
CHAPTER II 

BACKGROUND KNOWLEDGE 

This chapter provides background on the biochemical techniques used for rice 

classification, chemical expression in the experiment, and data preparation.  The 

statistical were used to analyse the chemical data were described in previous literature 

reviews. 

2.1 Biochemical Background 

Rice is the seed of a monocot plant of the grass family [1], which is a major 

cereal crop in developing countries and an important staple food for over half of the 

world’s population.  White rice is the name given to milled rice which has had the 

husk, bran, and germ removed.  Oryza sativa and Oryza glaberrima are two main rice 

species which are consumed by humans.  Oryza sativa can be found in many areas 

including tropical Latin America, the West Indies, East, South and Southeast Asia, 

while Oryza glaberrima is only found in Africa. The family Oryza sativa has been 

classified in three subspecies; Indica, Japonica and Javanica, which are basically 

distinguished by habitat, example Indica occurs in tropical areas (Thailand, India), 

while Japonica mainly occurs in temperate areas (Japan, Korea).     

 Over the last decade, fragrant rice has been in great demand in Asian rice 

trading.  This fragrant rice has also been widely accepted in several areas such as 

European countries, North America, and Hong Kong.  It’s price is more expensive 

than others varieties because it has volatile compounds which have are good smell 

especially after cooking.  One of the main volatile compounds is 2-acetyl-1-pyrroline 
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(2AP) and has also been found in various other kinds of food including cooked 

shrimp, bread power (baguette crusts), toast wheat bread, canned sweet corn [15-18], 

and can be recognized with an aroma threshold value as low as 0.1 ppb in water [17].  

This compound has also been reported to be present in the volatile extract of various 

processed foods [15-18].  Since food processing methods usually involve heating, the 

occurrence of 2AP in foods has been suggested to take place during cooking at 

elevated temperatures via a reaction between amino acids and carbohydrates, called 

the Maillard reaction [19, 20].  As a result, early quantitative studies concerning the 

2AP analysis in foods frequently utilized a heat extraction, such as stream-distillation 

and solvent extraction (SDS), followed by the extract analysis using gas 

chromatography-mass spectrometry (GC-MS).  Although there have been a number of 

studies on rice flavour chemistry, for many uniquely flavoured specialty rice types.  

Over 300 volatile compounds have been identified from various cultivars of fragrant 

and non-fragrant rice [21].  The quantity of the chemical compounds identified vary 

with several factors such as the milling processes [14, 22], cooking methods [17], 

storage duration and temperature of storage [14, 23, 24] and chemical extraction 

condition [17, 25, 26].     

During storage, a number of physicochemical and physiological changes occur 

which are usually termed “ageing”.  These changes include pasting properties; and 

changes to colour, flavour, and composition which can affect rice quality [24, 27-30].  

Aged rice tends would be fluffier and harder after being cooked [27-29].  Pushpamma 

and Reddy [31] reported that an optimum cooking time for milled rice was 4-6 min 

for longer than 6 months storage duration after harvest.  The evaluation techniques 
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have been used by several researchers to evaluate the effect of storage on the end-use 

quality of rice [32-34].  The storage conditions are important in the ageing process.  

Nitrogen was superior to air in preserving palatability of cooked rice during brown 

rice storage at 10 °C for 2 years [35].  No great difference in quality was found 

between the brown rice stored in nitrogen versus carbon dioxide [35].  The nitrogen 

storage conditions had little effect on the rice-texture changes while cooking related to 

air storage [28].  Hermetic storage of milled rice at 30 °C for 3 months under vacuum 

or in nitrogen, carbon dioxide, and air atmospheres had little effect on the quantity of 

the reducing sugar, fat acidity, texturometer hardness and adhesiveness of cooked rice 

at 14.7% storage moisture [36].  At 15.7% moisture storage, vacuum package showed 

the least changes in reducing sugar, acidity hardness and adhesiveness, followed by 

gas package and air package [35].  Perez and Juliano [28] found that fragrant rice 

preservation at 15 °C for the first 3 – 4 months effected the reduction of 2AP as 

statistically significant different.          

 As described in other studies, changes to the chemical compounds follow three 

basic patterns as follows. 

1. The chemical compounds decrease when the sample is kept in the longer-

storage durations for example 2-acetyl-1-pyrroline (2AP) [14]. 

2. Some chemical compounds decrease for some storage durations and then 

increase for other storage durations.  The chemical compounds with this 

property could be due to oxidation and reduction reactions among the 

chemical compounds [23, 24, 31]. 

