CHAPTER 2

LITERATURE REVIEW

This chapter contains details on the brief description of necessary concepts
that relate to the research i.e. ferroelectric properties, BaTiOs hysteresis measured by
Sawyer-Tower experiment, Ising hysteresis generated by mean field calculation and

Monte Carlo simulation, and Fourier transformation.

2.1 Ferroelectric properties and BaTiO3

In crystallography, crystal structure can be primarily divided into 7 crystal
systems which are cubic, tetragonal, orthorhombic, rhombohedral, hexagonal,
monoclinic and triclinic. Further, these can be further classified into 32 point groups
according to their crystallographic symmetry. However, only 21 point groups do not
have a center of symmetry. Of these 21 point groups, 20 point groups correspond to
materials which have the properties that an applied mechanical stress (on the
materials) produces an electric field or on the other hand an electric field produces a
mechanical stress. Such materials can be referred to as “piezoelectric” materials. In
addition, these 20 piezoelectric materials can be subdivided into 10 sub-materials that
have spontaneous polarization or electrical polarity. These polar groups have the
property that the change in temperature induces an electric field. Such materials are
called “pyroelectric” materials. A subset of these pyroelectric can have their
spontaneous polarization reversed or enhanced by the application of a high enough
electric field. This subset of the pyroelectric is the ‘“ferroelectric” materials. The

classification of the crystal structures showing the division into piezoelectric,



pyroelectric and ferroelectric can be shown in Fig. 2.1.
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Figure 2.1 The classification of crystal structures showing the division into

piezoelectric, pyroelectric and ferroelectric materials (modified from [18]).

Ferroelectric materials generally have transition temperature called the Curie
point, T¢. At this Curie point, the material gets transformed from ferroelectric to
paraelectric phases (see Fig. 2.2) as indicated by rapid decrease in the dielectric
constant with increasing temperature. Above T¢, the material is in cubic structure and
in paraelectric phase. In the paraelectric phase, the center of positive charge of the
crystal coincides with the center of negative charge. As a result, the spontaneous
polarization ceases. However, below T¢, the material is in ferroelectric phase where
the center of positive and the center of negative charges are not at the same place.
Therefore, the spontaneous polarization, i.e. the dipole moment per unit volume or the
charge per unit area along the spontaneous polarization axis, is then developed.

Additionally, this spontaneous polarization can be switched with electric field.



(a) T>T¢ (b) T<Tc

Figure 2.2 The transition between paraelectric (a) and ferroelectric (b) phases [19].

The plot of polarization versus electric field for the ferroelectric results in
hysteresis loop as shown in Fig 2.3. The loop is generally non-linear so the
polarization does not instantly response to electric field. For ferroelectric with zero
spontaneous polarization, where the polarization from different domains cancel, the
polarization increases with increasing the electric field until it arrives in its saturated
level. This polarization level is called saturated polarization P;. On the other hand, if
the electric field decreases, the polarization also decreases. In such the case, even the
electric field is zero, the ferroelectric crystal may still exhibit spontaneous
polarization. The polarization that remains at the absence of electric field is called
remnant polarization P,. This remnant polarization can be removed when the applied
electric field is large enough in the opposite direction. The magnitude of electric field

that is required to cancel the remnant polarization is called the coercive field E..
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Figure 2.3 Typical ferroelectric hysteresis loop [20].

Presently, there are many important ferroelectric materials. To name a few are
barium titanate (BaTiOs;, BT), lead titanate (PbTiOs, PT), lead zirconate titanate
(PZT), lead lanthanum zirconate titanate (PLZT), lead magnesium niobate (PMN) and
potassium niobate (KNbQO3), etc. Although BT is not with the best electrical properties
in comparison to Pb-based ferroelectric, the Pb-free BT ferroelectric has gained an
intense interest due to eco-problem. In general, BT also has relatively high dielectric
constant which may suit capacitor applications and piezoelectric transducer devices.
In general, BT can be prepared from chemical reaction between barium oxide (BaO)

and titanium dioxide (TiO,), which forms a perovskite structure as shown in Fig. 2.4.

Figure 2.4 Perovskite structure of BaTiO; [19].



