E[%?Za,_,), ®)
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where k are odd integers. Thus, the remnant magnetization of asymmetric hysteresis
depends on both the Fourier coefficients of the zero and odd harmonics of real part.
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Figure 4. The hysteresis loops re-calculated from the inverse Fourier transformation of odd
harmonics of real part in of symmetric hysteresis (left). and asymmetric hysteresis (right)
in Fig. 1.

On the investigation of the coercive field (A.), it can be calculated from the magnetic
field at the phase-lag (¢) between magnetic field and magnetization, so 4. can be written as

I =th, sin(¢). )

Further, this phase-lag (4) is equal to the phase-angle that the magnetizations of all
harmonics (magnetization re-calculated from inverse Fourier transformation of the real and
imaginary part) are cancelled. Since the Fourier coefficients of symmetric hysteresis
present only odd harmonics, the magnetizations re-calculated from inverse Fourier
transformation of each harmonic of the real and imaginary part are cancelled at two
phase-angles. They can be found from where the magnitude of the magnetization
re-calculated from inverse Fourier transformation of the first harmonic of the real part
(m ™) is equal to that of the imaginary part (m;™) but with opposite signs (c.g. see Figs. 5)
i.e. -m;"cos(#) = m™sin(¢). Since, m"¢ and m™ can be written as of m "¢ = -2a;/N and
m;lm = 2h1/N respectively, so ajcos(¢) = bisin(¢), 1e. ¢ = tan'l(al;’bl). Therefore, the
coercive field can be rewritten as

h* = +h, sin(tan " (a, / b)) (10)

Thus. the coercive field of symmetric hysteresis depends on the amplitude of magnetic
field and the Fourier coefficients of the first harmonics of both real and imaginary parts.
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Figure 5. The magnetization signals re-calculated from the inverse Fourier transformation
of the first harmonic of real (solid) and imaginary part (dash) in Fig. 1. The dash-dot line
shows the phase-angle at both signals are equal in magnitude but opposite signs.

4. Conclusion

This work performed the Monte Carlo simulation extraction of Ising ferromagnetic
hysteresis in 2 dimensions to investigate the hysteresis properties of both symmetric and
asymmetric types under the effects of external perturbations. using the discrete Fourier
transformation. It is found that the hysteresis properties can be modeled by considering
harmonics of the Fourier transformation. This study is therefore proposing a fundamental
knowledge in the modeling of ferromagnetic materials.
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Characteristic of Ising Mean-Field Hysteresis in 2 Dimensions: The Fourier Investigation
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This work performed the mean-field extraction of Ising ferromagnetic hysteresis in 2
dimensions to investigate the hysteresis properties, of both symmetric and asymmetric types,
under the effects of external perturbations. The hysteresis loops were analyzed using the Fourier
transformation. The results show that both temperature and magnetic field have considerable
effects on hysteresis properties. The Fourier-harmonic characteristics of both hysteresis types are
somewhat different. Specifically, the hysteresis areas of both symmetric and asymmetric
hysteresis depend on the amplitude of magnetic field and the amplitude of the first real-part-
harmomic. Nevertheless, the remnant magnetization of symmetric hysteresis depends only on the
amplitude of odd real-part-harmonics, while that of the asymmetric hysteresis depends on both the
amplitude of the zero and odd real-part-harmonics. Additionally, the coercivity of the symmetric
hysteresis depends on the amplitude of magnetic field and the amplitude of the first harmonics of
both real and imaginary parts. From these evidences, the hysteresis properties of the considered
systems can be classified and modeled in frequency domain using the Fourier analysis approach.