3. Some chemical compounds did not change or were only slightly changed in 

their chemical-compound quantities.  There are fatty acids groups [23, 24].           



7

2.2   Rice Variety Classification 

 There are a number of rice characteristics including colour, flavour and 

composition which affect the quality of different varieties [24, 27-30].  However, the 

characteristics can be changed by environment, postharvest methods and storage 

duration [24, 27-30].  Several publications [5, 7-9, 21-24, 28, 29, 32-36] compared 

and classified rice characteristics of different varieties.  The examples of rice 

characteristic measured were grain colour, grain size, amylose content, aroma 

components, chemical profiles, and DNA sequences.  Those techniques could be 

applied to compare the rice characteristics; for example, rice type as determined by 

grain size, amylose content percentage in order to classify plain or sticky rice [27, 37], 

and 2AP measurements to discriminate aromatic versus non-aromatic rice [9, 21].  In 

terms of the aroma component measurement, the chemical profile data could be 

measured by HS-GC, GC-MS, and the other methods of chemical fingerprint.  Rice 

samples are practically suitable to only some techniques.  Gas measurement is one of 

the most popular methods because it can precisely determine low molecular weights 

without any waste in the measurement process [13, 24].  DNA fingerprint technique is 

another modern method to analyse the nucleotide-base sequence [5, 8, 15].  However, 

the fingerprint cannot discriminate some rice conditions (rice ageing, storage 

condition) so it is not an appropriate method to apply for this research [13, 14, 22, 24, 

26].  The chemical profile data were applied with several chemical extractions [6, 10-

13, 18, 22-26].  These methods can detect chemical-quantity changes compared 

between different conditions (storage conditions, milling method, and storage 

temperature) in the same rice variety [14, 22-24, 27, 30, 36].   
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 A gas extraction technique, called “headspace sampling”, has been reviewed as 

a rapid and efficient technique usually used with capillary GC for the volatile 

fractions analysis in many food samples [13, 38].  In regards to rice, this technique 

has successfully been applied to the volatile analysis in rice foliage [39] and in rice 

cake [6, 40].  The introduction of the handy headspace solid-phase microextraction 

(SPME) process allowed more costly traditional techniques to be replaced.  Despite 

its widespread application, SPME has not been reported as a successfully analytical 

tool for the presence of 2AP in grain of fragrant rice.  Its main limitation comes from 

the difficulties in obtaining valid samples due to poor extraction reproducibility [25].  

Another approach related to headspace sampling called static headspace (SH), has 

also shared popularity in food and flavour research [41-43].  This technique has 

successfully been applied to both qualitative and quantitative approaches.  With static 

headspace sampling, sample headspace volatiles are automatically brought directly to 

the GC, thus offering good validation as well as the possibility for a high number of 

samples to be processed. 

2.3  Chemical Measurement 

In this experiment, the samples of fragrant rice were randomly measured using 

the headspace gas chromatographic (HS-GC) technique to extract the chemical 

components.  The HS-GC technique measures the volatile compounds in a closed vial 

containing various types of samples including extract solvent, or samples that needed 

to be directly analysed.  Only volatile compounds–evaporated above the sample in the 

close vial can be analysed in the GC. 
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2.3.1 Headspace Analysis 

The headspace contains the evaporated volatile components under each 

measurement condition or objective detail.  The HS technique can measure gas, liquid 

and solid samples.  Then the GC is used to test the resulting samples.. 

   1.  Static Headspace is the vapor, which is distributed in the space above the 

sample placed in the closed vial in each condition, and is then brought to be analysed 

using the GC technique or another suitable technique in the next steps.          

 2.  Dynamic Headspace is the vapor, which is distributed in the space above 

the sample placed in the closed vial for each condition, and is absorbed by the 

adsorbent; Silica.  The adsorbent emits volatile compounds, which were there taken to 

analyse with the appropriate technique in next step.   

 In this study, an Agilent G1888 headspace sampler was equipped with the 

Agilent 6890 GC as shown in Figure 2.1.     

 

 

Figure 2.1 Headspace gas chromatography (HS-GC) 
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2.3.2 Headspace Sampler Instrumentation 

1.  The Oven (Figure 2.2) is the equipment machine used for heating and 

controlling the temperatures of the samples, as well as spinning and shaking the 

sample vials.  There are 12 channels that load in the same timing duration.  The oven 

can control the temperature between 40-200 °C.