With increasing temperature, the BT crystal structure changes (see Fig. 2.5). To
specify, BT crystal structure is thombohedral when temperature is lower than -90 °C,
orthorhombic when temperature is between 90 to 0 °C and tetragonal when
temperature is between 0 to 130 °C. If temperature is above 130 °C (which is the
Curie temperature, 7¢), BT changes to paraelectric where and the crystal structure is

cubic.

Figure 2.5 The temperature dependent crystal structure of BaTiOs [21].

2.2 Ferroelectric hysteresis measurement

Ferroelectric hysteresis can be measured using Sawyer-Tower circuit (see Fig.
2.6). In measuring, the ferroelectric sample is inserted between parallel plates to form
capacitor Cy (sample capacitance) which connect in series to a reference capacitor Cy
(reference capacitance). An exact equivalent circuit, made from the series resistors of
R, and R», is then connected in parallel to the series capacitors, where R; is preferably

to be much higher than R,.
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Figure 2.6 Sawyer-Tower circuit [22, 23].

In the circuit, V_ 1s the voltage across R, which is assumed to be equal to Cs.

Therefore, the electric field can be obtained from
V
E=—=%. 2.1
- @
Additionally, due to the connection of Cs and Cj in series, the electric charges O on

each capacitor are also equal. Since, QO = CV, the voltage across Co is V' therefore

polarization can be calculated from

CV,
4

P (2.2)

3

where d and A are the thickness and area of ferroelectric sample, respectively. From
Eq. (2.1) and (2.2), ferroelectric hysteresis can then be obtained. Additionally,
ferroelectric hysteresis can be obtained from the mathematical system i.e. Ising

model.

2.3 Ising model
Ising model is the mathematical system having only two possible states [24-
27]. Therefore, it can be used to model very strong anisotropic ferroelectric system

having only two possible directions of molecular dipole moments. In the Ising model,
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the molecular dipole moment is called Ising dipole moment, where each Ising dipole

moment interacts only with its neighboring dipoles as shown in Fig. 2.7.
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Figure 2.7 Ising dipole moments configuration, where each Ising dipole moment u,

(white) interacts mostly with its nearest neighbors u; (gray).

The Hamiltonian of Ising model under the presence of external field has a

form

1
H = —E%Jyuiuj —ZE% , (2.3)
L] 1
1 : . . : . .
where _EZJ ;uu; 1s the interaction between Ising dipole moment u, and its
=
nearest neighboring u;, the symbol < > indicates that only neighboring is considered

in the sum, and —ZEiul. is the interaction between electric field and Ising dipole

1

moment u,. In term of the exchange interaction Jj;, the model can represents

ferroelectric behavior in nature. For example, if J; > 0 the system presents
ferroelectric state while if J; < 0 the system presents anti-ferroelectric state. Ising

hysteresis can be generated from mean field calculation and Monte Carlo simulation.
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2.4 Mean field theory
In mean field theory, it is assumed that each local polarization can be
calculated from the average of all molecular dipole moments in the system where

fluctuations can be neglected i.e.

P=%<§:ui>, (2.4)

where N is the number of molecules. From the Ising Hamiltonian, the mean field
writes

uu, =@, —P+P)u,—P+P)
= P*+ P(u, = P)+ Plu, = P)+ (1, = P)u, = P) 1
where fluctuations term (u, — P)(u, — P) is discarded and wuu; is fed back into Eq.

(2.3). Then the Ising Hamiltonian can be rewritten as
1
H:—EZJy[—PZ+P(ui+uj)]—ZEiui . (2.6)
(i) i

The exchange interaction is further assumed thatZJ i =z =J , where z is the
J

number of nearest neighbor of each molecular dipole moment. Therefore,

<Z$J ; = NJ and Eq. (2.6) becomes
i]

H =%JNP2 ~[E+JP)] u, . 2.7)
In addition, the partition function takes a form

1 2 1 2 1 2
—BINP —RINP ~ ~BINP
Z =e? Zeﬂ(‘mm“" =e? (e +e")=e?>  2cosh(x), (2.8)
i
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where x=f(JP+E), f=1/k,T and k, is Boltzmann’s constant. Polarization can

be found from expectation value Pzz,u,-p(ul-), where u, =%1 and p(u,) is

Boltzmann probability, i.e.

% BINP?