Keywords: hysteresis, Ising, mean-field analysis, Fourier transformation

1. INTRODUCTION

Ferromagnetic material generally changes the direction
and magnitude of magnetization with external perturbations
i.e. temperature and magnetic field. Therefore, it leads to
many useful applications. This is since the design of
ferromagnetic applications requires specific understanding
of hysteresis behavior. For examples, memory application
should have remnant magnetization large enough for the
reader-head to sense and has coercivity large enough for
the recorded data to become stable against small noises. On
the other hand, transformer application should have small
hysteresis area to minimize energy dissipation. As can be
seen, the study of hysteresis properties under the affects of
external perturbations is of an intense interest. However,
previous studies on this topic used only the simple power
law scaling to relate hysteresis properties to external
perturbations [2,3,6]. Nevertheless, the relationships in
some materials are sometime too complicate for the simple
power law scaling. Therefore, this work offers an
alternative technique to consider ferromagnetic hysteresis
behavior of both symmetric and asymmetric types, using
the Fourier transformation [1.4] and 2 dimensions Ising
model via mean-field picture as a steady case. In the Ising
model, spins can be have only two states (spin up and spin
down), where the Hamiltonian has a form

—
-y

H —%T.fvs,s_, LOXS (M
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In Eq. (1), _lz g8, is the interaction between spin
iwj

s; and its nearest neighbor spins s; and —h(f)s; is the
interaction between magnetic field and spin s,. In this study,
h(f) 1s sine wave Le. h(f) = hgsin(2aft) where hy and f are
amplitude and frequency of magnetic field respectively. In
general, J = 1 was set so J has become the umit of energy
and J/kz is unit of temperature. The mean-field analysis
assumes magnetization can be calculated from the averaged
field of all spins, which has a form [5]

r? =—mit)+ tanhé[’“f’)*’ Z.f,m(f)} @

InEq. (2), 7= 1 was set so 7is unit of time. Temperature
(T") was set in multiplex of Curie temperature (7,) so kg7
has then become the unit of magnetic field amplitude (A;)
and 7. 1s unit of temperature (7). After that, this equation
was solved using the fourth order Range-Kutta. Then, the
Fourier transformation was used to transform the periodic
magnetization signal from time domamn to frequency
domain. The Fourier transformation has a form

FK)=3 fnep(-2mk/v) O

=il

Since, exp(-if) = cos(d) - isin(f), Eq. (3) can be rewritten as

Flk)= 3" f{n)oos(2mnk / N)

=i
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- ;—E S{n)sin(2mk / N )- @

n=ll

In Eq.(4), cosine term is amplitude of the K real-part-
harmonic (@) and sine term is amplitude of the A"
imaginary part-harmonic (b;) i.e. F(k) = a, + ib; where, N 1s
number of data points per period. After the transformation,
the relationship between hysteresis properties and external
perturbation parameters and the amplitude of each
harmonic of Fourter transformation was investigated.

2. EXPERIMENT

In the analysis of ferromagnetic Ising mean-field
hysteresis behavior in 2 dimensions of both symmetric and
asymmetric types, the hysteresis under the affects ol
external perturbations was generated by solving the mean-
field equation, Eq. (2). It was solved, via the [ourth order
Range-Kutta, using the imtial magnetization m(0) = 1. The
hysteresis generation is going on until the hysteresis loop is
steady in time which can be observed from the dynamic
order parameter

1% s
Oln) = -P:[mfr)dﬂ )

where P is the field period and # is the loop index. In this
AQ = 107
Then, 1000 hysteresis loops were recorded and averaged.
Adfter that, the Fourier transformation was used to transform
the periodic magnetization signal from time domain to
frequency domain using Eq. (3). In the transformation, the
time intervals between data points are required to be equal,
and the numbers of data points per period should be enough
for specilying signal, unless the Fourier transformation may
be no longer useful. To maximize the calculation
efficiency. the fast Fourier transformation (the number of
data points per period should be power of two) was
considered to analyze the hysteresis behavior. After the
transformation. the relationship between hysleresis
properties and external perturbation parameters and the
amplitude of each harmonic of Fourier transformation was
investigated.

study, hysteresis is assumed steady when

3. RESULTS AND DISCUSSIONS
In the analysis of ferromagnetic Ising mean-field
hysteresis behavior in 2dimensions. the spectrum of

Fourier transformation of the both symmetric and
asymmetric  hysleresis was investigated. From the
transformation, the Fourier-harmonic characteristics