 

Figure 2.2 Headspace oven 

 2.  The Vial Tray (Figure 2.3) is used to hold the sample vials; there are 72 

channels for sample loading.  The samples are moved from the vial tray to the oven.  

This method can be automatically setup to follow the measurement of volatile 

compounds. 

 

Figure 2.3 Vial tray 
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3. Sample Injector System (Figure 2.4) is the equipment part that transfers 

the gas sample from the vial to the GC system.  There is a vial-sampling 0.5 mm 

needle, which is used to push nitrogen gas into the vial to increase the pressure.  After 

that, the vapor is transferred to sample loops consisting of 2 sizes (1 and 3 mm) which 

can be selected for appropriate samples.  The six-port valve is a vapor-sample 

controller in the vapor-leading system.  There are injections with syringe, sample loop 

and six ports valve while the system is kept temperature controlled between 40-200 

°C. 

 

Figure 2.4 Sample injector equipments 

 4.  The Transfer Line (Figure 2.5) is the transports the gas from the 

headspace sampler to the GC.  This transfer line consists of a small Nickel tube in the 

heat coil which is covered with an insulator.  This allows the temperature of volatile 

sample to be maintained between 40-220 °C. 
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Figure 2.5 Transfer line 

2.3.3 Gas Chromatography (GC) 

 The GC can analyse the volatile components in the mixtures which change to 

vapor at the proper temperature.  The GC components (Figure 2.6) include 3 parts 1) 

carrier gas (bring the vapor samples from injector to GC column), 2) oven (including 

the injection port, column and detector inside), 3) data processing and storage unit. 

 

Figure 2.6 Gas chromatography components [44]
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2.3.4 Separation Mechanism in GC   

   Every GC pattern is related to the distribution and partition of chemical 

molecules in the two different phases; stationary and mobile.  The molecules are 

differently distributed or partitioned based on the relative solubility in each phase.  

The particular chemical compounds are used to extract the components (Figure 2.7) 

when the molecules have past the stationary phase, and are arrested with the different 

ratios and velocities.  The components are spilt from the other components, which 

have a high potential to dissolve in the stationary phase; these components are slower 

than the low potential components.    

 

Figure 2.7 Chromatography [45]

 The chemical-components were first extracted using the GC technique.  First, 

the carrier gas from the compressed gas cylinder is introduced in the mobile phase 

controlled its pressure by a pressure regulator.  Gas flows through the filter when the 

valve is opened.  The moisture and other contaminants are eliminated before it 

reaches the temperature-controlled injector.   
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 The samples are injected to the injection port by the syringe.  The gas 

components in the injection port are subjected to higher temperature than their boiling 

points.  After that, the gas sample, solvent and the vapor are flown to column by 

carrier gas.  The chemical molecules in the gas phase are flown through the column 

and are separated from each others.  Next, the molecules of each component are sent 

to the FID detector.  The chemical signal is measured and sent to be processed and 

recorded in a computer.  The results are plotted in a form of graph having the quantity 

signal (Y axis) with retention time (X axis) which called “chromatogram” (Figure 

2.8). 

 

Figure 2.8 GC chromatogram

2.3.5 Chromatogram 

The gas samples are flown from the beginning to the end of stationary phase 

with different durations based on the structures or chemical characteristics and there is 

the specific time for each peak-area variable.  The specific time is called the retention 

time.  Each retention time is characteristic of each peak-area variable (Figure 2.9).    
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Figure 2.9 Retention time comparison between samples A and B 

 The result from the GC technique is called a “GC Chromatogram”, which 

shows the relationship between time (X axis) and the quantity signal (Y axis).  The 

quantity of a peak-area measured is related to the area under its chromatogram peak.   

2.4  Statistical Methods 

 The objective of several chemical studies is to compare the chemical quantity 

in each component, and to classify or identify the group of subjects based on these 

chemical properties [10-12, 14, 21-24 and 26-29].  There are many statistics to 

compare the mean, median and percentiles which were suitable to the different 

situations.  ANOVA is a standard statistical method to compare the means between 

two or more groups.  The PCA is used to form the principal components (PCs) from 

all chemical components and brought to the main PCs to group the chemical 

properties.  

One of several classification techniques, the discriminant analysis (DA) is the 

best method for the work proposed here, because the corrected classification and 

calibration that is resulted from DA produced models that are optimized over other 
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techniques [53].  The classification model is evaluated by cross validation technique 

[46].  

