TABLE OF CONTENT

P P P P P P	age
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	v
THAI ABSTRACT	viii
LIST OF TABLES	xix
LIST OF FIGURES	xx
ABBREVIATIONS	xxvi
CHAPER I: INTRODUCTION	
1.1 Statement and significance of the problem	1
1.2 Literature reviews	5
1.2.1 Articular cartilage	5
1.2.2 Composition of articular cartilage matrix	12
1.2.2.1 Collagens	12
1.2.2.1.1 Cartilage collagen	14
- Type II collagen	14
Opyright ^O - Type XI collagen	16
- Type IX collagen	17
- Other collagens	18
1.2.2.1.2 Collagen biosynthesis	19
- Step of collagen biosynthesis	19
1.2.2.2 Proteoglycan	23

	1.2.2.2.1 Structure of proteoglycan	23
	1.2.2.2.2 Cartilage proteoglycan	29
	- Aggrecan	29
	- Other hyaluronan-binding	31
	proteoglycans	
	- Small leucine-rich proteoglycans	31
	(SLRs)	
	1.2.2.2.1 Proteoglycan biosynthesis	33
1.2.3	Cartilage extracellular matrix	43
	1.2.3.1 Aggrecan	45
	1.2.3.2 The collagen network	45
	1.2.3.3 Collagen associated molecules	46
	1.2.3.4 Other cartilage extracellular matrix constituents	46
	1.2.3.5 Other proteins in cartilage	48
1.2.4	Cartilage matrix metabolism	48
1.2.5	Osteoarthritis	51
	1.2.5.1 Pathobiology of osteoarthritis	51
	1.2.5.2 Degeneration of articular cartilage in osteoarthritis	54
	1.2.5.2.1 Cartilage degradation	54
	- Aggrecanase	54
	- Matrix metalloproteinases (MMPs)	61
	1.2.5.2.2 Cartilage synthesis	69
	1.2.5.2.3 Inflammation	69

	1.2.5.3 Symptoms and signs	75
	1.2.5.4 Treatment of osteoarthritis	76
	1.2.5.4.1 Pharmacologic treatment	76
	1.2.5.4.2 Non-pharmacologic treatment	78
	1.2.5.4.3 Alternative treatments	78
	1.2.5.4.4 Surgical treatment	79
1.2.6	Sesamum indicum and Alpinia galanga	79
	1.2.6.1 Sesamum indicum and sesamin	79
	1.2.6.2 Alpinia galanga	80
1.3 Objectiv	ves	82
CHAPTER	II: MATERIALS AND METHODS	
2.1 Chemic	als	83
2.2 Prepara	tions of extracts	83
2.2.1	Preparation of Alpinia galanga extracts	83
2.2.2	Isolation of active compound of acetone fraction of	86
	A. galanga	

- 2.2.3Preparation of sesamin from Sesamum indicum Linn.882.3Tissue/cell cultures and treatments892.3.1Porcine cartilage explant preparation and treatment89
 - 2.3.2 Human articular chondrocyte (HAC) culture and treatment 89

xiv

2.4	In vivo ex	aperiment	90
2.5	Analytica	l methods	91
	2.5.1	Cytotoxicity detections	91
	2.5.2	Measurement of s-GAG levels	92
	2.5.3	Measurement of HA levels	92
	2.5.4	Gelatin zymography	93
	2.5.5	Quantitation of uronic acid remaining in cartilage tissue	93
	2.5.6	Measurement of hydroxyproline release and remaining	94
	2.5.7	Gene expression analysis	94
	2.5.8	Measurement of protein level	97
	2.5.9	Protein extraction and western blot analysis	97
	2.5.10	Western blots for aggrecanase activities	98
	2.5.11	Immunohistochemistry analysis	99

CHAPTER III: RESULTS

3.1	Investiga	tion of chondroprotective effect of Alpinia galanga	100
	extracts a	and screening for active phytochemical	
	3.1.1	Chondroprotective effect of hexane, acetone,	100
		ethylacetate, and methanol extracts of Alpinia galanga in	
		porcine cartilage explant induced inflammation	
		using IL-1β	
	3.1.2	The isolation of active compound in acetone extract of	105
		A. galanga	