( "ﬂﬁ + b} ) of both hysteresis types are partly different as

shown in Fig 1, 2. The Fourier-harmonics of symmetric
hysteresis presents only odd harmonics of the transformed
magnetization (see Fig. 1). This 1s expected as symmetric
hysteresis is half-wave symmetry. On the other hand, the
Fourier-harmonics of asymmetric hysteresis presents all
harmonics of the transformed magnetization, but the zero
harmonic has amplitude extremely larger than other
harmonics (see Fig. 2). In general, the zero harmonic
presents that some spins are inactive to temperature and
magnetic field. Tn addition, its amplitude is extremely

larger than other harmonics. Therefore, it can be said that
both temperature and magnetic [ield less affect on spins
flip.
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FIGURE 1. The symmetric hysteresis loop (right) at T' =
0.625 T, hy=1.000 ksT. and f= 0.010 7", and spectrums of
Fourier transformation (left).
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FIGURE 2. The asymmetric hysteresis loop (right) at T'=
0.375 T, ho= 0.500 ksT. and f= 0.100 7", and spectrums of
Fourier transformation (left).

Additionally, it 1s found that the magnetization re-
calculated from mnverse Fourier transformation of the real
part 1s out of phase with magnetic field. but from the
imaginary part is in phase with magnetic field (see fig. 3).
Consequently, it is useful to find the relationship between
hysteresis properties and the amplitude of each harmonic of
Fourier transformation.
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FIGURE 3. The hysteresis loops re-calculated from the
inverse Fourler transform using the real (solid) and
imaginary (dash) part harmonics in (a) Fig. 1 and (b) Fig. 2.

From the study of symmetric and asymmetric
hysteresis, the hysteresis area (4) refers to the external
energy require to cycle the magnetic dipole moments in
ferromagnetic materials. As mentioned above, it is safe to
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imply that the hysteresis area can be extracted from inverse
Fourter transformation of odd real-part-harmonics. In
addition, the hysteresis area of both hysteresis types re-
calculated from inverse Fourier transformation of the first
real-part-harmonic is almost equal to the real hysteresis
area. On the other hands, the hysteresis area from inverse
Fourier transformation of all other real-part-harmonics are
cancel and very small in comparison to the real hysteresis
area.
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FIGURE 4. The magnetization signals and hysteresis loops
re-calculated from the inverse Fourier transform using only
the first real-part-harmonic in (a) Fig. 1 and (b) Fig. 2.

Further, it is found from Fig. 4 that the hysteresis re-
calculated from inverse Fourter transformation of the first
real-part-harmonic is ellipse-like. Since the area of typical
ellipse equal to aab where a is length of major axis and b is
length of minor axis, the hysteresis area is then compound
with quantity whem, " 7" (where Jy is the magnetic field
amplitude and " 7*7 is the magnetization amplitude re-
calculated from inverse Fourier transformation of the first
real-part-harmonic), and it was found that they are equal
(with less than percent different). Additionally, m,"* 7"
can be written in the term of the first real-part-harmonic
(ay) i.e. my/*F" = 2a)/N where N is number of data points
per period, hysteresis area of symmetric and asymmetric
hysteresis can be then rewritten as

s oo (©6)

i

A

x|§

Therefore. it can imply that the hysteresis area depends
on the magnetic field amplitude and the amplitude of the
first real-part-harmonic.

On considering of the remnant magnetization (m,) of the
symmetric and asymmetric hysteresis loops, the magnitude
of the magnetization remains at vanish magnetic field was
investigated. As mentioned above, the magnetization re-
calculated from inverse Fourier transformation of the real
part {cosine term in Eq. (4)) is out of phase with magnetic
field, so magnetic field and magnetization magnitude do
not vanish at the same time. On the other hand, the

magnetization  re-calculated from  inverse Fourier
transformation of the imaginary part (sine term in Eq. (4))
1s in-phase with magnetic field, so magnetic field and
magnetization magnitude vanishes together. Then the
remnant magnetization re-calculated from the inverse
Fourter transformation of the real-part-harmonics was
investigated in details. From the results, the remnant
magnetization of symmetric hysteresis can be calculated
from the sum of the magnetization amplitude re-calculated
from inverse Fourier transformation of odd real-part-
harmonics (% 7*7), as shown in Fig. 5(a), so it can be
writlen as

