
CHAPTER 2 

LITERATURE REVIEW 

This chapter contains details on the brief description of necessary concepts 

that relate to the research i.e. ferroelectric properties, BaTiO3 hysteresis measured by 

Sawyer-Tower experiment, Ising hysteresis generated by mean field calculation and 

Monte Carlo simulation, and Fourier transformation.   

2.1 Ferroelectric properties and BaTiO3

In crystallography, crystal structure can be primarily divided into 7 crystal 

systems which are cubic, tetragonal, orthorhombic, rhombohedral, hexagonal, 

monoclinic and triclinic. Further, these can be further classified into 32 point groups 

according to their crystallographic symmetry. However, only 21 point groups do not 

have a center of symmetry. Of these 21 point groups, 20 point groups correspond to 

materials which have the properties that an applied mechanical stress (on the 

materials) produces an electric field or on the other hand an electric field produces a 

mechanical stress. Such materials can be referred to as “piezoelectric” materials. In 

addition, these 20 piezoelectric materials can be subdivided into 10 sub-materials that 

have spontaneous polarization or electrical polarity. These polar groups have the 

property that the change in temperature induces an electric field. Such materials are 

called “pyroelectric” materials. A subset of these pyroelectric can have their 

spontaneous polarization reversed or enhanced by the application of a high enough 

electric field. This subset of the pyroelectric is the “ferroelectric” materials. The 

classification of the crystal structures showing the division into piezoelectric,
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pyroelectric and ferroelectric can be shown in Fig. 2.1. 

Figure 2.1 The classification of crystal structures showing the division into 

piezoelectric, pyroelectric and ferroelectric materials (modified from [18]). 

Ferroelectric materials generally have transition temperature called the Curie 

point, TC. At this Curie point, the material gets transformed from ferroelectric to 

paraelectric phases (see Fig. 2.2) as indicated by rapid decrease in the dielectric 

constant with increasing temperature. Above TC, the material is in cubic structure and 

in paraelectric phase. In the paraelectric phase, the center of positive charge of the 

crystal coincides with the center of negative charge. As a result, the spontaneous 

polarization ceases. However, below TC, the material is in ferroelectric phase where 

the center of positive and the center of negative charges are not at the same place. 

Therefore, the spontaneous polarization, i.e. the dipole moment per unit volume or the 

charge per unit area along the spontaneous polarization axis, is then developed. 

Additionally, this spontaneous polarization can be switched with electric field. 
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the molecular dipole moment is called Ising dipole moment, where each Ising dipole 

moment interacts only with its neighboring dipoles as shown in Fig. 2.7. 

Figure 2.7 Ising dipole moments configuration, where each Ising dipole moment iu

(white) interacts mostly with its nearest neighbors ju  (gray). 

The Hamiltonian of Ising model under the presence of external field has a 

form

i
ii

ji
jiij uEuuJH

,2
1 , (2.3)

where
ji

jiij uuJ
,2

1  is the interaction between Ising dipole moment iu  and its 

nearest neighboring ju , the symbol  indicates that only neighboring is considered 

in the sum, and 
i

iiuE  is the interaction between electric field and Ising dipole 

moment iu . In term of the exchange interaction Jij, the model can represents 

ferroelectric behavior in nature. For example, if Jij > 0 the system presents 

ferroelectric state while if Jij < 0 the system presents anti-ferroelectric state. Ising 

hysteresis can be generated from mean field calculation and Monte Carlo simulation. 
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2.4 Mean field theory 

In mean field theory, it is assumed that each local polarization can be 

calculated from the average of all molecular dipole moments in the system where 

fluctuations can be neglected i.e. 

N

i
iu

N
P

1

1 , (2.4)

where N is the number of molecules. From the Ising Hamiltonian, the mean field 

writes

),)(()()(

))((
2 PuPuPuPPuPP

PPuPPuuu

jiji

jiji  (2.5)

where fluctuations term ))(( PuPu ji  is discarded and jiuu  is fed back into Eq. 

(2.3). Then the Ising Hamiltonian can be rewritten as 

i
ii

ji
jiij uEuuPPJH

,

2 )]([
2
1 . (2.6)

The exchange interaction is further assumed that JJzJ
j

ij
~

, where z is the 

number of nearest neighbor of each molecular dipole moment. Therefore, 

NJJ
ji

ij
,

 and Eq. (2.6) becomes 

i
iuJPEJNPH )][

2
1 2 . (2.7)

In addition, the partition function takes a form 

)cosh(2)(
222

2
1

2
1

)(2
1

xeeeeeeZ
JNPxxJNP

i

uEJPJNP

i
i , (2.8)
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where )( EJPx , TkB/1  and Bk  is Boltzmann’s constant. Polarization can 

be found from expectation value
i

ii upP )( , where 1iu  and )( iup  is 

Boltzmann probability, i.e. 