 2.4.1 Central Tendency Measurement  

 The central-tendency value is the data representative of each group or subject.  

For different solutions, different statistics are appropriate in each case including the 

mean which is suitable with normal distributed data, and the median which is better 

than mean when dealing with non-normal data or small-size samples [10, 11, 30, 42, 

47].   

 2.4.2 Analysis of Variance (ANOVA)  

  ANOVA is used to determine whether samples from two or more groups come 

from populations with equal means.  ANOVA test is fairly straightforward.  As the 

name “analysis of variance” implies, two independent estimates of the variance for 

the dependent variable are compared, one that reflects the general variability of 

respondents within the groups (MSW) and another that represents the different 

between groups attributable to the treatment effects (MSB): 

1. Within-groups estimate of variance (MSW: mean square within groups): 

This is an estimate of the average random respondent variability on the 

dependent variable within a treatment group and is based on deviations of 

individual scores from their respective group means.  MSW is comparable to 

the standard error between two means calculated in the t test as it represents 

variability within groups.  The value MSW is sometimes referred to as the 

error variance. 
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2. Between-groups estimate of variance (MSB: mean square between groups): 

The second estimate of variance is the variability of the treatment group 

means on the dependent variable.  It is based on deviations of group mean 

from the overall mean of all scores.  Under the null hypothesis of no 

treatment effects (i.e., ), this variance estimate, 

unlike MSW, reflects any treatment effects that exist; that is, different in 

treatment means increase the expected value of MSB. 

 Given that the null hypothesis of no group different is true, MSW and MSB 

represent independent estimates of population variance.  Therefore, the ratio of MSB 

to MSW is a measure of how much variance is attributable to the different treatment 

versus the variance expected from random sampling.  The ratio of MSB to MSW gives 

us a value for the F statistic, and can be shown as  

 

 Since group different tend to inflate MSB, large value of the F statistic lead to 

rejection of the null hypothesis of no different in mean across groups.  If the analysis 

has several different treatments (independent variables), then estimates of MSB are 

calculated for each treatment and F statistics are calculated for each treatment.  This 

allows for separate assessment of each treatment. 

 Determine the critical value for the F statistic (Fcritcal value) by referring to the F 

distribution with (k-1) and (N-k) degrees of freedom for a specified level of  (where 

N= N1 + … +Nk and k = number of groups).  If the value of the calculated F statistic 

exceeds Fcrit, conclude that the means across all groups are not equal [47].   
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 2.4.3 Principal Component Analysis (PCA)  

 The PCA method is widely used in multivariate statistics to address several 

problems [10-12].  The most common PCA is used to extract factors and to form 

uncorrelated combinations of the observed variables.  The first component accounts 

for the maximum variance.  Successive components progressively explain smaller 

portions of the variance. The components are all uncorrelated with each other.  The 

PCA method is used to provide the initial factor solution that can even be applied 

when a correlation matrix is singular.   

 The data was set as  where is a random variable vector, 

 is a covariance matrix, and there are  as the eigenvalue 

and eigenvectors with  0.  The random variables (  

were transformed to the linear function of principal components;

 

                  2.1 

 

 where  

    2.2     

  2.3 

 The eigenvectors of the covariance matrix are used to create the linear 

function in equation 2.1, which define the eigenvalue and eigenvector from values of 

covariance and correlation matrix. 
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 2.4.3.1 Covariance Matrix and Correlation Matrix. 

 The covariance matrix ( ) is defined with respect to the population matrix, 

 2.4 

where 

 is the population variance value of variable i and  as population 

covariance value of variable i and k ( ).      

The sample covariance matrix (S) are,   

 

      2.5 

where xij  = the  ith variable of  jth sample  

  i  = the mean value of ith variable. 

The correlation matrix ( ) are defined with respect to the population matrix, 

      2.6 
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     2.7 

where  = population coefficient correlation between variable ith
 and kth  

 The sample correlation matrix (R) are, 

      2.8 

  2.9 

where  = sample coefficient correlation between variable ith and kth 

 xij  = the  ith  variable for  jth sample 

 2.4.3.2 Eigenvalue and Eigenvector  

 An eigenvalue is a value that characterizes the variances of a single mode of 

the full matrix solution. Each eigenvalue corresponds to a distince state where the 

eigenvalue ( ) can be calculated from equations 2.10 and 2.11.  

  for covariance matrix     2.10 

 or  for correlation matrix     2.11 

and the eigenvector (  can be compute from equations 2.12 and 2.13. 

    for covariance matrix    2.12 

or    for correlation matrix    2.13 

From  as value of  PCs 
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   2.14 

  Equation 2.14 shows the sum of all variables in the X data matrix and the sum 

of all PCs variances are equal to the value of the sum of the eigenvalues, which is 

proportion to the PCs variance as described in equation 2.15.   