	3.1.3	The effect of <i>p</i> -hydroxycinnamaldehyde on porcine	108
		cartilage explant	
3.2	Investigat	tion of chondroprotective effect of sesamin isolated	110
	from Sesc	amum indicum Linn.	
	3.2.1	Chondroprotective effect of sesamin in porcine cartilage	110
		explant induced inflammation using IL-1 β	
3.3	Investigat	tion of molecular mechanisms of chondroprotective effect	114
	of <i>p</i> -hydr	oxycinnamaldehyde and sesamin in human articular	
	chondroc	ytes (HACs)	
	3.3.1	Cytotoxicities of <i>p</i> -hydroxycinnamaldehyde and	114
		sesamin in HACs	
	3.3.2	The effects of <i>p</i> -hydroxycinnamaldehyde and sesamin	116
		on human articular chondrocytes	
	3.3.3	The effects of <i>p</i> -hydroxycinnamaldehyde and sesamin on	119
		catabolic and anabolic gene expressions in HACs	
3.4	Investigat	tion of chondroprotective effect of sesamin in long-term	125
	porcine ca	artilage explant culture induced inflammation using IL-1 β	
	3.4.1	The effect of sesamin on proteoglycans (PGs) degradation	125
	3.4.2	The effect of sesamin on collagen degradation	128
3.5	Investigat	tion of molecular mechanism of chondroprotective	131
	effect of s	sesamin	
	3.5.1	The effect of sesamin on ADAMTS activities	131
	3.5.2	The effect of sesamin on MMP-1, MMP-3 and MMP-13	133
		expressions	

3.6	Investigati	ion of sesamin effect on IL-1 β signal transduction in HACs	136
	3.6.1	The effect of sesamin on IL-1 β induces MAPK signaling	136
		pathway in HAC	
	3.6.2	The effect of sesamin IL-1 β induces NF- κ B transcription	140
		factor in HAC	
3.7	Investig	ation of sesamin effect on osteoarthritis pathological	144
	progress	ion in papain-induced osteoarthritis (OA) rat model	
	3.7.1	The effect of sesamin on the cartilage and chondrocyte	144
		morphology in papain-induced osteoarthritis (OA)	
		rat model	
	3.7.2	The effect of sesamin on the degradation of extracellular	146
		matrix (ECM) molecules in papain-induced osteoarthritis	
		(OA) rat model	
3.8	Investigat	tion of the chondroprotective effect of the combination	150
	between	sesamin and glucosamin-sulfate	
	3.8.1	Comparison of glucose derivatives effects on cartilage	150
		degradation	
		3.8.1.1 Chondroprotective effects of Glc, GlcN-S, GlcA	151
		and GlcN-HCl in porcine cartilage explants	
		3.8.1.2 Cytotoxic effects of Glc, GlcN-S, GlcA and GlcN-	154
		HCl in HAC	
		3.8.1.3 Effects of Glc, GlcN-S, GlcA and GlcN-HCl on	156
		HA release and MMP-2 activity in	
		IL-1β-treated-HAC	

	3.8.1.4 Effects of Glc, GlcN-S, GlcA and GlcN-HCl	158
	on catabolic (MMPs) gene expression in HAC	
	3.8.1.5 Effects of Glc, GlcN-S, GlcA and GlcN-HCl on	160
	anabolic gene expressions in HAC	
3.8.2	The additive chondroprotective effect of sesamin and	162
	GlcN-S on porcine cartilage explant	

CHAPTER IV: DISCUSSION AND CONCLUSION

4.1	The chondroprotective effect of Alpinia galanga extracts	172
	and its active phytochemical	
4.2	The chondroprotective effect of sesamin	172
4.3	The comparison of chondroprotective effect between	172
	<i>p</i> -hydroxycinnamaldehyde and sesamin	
4.4	Chondroprotective effect of sesamin, its molecular mechanism	173
	and its effect in animal model	
4.5	Chondroprotective effects of glucose derivatives and the	175
	additive effect of sesamin	
SUI	MMARY	178
FUI	RTHER STUDY	179
RE	FERENCES	180

xviii

APPENDICES	
APPENDIX A	217
APPENDIX B	222
APPENDIX C	224
PUBLICATIONS FOR THESIS	229
CURRICULUM VITA	230

LIST OF TABLES

Table	Table	
1.1	Classification of matrix metalloproteinases	62
2.1	Primers used for semi-quantitative RT-PCR and quantitative	96
	real time PCR	
3.1	The effect of GlcN-S and/or sesamin on the reduction of HA	165
	release from cartilage explant induced with IL-1 β into media	
3.2	The effect of GlcN-S and/or sesamin on the reduction of s-GAG	167
	release from cartilage explant induced with IL-1 β into media	
3.3	The effect of GlcN-S and/or sesamin on the reduction of uronic	169
	acid loss from cartilage explant induced with IL-1 β	