)](tanh[

)tanh()()1(1

2

2
1

EJP

xee
Z

epPP xx

i

JNP

. (2.9)

From Eq. (2.9), it is implied that mean field theory can be used to extract polarization 

under effect of electric field.

2.4.1 Dynamic mean field equation 

 Mean field theory can also be used to extract polarization under effect of time 

dependent electric field, called the dynamic mean field equation. From master 

equation [28], 

),:,...,,...,()(

):,...,,...,()(
):,...,,...,(

1

1
1

tuuuPuW

tuuuPuW
dt

tuuudP

Ni
i

ii

Ni
i

ii
Ni

(2.10)

where  ):,...,,...,( 1 tuuuP Ni  is the probability in changing molecular dipole moment 

configuration ( Ni uuu ,...,,...,1 ) and )( ii uW  is the probability in finding molecular 

dipole moment at the iu  state. In equilibrium state, 0):,...,,...,( 1

dt
tuuudP Ni , Eq. 

(2.10) becomes 

):,...,,...,()():,...,,...,()( 11 tuuuPuWtuuuPuW NiiiNiii . (2.11)

Replacing ),...,,...,( 1 Ni uuuP  with Boltzmann probability into Eq. (2.11), it leads to 
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ii

ii

uH

uH

ii

ii

e
e

uW
uW

)(
)( , (2.12)

where i
j

jiji EJH  is local field. As ...
!3!2

1
32 xxxex , Eq. (2.12) gives 

)tanh1(
2
1)( iiii HuuW , (2.13)

where  depends on temperature and other dipole moments. The average of dipole 

moments is given by  

i
Niii uuuPuu ),...,,...,( 1 . (2.14)

Multiplication iu  and replacing )( ii uW  and iu  into Eq. 2.10, it gives 

ii
i Hu

dt
ud

tanh , (2.15)

where i
j

jiji EJH . Since polarization can be calculated from the average 

of all molecular dipole moments in the system, Eq. (2.15) becomes  

j
j tPJtEtP

dt
tdP )()(tanh)()( . (2.16)

2.5 Monte Carlo simulation 

Monte Carlo simulation [29] is generally used to simulate the random thermal 

fluctuation of the system in changing from state to state and calculate the expectation 

value of the observable quantities. The advantage of this technique is that it requires 

only a small fraction of states of the system to get accurate estimates of physics 

quantities. Monte Carlo simulation contains important principles that are important 

sampling, Markov process and Metropolis algorithm.   
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2.5.1 Important sampling 

The expectation value Q  can be calculated from averaging the observable 

quantity Q over all states  in the system, weighting each with its Boltzmann 

probability, 

TkE

TkEQ
Q

B

B

exp

exp
. (2.17)

This is tractable in the very small systems, but in the large systems, the expectation 

value Q  has to be estimated from the averaging of the observable quantity Q over M

subset of important states  in the system. This M subset of important states can

be chosen according to the probability TkEZp Bexp1 . In general, the 

estimable Q  is given by 

M

i
B

M

i
B

M

TkEp

TkEpQ
Q

ii

iii

1

1

1

1

exp

exp
, (2.18)

where MQ  is called the estimator of Q . It has the property that, if the number of M

subset of important states  increase, QQM  when M . Notice that the 

Boltzmann factors cancel and the estimator of Q  becomes 

M

i
M i

Q
M

Q
1

1 . (2.19)

2.5.2 Markov process 

Markov process is a mechanism which generated new state from a given 
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state . The probability for transition from state  to state  is called the transition 

probability P  which must also satisfy the constraint, 

1P . (2.20)

Additionally, Markov process should satisfy two further conditions that is 

The condition of ergodicity: The transition probability between any two states 

must be non-zero.

The condition of detailed balance: The transition rate into and out of any state 

must be equal i.e. 