 2.15 

 Equation 2.15, if the  has a high variance proportion, the  can be 

described by the high variation of the original variable, and  

the first k PCs were high variance.  This principal was used to describe the number of 

PCs to decrease the dimension of the original data, where the number of PCs is less 

than the number of variables.  Y as matrix of independent variable can then be 

computed the eigenvector from equation 2.16.     

X        2.16 

where   = eigenvector from the high eigenvector  

2.4.4 Linear Discriminant Analysis (LDA) and Stepwise Linear Discriminant 

Analysis (SLDA) 

The LDA is the most common statistical method used for classification by 

determining the discriminate varieties or classes [10, 47-49].  It builds a predictive 

model for membership groups.  

Discriminant Analysis Assumption 

1. Independent variables  in each group or class are 

distributed as a Multivariate Normal Distribution. 
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2.  Covariance matrices in every group are equal. 

      for k groups. 

where  = Covariance Matrices of group ith  

  which    

 The model is composed of a discriminant function for two groups (or m-1 

functions for m groups) based on linear combinations of the predictor variables that 

provide the best discrimination among the groups.  The functions are generated from 

samples in each membership group and its functions can be applied to new cases that 

could predict other unknown-group classes.  The LDA model constructs a set of linear 

functions over the predictors, known as discriminant functions such as;   

  pgpggggggg XXXY ...22110   2.17  

 where 

  Xig  = value of the ith variable and gth function 

      ig   = discriminant weight of ith variable in gth function  

            Yg = predicted groups or classes from gth function  

   = error value 

Equation 2.17, can rewrite to matrix format in 2.18. 

  XY T
gg        2.18 

Equation 2.19 is discriminant function from sample data 

pgpggggggg xbxbxbby ...22110

^
    2.19 

Equation 2.19, can rewrite to matrix format in 2.20. 
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XbY T
gg

^
       2.20 

which                                                2.21 

where  =  matrix data (p variables and n samples) 

  gY
^

= vector of the prediction group   

The coefficients were estimated by b, which b gave maximum      

                           2.22 

where  

 = sample between groups matrix 

 = sample within groups matrix 

which can be computed  and from equations 2.23 and 2.24. 

 =  T
i

k

i
i xxxx )()(

1
      2.23 

 = 
k

i

T
iil

n

l
iil xxxx

i

1 1
)()(      2.24 

where 

               2.25 

and            2.26

where   = the mean value of k groups  

                  = the mean value of ith group 
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From the principal condition, the best discriminant function should be the 

maximum  value. 

                2.27 

 where  is the discriminant criterion that can be computed from equation 2.28. 

                                                                      2.28  

where     = invert matrix of  

   = identity matrix 

    = discriminant criterion 

The estimation  should be the multiply  to equation 2.28. 

                                        2.29 

 Find the value from equation 2.29.  This  was the eigenvector of  

matrix which was according with  at (Nontrivial Solution).   

 So  = eigenvalue of  matrix  

and   = maximum eigenvector            

 From the discriminant function in equation 2.19, the discriminant weight was 

brought to give in the discriminant function, and the total linear combination of all 

samples was given a vector discriminant score, where gY
^

 was the best discriminant 

function.  In addition, the discriminant score was used to adjust or predict the group.     

 Wilks' Lambda 

 Wilks' lambda [47] is a statistic used in particular by Discriminant 

factor analysis as a measure of the class center separation. When the classes are 

multinomial with identical means and covariance matrix, the distribution of Wilks’ 
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lambda is known, and therefore it can be used for testing the identity of the population 

means.                

The LDA is a method that minimizes the variance within group and 

maximizes the variance between groups.  

 Stepwise linear discriminant analysis (SLDA) is the variable selection method 

in order to choose variables for the equation based on the lower optimized Wilks’ 

lambda [10, 47-49].   

 Wilks’ lambda [47] may also be used for variable selection in the discriminant 

analysis. It is possible to build a statistic that is approximately F distributed, and 

which is a function of the Wilks' lambdas pertaining to: a given subset of variables, 

and that same subset to which a new variable has been added. 