Ni2
= realpart |
m == E m;
k=1

@)

Since, my“#*" can be written in terms of the amplitude of
odd real-part-harmonics (a.)1i.e. my P = 2a. /N where N
1s number of data points per period and # are odd integers.
Therefore, the remnant magnetization of symmetric
hysteresis can be rewritten as

NiZ

Sa; ®)
k=l

m = +E-
N

Thus, this implies that the remnant magnetization of
symmetric hysteresis depends on the amplitude of odd real-
part-harmonics. On  the other hand, the remnant
magnetization of asymmetric hysteresis can be calculated
partly the same way as symmetric hysteresis. Specifically,
it requires to shift the magnetization (re-calculated [rom
inverse Fourier transformation of the zero real-part-
harmonic as shown in Fig. 5(b)) with the amount 7" =
ap/N. which can be rewritten as

©)

where & are odd integers. Thus, the remnant magnetization
of asymmetric hysteresis also depends on the amplitude of
the zero and odd real-part-harmonics.
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FIGURE 5. The magnetization signals and hysteresis loops
re-calculated from the inverse Fourier transform using the
real-part-harmonics in (a) Fig. 1 and (b) Fig. 2.

On the investigation of the coectivity () of symmetric
hysteresis, the magnitude of the magnetic field that cancels
the remnant magnetization in ferromagnetic material was
considered. In general, the coercivity can be found from the
magnetic {ield magnitude at the phase-lag (¢) between
magnetic field and magnetization (not shown), so it can be
written as

h' =+hsin(g). (10)

Further, this phase-lag is also equal to the phase-angle
(¢) that the combinations of magnetizations of all
harmonics (magnetization re-calculated from inverse
Fourier transformation of the real and imaginary part) are
cancel. Since, Fourier-harmonics of symmetric hysteresis
presents only odd harmonics, so the magnetizations re-
calculated from inverse Fourier transformation of each
harmonic of real and imaginary part are cancel at two co-
phase-angles. One of these two phase-angles can be found
from where the magnitude of the magnetization re-
calculated from inverse Fourier transformation of the first
harmonic of real part equal to that of the imaginary part but
with opposite signs (see Figs. 0) L.e.

.??.!'(m”"m wb(¢) BIJ"””Z&'warJ!mn Sil'l((}f'): (] ])

where my™* P and  my " P gre amplitude  of
magnetizations  re-calculated  from  inverse  Fourier
transformation of the first harmonic of the real and
imaginary part respectively. Since, m,"* 7*" and m, """
P4 can be written in the term of the first harmonic of real a,
and imaginary b, part respectivelyie. m, "% """ = 2a,/N
and m, sy Pt = 2p IN, where N is number of data points
per period, Eq. (10) can be rewritten as a,cos¢ = bysing, 1.e.
¢ = tan™(ay/by). Therefore, the coercivity can be rewritten
as
h = th,sin(tan™(a,/ ). (12)

Thus, the coercivity depends on the electric field
amplitude and the amplitude of the first harmonic of real
part and imaginary part.
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FIGURE 6. The magnetizaticn signals re-calculated from
the inverse Fourier transformation of the first real-part-
harmonics (solid) and imaginary-part-harmonics (dash) of
Fig. 1. The dash-dot line shows the phase-angle at both
signals are equal in magnitude but opposite signs.

4, CONCLUSION

This work performed the mean-field extraction of Ising
ferromagnetic hysteresis in 2 dimensions to investigate the
hysteresis properties of both symmetric and asymmetric
types under the effects of external perturbations, using the
Fourier transformation. It is found that the hysteresis
properties can be modeled by considering harmonics of the
Fourier transformation. This study is therefore proposing a
fundamental knowledge in the modeling of ferromagnetic
materials.
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