Tk
EE

p
p

P
P

B

)(
exp . (2.21)

In general, Markov process decomposes the transition probability down into two parts 

AgP . (2.22)

In Eq. (2.22), g  is the selection probability to generate new state from 

given state , and A  is the acceptance probability to accept the new state 

from given state 

Tk
EE

Ag
Ag

P
P

B

)(
exp . (2.23)

2.5.3 Metropolis algorithm 

Metropolis algorithm is a method which considered the transition probability 

from given state to new state , where g  for each of the possible state 

is chosen to be equal. Suppose there are N possible states which can be reach from 

state . Each of the selection probabilities takes a form 
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N
gg 1 . (2.24)

With these selection probabilities, Eq. (2.23), becomes 

Tk
EE

A
A

P
P

B

)(
exp . (2.25)

Further, the Metropolis aims to push the system to its equilibrium state as fast as 

possible so the acceptance probability is set to 

.0;1

0;exp

EE

A

EE
Tk

EE

B

(2.26)

2.6 Fourier transformation 

The Fourier transformation is an operation that transforms the function in one 

domain into its corresponding inverse domain e.g. time domain into frequency 

domain. The Fourier transformation is a powerful technique in treating various 

problems involving the periodic function )(tf  with period T has a form 

)()( Ttftf . (2.27)

Additionally, this periodic function )(tf  can be represented in term of Fourier series 

which contains cosine and sine functions as 

1
000 )2sin2cos(

2
1)(

n
nn tnfbtnfaatf (2.28)

or

1
00 )2sin(

2
1)(

n
nn tnfcatf . (2.29)
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As can be seen, the periodic function )(tf represents a sum of sinusoidal components 

having different frequency 0nffn , the so called frequency of the nth harmonic. 

Frequency of the 1th harmonic f1 is called fundamental frequency, because it has the 

same period as the function 0/1 fT . The coefficients na  and nb  are known as 

Fourier coefficients of nth harmonic of the real and imaginary parts respectively, 

where the coefficients nc  and the angles )/(tan 1
nnn ba  are denoted as Fourier 

coefficients of nth harmonic and phase angles, respectively. There Fourier coefficients 

can be evaluated from 

dttf
T

a
T

T

2/

2/
0

2
(2.30)

dttnftf
T

a
T

T
n 0

2/

2/

2cos2 n = 1, 2, 3, … (2.31)

dttnftf
T

b
T

T
n 0

2/

2/

2sin2  n = 1, 2, 3, … (2.32)

dttnftf
T

c n

T

T
n 0

2/

2/

2sin2  n = 1, 2, 3, … (2.33)

2.6.1 Continuous Fourier transformation 

The continuous Fourier transformation can be used to transform the simple 

function that is integral. The forward Fourier transformation has a form 

dtftitffF 2exp . (2.34)

 In Eq. (2.34), the function in time domain can be transformed using integral operation

into the corresponding function in frequency domain. On the other hand, the inverse 

Fourier Transformation has a form  
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dftfifFtf 2exp . (2.35)

In Eq. (2.35), the function in frequency domain can be transformed by using integral 

operation back into the corresponding function in time domain. 

2.6.2 Discrete Fourier transformation 

The discrete Fourier transformation can be used to transform, instead of a 

function, the set of discrete data points. The forward discrete Fourier transformation 

has form 

1

0
/2exp

N

n
NnkinfkF . (2.36)

In Eq. (2.36), the set of data points in time domain can be transformed by using 

summation operator in finding corresponding set of data points in frequency domain. 

The inverse discrete Fourier Transformation has a form  

1

0
/2exp1 N

n
NnkikF

N
nf . (2.37)

In Eq. (2.37), the set of data points in frequency domain can be transformed by using 

another summation operator in finding corresponding set of data points in time 

domain, where N  is number of data points per period. In the discrete Fourier 

transformation, the time intervals between data points need to be equal and the 

numbers of data points per period should be large enough for specifying the 

complicate function. The discrete Fourier transformation then requires much of 

computing resource, because it has the number of multiplications of complex number 

equal to 2N . The more efficient transformation is then be required treating the 

problems. 
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2.6.3 Fast Fourier transformation 

The fast Fourier transformation is an efficient transformation that can 

decrease the number of multiplications of complex number (from N2 to N log2N) by 

dividing and rearranging data points into many small groups. After that, the discrete 

Fourier transform will be operated on the data in each group. Then, the transforming 

data points are combined into larger groups and re-transformed. The re-grouping and 

re-transforming go on until all data points merge to one group (with N data points). 

Therefore, the most suitable number of data points of the fast Fourier transformation 

should be equal to power of two (e.g. 2, 4, 8…). 