P=1P, +(-1)p, ==

7 (" —e™™) = tanh(x) (2.9)

1

= tanh[S(JP + E)]

From Eq. (2.9), it is implied that mean field theory can be used to extract polarization

under effect of electric field.

2.4.1 Dynamic mean field equation
Mean field theory can also be used to extract polarization under effect of time
dependent electric field, called the dynamic mean field equation. From master
equation [28],

APy .yt sty -
dt

t
) = —Z:Wi(ui)P(u1 yeees U yeey Uy 2 )

(2.10)
DA TR o (TR TR TIEY) )

where P(u,,...,u,,....,u, : t) is the probability in changing molecular dipole moment
configuration (u,,...,u,,....,u, ) and W, (u;) is the probability in finding molecular

APyt y.slly 0 1)

dipole moment at the u; state. In equilibrium state, = =0, Eq.
(2.10) becomes
W (u )Py ysth ety 2 8) =W (=1, ) P(Uy = ol 1 1) (2.11)

Replacing P(u,,...,u,,...,u, ) with Boltzmann probability into Eq. (2.11), it leads to
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VVI(MI) _ e*/in“i
Wi (-u) e

, (2.12)

2 3

where H, :ZJU"UJ‘ + E, is local field. As e” =1+x+%+%+..., Eq. (2.12) gives
j . .

Wi(ui):z%_(l—uitanhﬂHi), (2.13)

where 7 depends on temperature and other dipole moments. The average of dipole

moments is given by
<ui>:ZuiP(ul,...,ui,...,uN). (2.14)
Multiplication u, and replacing W, (u,) and <u,> into Eq. 2.10, it gives

d<ui>
dt

=—(u,)+tanh S(H ), (2.15)

where <H l.> = ZJ i <u j>+ E.. Since polarization can be calculated from the average
J

of all molecular dipole moments in the system, Eq. (2.15) becomes

r% = —P(t) + tanh ,B[E(t) +>.J jP(t)j ) (2.16)

2.5 Monte Carlo simulation

Monte Carlo simulation [29] is generally used to simulate the random thermal
fluctuation of the system in changing from state to state and calculate the expectation
value of the observable quantities. The advantage of this technique is that it requires
only a small fraction of states of the system to get accurate estimates of physics
quantities. Monte Carlo simulation contains important principles that are important

sampling, Markov process and Metropolis algorithm.
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2.5.1 Important sampling
The expectation value <Q> can be calculated from averaging the observable
quantity Q over all states g in the system, weighting each with its Boltzmann

probability,

ZQu exp(— E/J/kBT)
<Q> ) ﬂzexp(— E, /kBT)

(2.17)

This is tractable in the very small systems, but in the large systems, the expectation

value <Q> has to be estimated from the averaging of the observable quantity Q over M
subset of important states x in the system. This M subset of important states g can

be chosen according to the probability p, =Z 7 exp(— E, /kBT ) In general, the

estimable <Q> is given by

M
S0, ol 5, 1)
0, = , (2.18)
Zp: exp(— E, /kBT)

i=1

where Q,, is called the estimator of <Q> It has the property that, if the number of M
subset of important states u increase, O, — <Q> when M — 0. Notice that the

Boltzmann factors cancel and the estimator of <Q> becomes

0y =—2.0, (2.19)

1 M
M5
2.5.2 Markov process

Markov process is a mechanism which generated new state v from a given
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state . The probability for transition from state x to state v is called the transition

probability P(,u - V) which must also satisfy the constraint,

> P(u—>v)=1. (2.20)

v

Additionally, Markov process should satisfy two further conditions that is
e The condition of ergodicity: The transition probability between any two states
must be non-zero.

e The condition of detailed balance: The transition rate into and out of any state u

must be equal i.e.

Plusv) p.  (~(E,~E,)
P(V%ﬂ)_pﬂ_eXp( kT ] !