 An F statistic is then used for identifying which new variable will mostly 

increase the group separation. This variable is then added to the model. 

Prediction Criterion

The discriminant function was first constructed from the training data, which 

were used to predict the unknown group.  The criterion was then used with square 

Euclidean distances which brought the data from independent variables  to give 

in equation 2.30. 

               2.30   

when     =  

where   = discriminant score from gth function  

   = discriminant coefficient from gth function 

   = new independent data 
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   =   independent variable mean in ith group  

 was in ith group which  for separation the  distance 

from each group with these group centroids, finding the minimum distance and give 

 in that group.          

2.4.5 Cross Validation (CV)  

CV is a technique that potentially examined the created models by dividing 

data into two segments: one used to learn or train a model and the other used to 

validate the model [46, 50].  Leave-one out cross validation (LOOCV) technique is 

the one form of CV that is more suitable to use for small-size samples.  The LOOCV 

technique can be automatically preformed through the computer software.  Firstly, 

one of the training samples is taken off.  Secondly, the calibration is set up from the 

remaining training-samples.  Next, the established calibration is used to predict the 

samples that were picked out from the previous step.  After that, the procedure will be 

repeated with the next training samples until the last samples.  Finally, the obtained 

predication from the procedure will be compared with the expected value in order to 

measure predictive abilities of the calibration [50].             

2.5  Related Work   

A number of researches have reported studies on classifying characteristics 

from volatile compounds such as the flavor characterization of cheeses [11], 

Nebbiolo-based wines from Piedmont [10], the senescence of climacteric or non-

climacteric melon fruit [12] and these results are related to fragrant rice volatile 

compounds in many aspects. However, several reports have focused on the statistical 

methods to classify characteristics or phenotype.  These reports are listed as follows: 
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 P. Dirinck and A. De Winne [11] studied the flavor characterization and 

classification of cheeses by gas chromatographic-mass spectrometric profiling. PCA 

was found to be able to classify Gouda and Emmental cheese. However in the 

Emmental cheese group (Austrian, French and Swiss Emmental cheese), only the 

Austrian Emmental was clearly differentiated from French and Swiss products. 

 E. Marengo, et al [10] studied the classification of Nebbiolo-based wines from 

Piedmont (Italy) by mean of a solid-phase microextraction-gas chromatography-mass 

spectrometry (SPME-GCMS) of volatile compounds. They used principal component 

analysis (PCA), hierarchical cluster analysis, Kohonen self organizing map, stepwise 

linear discriminant analysis (SLDA) and soft independent modeling of class analogy 

to  reveal a good separation between five methods and found that SLDA is the best 

classification method and the interpretability of models improves the result of the 

statistical analysis. A main factor, connected to wine vintage, was identified and 

related to some analysts.   

 M. Kusano, et al [51] studied the application of a metabolomic method 

combining one-dimensional (1D) and two-dimensional (GCxGC) gas 

chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of nature 

variants in rice.  They developed a comprehensive method combining analytical 

techniques. This method was applied to metabolic phenotyping of natural variants in 

rice for the 68 world rice core collection (WRC) and two other varieties.  Ten 

metabolites, were selected as metabolite representatives, and the selected ion current 

of each metabolite peak obtain from both techniques were statistically compared.  The 

method of combining 1D- and GCxGC-TOF/MS is useful for the metabolic 

phenotyping of natural variants in rice for further studies in breeding programs.      
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 N. Jaisieng, et al [52] studied rice varieties classification based on gas 

chromatographic profiles in rice grain using artificial neural network (ANN) and 

discriminant analysis that were calculated. Using ANN, the obtained results indicated 

good classification and prediction capabilities. Furthermore, a similar success rate 

could be achieved by using LDA.  However, in LDA the assumption of a multivariate 

normal distribution in the data was not conserved and this method seemed too 

inappropriate to be used for rice variety classification.  

 F. Markowetz and R. Spang [53] studied and compared the classification 

model from microarray data which were expressed the various gene variables.  They 

applied several methods to that research; LDA, QDA, T-statistics test and CV 

technique.  The selected gene by T-statistics data with LDA model (DLDA) is the 

best classification model which has the lowest gap between the test error and the 

training error.  The DLDA was of less complexity than the all gene data with LDA 

and QDA.   The QDA model provided a better classification result from the training 

data than the LDA. However, the classification result in test set QDA provided less 

accuracy than in the LDA.         

 