From the discrete Fourier transformation, NknW kn
N /2exp  is 

substituted into Eq. (2.36), 

1

0

N

n

kn
NWnfkF . (2.38)

According to linear property of the discrete Fourier transformation, )(nf  can be 

divided into 2 groups that is rf 2  for even n and 12rf  for odd n where 

12/...,,1,0 Nr . Therefore,

12/

0

)12(
12/

0

2 122
N

r

rk
N

N

r

kr
N WrfWrfkF , (2.39)

And

12/

0
2/

12/

0
2/ 122

N

r

kr
N

k
N

N

r

kr
N WrfWWrfkF . (2.40)

The data points are then rearranged into new functions that is rfrg 2  and 

12rfrh , and these lead to 
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12/

0
2/

12/

0
2/

N

r

kr
N

k
N

N

r

kr
N WrhWWrgkF , (2.41)

And

kHWkGkF k
N , (2.42)

where
12/

0
2/

N

r

kr
NWrgkG  and 

12/

0
2/

N

r

kr
NWrhkH . From 1 step of dividing and 

rearranging data points in to 2 groups, the number of multiplications of complex 

number can be specified as follows: 

The number of multiplications of rg  and kr
NW 2/  in kG  calculation = 22/N

The number of multiplications of rh  and kr
NW 2/  in kH  calculation = 22/N

The number of multiplications of kH  and k
NW  in kF  calculation = N

As a result, the number of multiplications of complex number therefore equal 

to 2/2NN < 2N . The diagram of data points flowing into the fast Fourier 

transformation (butterfly diagram) by dividing and rearranging data points in 1 step 

for N = 8 is shown in Fig. 2.8. 

DFT of 

N/2 points 

DFT of 

N/2 points 
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Figure 2.8 Butterfly diagram of the fast Fourier transformation by dividing and 

rearranging data points in 1 step for N = 8 (modified from [30]). 

In explaining the butterfly diagram in Fig. 2.8 of 2/N  is factorization of 2, 

rg  can be divided into 2 groups that is lg 2  for even r and 12lg  for odd r

where 14/...,,1,0 Nl  and rh  can be divided into 2 groups that is lh 2  for 

even r and 12lh  for odd r where 14/...,,1,0 Nl , i.e. 

14/

0

)12(
2/

14/

0

2
2/ 122

N

r

rk
N

N

l

kr
N WlgWlgkG (2.43)

14/

0
4/2/

14/

0
4/ 122

N

r

kr
N

k
N

N

l

kr
N WlgWWlgkG (2.44)

and

14/

0

)12(
2/

14/

0

2
2/ 122

N

r

rk
N

N

l

kr
N WlhWlhkH (2.45)

14/

0
4/2/

14/

0
4/ 122

N

r

kr
N

k
N

N

l

kr
N WlhWWlhkH . (2.46)

Then, with from 2 steps of dividing and rearranging data points into 4 groups, the 

number of multiplications of complex number is: 

The number of multiplications in kG  calculation = 24/22/ NN

The number of multiplications in kH  calculation = 24/22/ NN

The number of multiplications of kH  and k
NW  in kF  calculation = N

As can be seen, the number of multiplications of complex number therefore 

equal to 222 2/4/2 NNNNN . The diagram of data points flowing in the 

fast Fourier transformation (butterfly diagram) by dividing and rearranging data 

points in 2 steps for N = 8 as shown in Fig. 2.9. 



22

Figure 2.9 Butterfly diagram of the fast Fourier transformation by dividing and 

rearranging data points in 2 steps for N = 8 (modified from [30]). 

Similarly, if 4/N  is factorization of two, the small groups of data points will be 

divided and rearranged until the number of data points in each small groups are no 

longer be factorized. If the number of data points in each small group is 2/N  (

being the steps of dividing and rearranging data points), the number of multiplications 

of complex number therefore equal to 2/4/2...2/ 222 NNNNNN  

2N . In case of N is power of two ( 2N  where  is integer), the number of 

multiplications of complex number therefore equal to 22/)2(2)1( 2  or 

NN 2log . As can be seen that the number of multiplications of complex number from 

the fast Fourier transformation much less than those from the direct discrete Fourier 

transformation especially where N is large as shown in Table 2.1. 
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Table 2.1 The number of multiplications of complex number comparison between the 

discrete Fourier transformation (DFT) and the fast Fourier transformation (FFT). 

N
DFT 

2N  

FFT 

NN 2log  

2 4 2 

4 16 8 

8 64 24 

256 65,536 2,048 

512 262,144 4,608 

1,024 1,048,576 10,240 