In general, Markov process decomposes the transition probability down into two parts

P —v)=glu—>v)Adu—v). (2.22)
In Eq. (2.22), g(,u - V) is the selection probability to generate new state v from
given state x, and A(ﬂ > v) is the acceptance probability to accept the new state v

from given state u

Plu—sv)_glusv)du—-v)_  (-(E -E,)
) ( v exp| KT | (2.23)

2.5.3 Metropolis algorithm

Metropolis algorithm is a method which considered the transition probability
from given state x4 to new state v, where g(,u — v) for each of the possible state v

is chosen to be equal. Suppose there are N possible states which can be reach from

state u . Each of the selection probabilities takes a form
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glu—>v)=gl > )= (2.24)

With these selection probabilities, Eq. (2.23), becomes

CA(usv) [~ -E,)
=% ﬂ) - exp(—kBT j (2.25)

Further, the Metropolis aims to push the system to its equilibrium state as fast as

possible so the acceptance probability is set to

—\E, - E
exp(%} ,E,—E, >0

Al —>v)= (2.26)

2.6 Fourier transformation

The Fourier transformation is an operation that transforms the function in one
domain into its corresponding inverse domain e.g. time domain into frequency
domain. The Fourier transformation is a powerful technique in treating various

problems involving the periodic function f(¢#) with period 7 has a form
SO =f@+T). (2.27)
Additionally, this periodic function f(¢) can be represented in term of Fourier series

which contains cosine and sine functions as

f(t)= %ao + Y (a, cos 2mf,t + b, sin 27mf,t) (2.28)

n=1

or

@)= %ao + icn sin(2mfyt— g, ) . (2.29)
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As can be seen, the periodic function f(¢) represents a sum of sinusoidal components
having different frequency f, =nf,, the so called frequency of the n™ harmonic.

Frequency of the 1" harmonic /1 1s called fundamental frequency, because it has the

same period as the function 7'=1/f,. The coefficients a, and b, are known as
Fourier coefficients of n” harmonic of the real and imaginary parts respectively,

where the coefficients ¢, and the angles ¢, = tan'(a,/b,) are denoted as Fourier

coefficients of n™ harmonic and phase angles, respectively. There Fourier coefficients

can be evaluated from
2 T/2
“w=7 Tf/ { (¢t (2.30)
2 T/2
a, == [ f(t)cos(2mf,t)dt n=1,2,3, ... (2.31)
71—T/2
2 T/2
by == [ £(e)sin(mf )t n=1,2,3, ... (2.32)
-T/2
T/2

c, :% [ £(@)sinnfyt -, )at n=1,2,3, ... (2.33)

-T/2

2.6.1 Continuous Fourier transformation
The continuous Fourier transformation can be used to transform the simple

function that is integral. The forward Fourier transformation has a form

F(f)= T 1(2)exp(= i2ft )t . (2.34)

In Eq. (2.34), the function in time domain can be transformed using integral operation
into the corresponding function in frequency domain. On the other hand, the inverse

Fourier Transformation has a form
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= TF( f)exp(i2zmf )df . (2.35)

In Eq. (2.35), the function in frequency domain can be transformed by using integral

operation back into the corresponding function in time domain.

2.6.2 Discrete Fourier transformation
The discrete Fourier transformation can be used to transform, instead of a
function, the set of discrete data points. The forward discrete Fourier transformation

has form
F(k)=Y" f(n)exp(~i2mk/N). (2.36)

In Eq. (2.36), the set of data points in time domain can be transformed by using
summation operator in finding corresponding set of data points in frequency domain.

The inverse discrete Fourier Transformation has a form
1 N—
=—z k)exp(i2mk | N). (2.37)
N

In Eq. (2.37), the set of data points in frequency domain can be transformed by using
another summation operator in finding corresponding set of data points in time
domain, where N is number of data points per period. In the discrete Fourier
transformation, the time intervals between data points need to be equal and the
numbers of data points per period should be large enough for specifying the
complicate function. The discrete Fourier transformation then requires much of

computing resource, because it has the number of multiplications of complex number

equal to N*. The more efficient transformation is then be required treating the

problems.
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2.6.3 Fast Fourier transformation

The fast Fourier transformation is an efficient transformation that can
decrease the number of multiplications of complex number (from N to N log;N) by
dividing and rearranging data points into many small groups. After that, the discrete
Fourier transform will be operated on the data in each group. Then, the transforming
data points are combined into larger groups and re-transformed. The re-grouping and
re-transforming go on until all data points merge to one group (with N data points).
Therefore, the most suitable number of data points of the fast Fourier transformation

should be equal to power of two (e.g. 2, 4, 8...).