xix

LIST OF FIGURES

Figur	gure		
1.1	Articular cartilage or hyaline cartilage covers the joint surfaces	7	
1.2	Section of bovine articular cartilage stained with Hematoxylin	9	
	& Eosin (H&E)		
1.3	Type I procollagen as a prototype of fibril-forming collagens	13	
1.4	Structure of proteoglycan	25	
1.5	Repeating disaccharide units in proteoglycans	26	
1.6	Structure of the different glycosaminoglycan chains	27	
1.7	Structure of aggrecan monomer	30	
1.8	Schematic overview of synthesis and secretion of aggrecan, link	34	
	protein and hyaluronan by a chondrocyte		
1.9	Synthesis pathway for the formation of UDP-sugars and PAPS	36	
1.10	The different steps in the synthesis of CS, DS, HS and heparin	38	
	glycosaminoglycan chains of the GlcA-Gal-Xyl-linker region		
1.11	Heparan sulfate proteoglycans turn over	42	
1.12	Illustration of components in the cartilage extracellular matrix	44	
1.13	The control of degradation of cartilage extracellular matrix	50	
1.14	Molecular and cellular mechanisms that perpetuate osteoarthritis	53	
1.15	Aggrecanase cleavage sites in the aggrecan core protein	55	
1.16	The structure of ADAMTS-4 and ADAMTS-5	57	

1.17	Schematic representation of the two main aggrecanase-generated	60
	aggrecan cleavage fragments	
1.18	Major signaling pathways for IL-1 beta in chondrocytes and	73
	synovial cells	
2.1	Diagram represents the method of A. galanga extraction and the	85
	dried weight of each crude extract	
2.2	Diagram represents the method of crude acetone extract isolation	87
	for finding out of the active compound	
3.1	Characteristic of Alpinia galanga and it's rhizome	101
3.2	A. galanga extracts affect on the releases of s-GAG, HA from	102
	porcine cartilage tissue to the media and uronic acid remaining	
	in the cartilage tissue	
3.3	Effects of A. galanga extracts on MMP-2 activity	104
3.4	Para-hydroxycinnamaldehyde the active compound of the	107
	acetone fraction of A. galanga	
3.5	Para-hydroxycinnamaldehyde affect on the releases of s-GAG,	109
	HA from porcine cartilage explant to the media and the uronic acid	
	remaining in the cartilage tissue and the production of	
	MMP-2 activity	

xxii

3.6	Characteristic of Sesamum indicum and it's seed	111
3.7	Sesamin: the phytochemical of the Sesamum indicum	112
3.8	Sesamin affect on the releases of s-GAG, HA from porcine	113
	cartilage explant to the media and the uronic acid remaining in	
	the cartilage tissue and the production of MMP-2 activity	
3.9	Cytotoxicities of <i>p</i> -hydroxycinnamaldehyde and sesamin on	115
	human articular chondrocytes	
3.10	Effects of <i>p</i> -hydroxycinnamaldehyde on releases of HA, s-GAG	117
	and MMP-2 from chondrocytes	
3.11	Effects of sesamin on releases of HA, s-GAG and MMP-2 from	118
	chondrocytes	
3.12	Effect of <i>p</i> -hydroxycinnamaldehyde on mRNA expression of	120
	proteinases	
3.13	Effect of sesamin on mRNA expression of proteinases	121
3.14	Effects of <i>p</i> -hydroxycinnamaldehyde on mRNA expression of	123
	cartilage genes (AGG, COL2 and SOX9)	
3.15	Effects of sesamin on mRNA expression of cartilage genes	124
	(AGG, COL2 and SOX9)	

3.16	Sulfated GAG release and uronic acid remaining in porcine	127
	cartilage tissue explant co-treated with IL-1 β and sesamin	
3.17	The hydroxyproline release and remaining in porcine cartilage	129
	explant co-treated with IL-1 β and sesamin	
3.18	The hydroxyproline release and remaining in porcine cartilage	130
	explant explant co-treated with IL-1 β /OSM and sesamin	
3.19	Aggrecanase activities in conditioned media of cartilage explant	132
	treated with IL-1 β and sesamin	
3.20	MMP-1, -3 and -13 mRNA expressions in HAC treated with	134
	IL-1 β and sesamin	
3.21	MMP-1, -3 and -13 protein expressions in HAC treated with	135
	IL-1 β and sesamin	
3.22	The effect of IL-1 β on the phosphorylation of MAPK protein	137
	families	
3.23	The effects of sesamin on the phosphorylation of MAPK protein	139
	families induced by IL-1 β	
3.24	The effect of IL-1 β on the phosphorylations of IKK α/β , I κ B α	141
	and p65 subunit of NFkB transcription factor	

The effects of sesamin on the phosphorylations of IKK α/β ,
$I\kappa B\alpha$ and p65 subunit of NF κB transcription factor induced
by IL-1β
H&E staining in cartilage of normal rats, mornal rats+10 μM
sesamin, papain-induced OA rats, OA rats+1 µM sesamin and

OA rats+10 µM sesamin

3.25

3.26

- 3.27 Safranin O staining in cartilage of normal rats, mornal rats+10 µM 147 sesamin, papain-induced OA rats, OA rats+1 µM sesamin and OA rats+10 µM sesamin
- 3.28 Type II collagen immunohistochemical staining in cartilage of 149 normal rats, mornal rats+10 µM sesamin, papain-induced OA rats, OA rats+1 µM sesamin and OA rats+10 µM sesamin
- The effects of Glc, GlcN-S, GlcA and GlcN-HCl: release of 3.29 152 s-GAG, HA from porcine cartilage tissues to the media, the uronic acid remaining in the cartilage tissue
- Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the production 3.30 153 of MMP-2
- 3.31 The cytotoxic effects of Glc, GlcN-S, GlcA and GlcN-HCl 155

143

145

3.32	Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the release	157
	of HA, s-GAG and MMP-2 from chondrocytes	
3.33	Effect of Glc, GlcN-S, GlcA and GlcN-HCl on the mRNA	159
	expression of proteinases [MMP-3 and MMP-13]	
3.34	Effects of Glc, GlcN-S, GlcA and GlcN-HCl on the mRNA	161
	expression of cartilage genes [AGG and SOX9]	
3.35	Effects of GlcN-S or sesamin or GlcN-S and sesamin on the	164
	release of HA from cartilage explant	
3.36	Effects of GlcN-S or sesamin or GlcN-S and sesamin on the	166
	release of s-GAG from cartilage explant	
3.37	Effects of GlcN-S or sesamin or GlcN-S and sesamin on the	168
	uronic remaining in cartilage explant	

XXV

xxvi

ABBREVIATIONS

Au	absorbance unit
BSA	bovine serum albumin
CS	chondroitin sulfate
CsCl	cesium chloride
CV	coefficient of variation
DS	dermatan sulfate
ELISA	enzyme-linked immunosorbent assay
GAG	glycosaminoglycan
Gal	galactose
Glc	glucose
GlcN	glucosamine
GalNAc	N-acetylgalactosamine
GlcA	glucuronic acid
GlcNAc	N-acetylglucosamine
GlcN-HCl	glucosamine hydrochloride

xxvii

GlcN-S	glucpsamine sulfate
gm	gram
GuHCl	guanidine hydrochloride
h	hour
НА	hyaluronan
НАС	human articular chondrocyte
HABP	hyaluronan binding protein
HPLC	high performance liquid chromatography
HS	heparan sulfate
H_2SO_4	sulfuric acid
IdoA	iduronic acid
IgG	immunoglobulin G
IgM	immunoglobulin M
<i>k</i> _a	association rate constants
k_d	dissociation rate constants
K_d	dissociation equilibrium constants
kDa	kilodaltons
KS	keratan sulfate

xxviii

L	liter
М	molar
mAb	monoclonal antibody
pAb	polyclonal antibody
min	minute
ml	milliliter
mg	milligram
MW	molecular weight
NaCl	sodium chloride
NaHCO ₃	sodium bicarbonate
μg	microgram
μΙ	microliter
ng	nanogram
nm	nanometer
nmol	nanomole
NSAIDs	non-steroid anti-inflammatory drugs
OA	osteoarthritis
PAGE	polyacrylamide gel electrophoresis

xxix

PBS	phosphate buffer saline
PG	proteoglycan
pmol	picomole
RA	rheumatoid arthritis
RU	resonance unit
rpm	revolution per minute
S	second
SD	standard deviation
U	unit
w/v	weight by volume
w/w	weight by weight
°C	degree Celsius
Vt	total volume
Xyl	xylose
U	unit
UV	ultraviolet
V	volting