From the discrete Fourier transformation, W.\" =exp(-2zkn/N) is

substituted into Eq. (2.36),
N-1
)= flapwy. (2.38)
n=0

According to linear property of the discrete Fourier transformation, f(n) can be
divided into 2 groups that is f(2r) for even n and f(2r+1) for odd n where

r=0,1,..., N/2—1. Therefore,

N/2— N/2—
Ferwy + Z @r+ 1, (2.39)
r:0 r=0
And
N/2- N/2-1
Z @y, +wy > fr+1wy, . (2.40)

r=0 r=0

The data points are then rearranged into new functions that is g(r)= f(2r) and

h(r)= f(2r +1), and these lead to



N/2-1 . . N/2-1 i
F(k): Zg(r)WNr/z +Wy zh(’”)WN’/z > (2.41)
r=0 r=0
And
F(k)=G(k)+wEH(k), (2.42)
N/2-1 N/2-1
where G(k)= > g(rJwy,, and H(k)= > h(r)¥y,, . From 1 step of dividing and
r=0 r=0

rearranging data points in to 2 groups, the number of multiplications of complex

number can be specified as follows:

e The number of multiplications of g(r) and W), in G(k) calculation = (N /2)’
e The number of multiplications of 4(r) and W), in H(k) calculation = (N /2)’

e The number of multiplications of H(k) and W/} in F(k) calculation= N
As a result, the number of multiplications of complex number therefore equal
to N+N’/2<N’. The diagram of data points flowing into the fast Fourier

transformation (butterfly diagram) by dividing and rearranging data points in 1 step

for N =8 is shown in Fig. 2.8.
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Figure 2.8 Butterfly diagram of the fast Fourier transformation by dividing and

rearranging data points in 1 step for N = 8 (modified from [30]).

In explaining the butterfly diagram in Fig. 2.8 of N /2 is factorization of 2,
g(r) can be divided into 2 groups that is g(2l) for even r and g(2l +1) for odd r
where /=0, 1,.., N/4—1 and h(r) can be divided into 2 groups that is /(2/) for

even r and h(2l+1) for odd » where /=0, 1, ..., N/4—1, i.e.

N /4~ N

~

4-

G(k)= 3 gwy, + .8 gL+ (2.43)
N4 . S .
G(k): (ZI)WNVM +Wy ), Zg (27 + I)WNr/4 (2.44)
1=
and
N/4-1 N/4-1
H(k)= > h@iWwi, + > w2l + 1wy (2.45)
1=0 =0
N/4-1 N/4-1
H(k)= h(ZZ)WI\l/WM + W3 Zh 21 +1 WAI/WM (2.46)
1=0 r=0

Then, with from 2 steps of dividing and rearranging data points into 4 groups, the

number of multiplications of complex number is:
e The number of multiplications in G(k) calculation = N /2 +2(N/4)’
e The number of multiplications in H(k) calculation= N/2+2(N/4)’
e The number of multiplications of H(k) and W} in F(k) calculation= N
As can be seen, the number of multiplications of complex number therefore

equal to 2N+ N*/4<N+N’/2<N?. The diagram of data points flowing in the
fast Fourier transformation (butterfly diagram) by dividing and rearranging data

points in 2 steps for N = 8 as shown in Fig. 2.9.
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Figure 2.9 Butterfly diagram of the fast Fourier transformation by dividing and

rearranging data points in 2 steps for N = 8 (modified from [30]).

Similarly, if N/4 is factorization of two, the small groups of data points will be

divided and rearranged until the number of data points in each small groups are no

longer be factorized. If the number of data points in each small group is N/2% (a

being the steps of dividing and rearranging data points), the number of multiplications
of complex number therefore equal to aN + N /2% <..<2N+N*/4<N+N?/2
< N’. In case of N is power of two (N =2“ where « is integer), the number of
multiplications of complex number therefore equal to (o —1)2% +(2%)* /2% = a2” or
Nlog, N. As can be seen that the number of multiplications of complex number from

the fast Fourier transformation much less than those from the direct discrete Fourier

transformation especially where N is large as shown in Table 2.1.
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Table 2.1 The number of multiplications of complex number comparison between the

discrete Fourier transformation (DFT) and the fast Fourier transformation (FFT).

DFT FFT
N
N? Nlog, N

2 4 2

4 16 8

8 64 24
256 65,536 2,048
512 262,144 4,608
1,024 1,048,576 10,240




