LIST OF CONTENT

2101013	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
LIST OF CONTENTS	X
LIST OF TABLES	xvii
LIST OF ILLUSTRATIONS	xxi
ABBREVIATIONS AND SYMBOLS	xxvi
CHAPTER I INTRODUCTION	1
1.1 Overview and Background	1
1.2 Flow Injection Analysis (FIA)	3
1.2.1 Introduction	3
1.2.2 Principle and Theory	5
1.2.3 Dispersion	7
1.2.4 Reverse Flow Injection Analysis	11
1.2.5 FIA Instrumentations	11
1.2.6 Application of FIA for Pharmaceutical Analysis	13
1.2.6.1 FI Methods Based on Direct UV Detection	15
1.2.6.2 FI Methods Based on Metals–Drugs Interactions	16
1.2.6.3 FI Methods Based on Various Color-Forming Reactions	18
1.3 Sequential Injection Analysis (SIA)	20

	Page
1.3.1 Introduction	20
1.3.2 Principle of SIA	20
1.3.3 Applications of SIA to Pharmaceutical Assays Analysis	27
1.4 Surfactant and Micelle	29
1.4.1 Introduction	29
1.4.2 Classification	35
1.4.2.1 Anionic Surfactant	35
1.4.2.2 Cationic Surfactant	36
1.4.2.3 Nonionic Surfactant	37
1.4.2.4 Zwitterionic surfactant	38
1.4.3 Micelles	38
1.5 Micellar Liquid Chromatography	40
1.5.1 Introduction	40
1.5.2 Chromatographic Behavior	42
1.5.3 The Three-Phase Model	44
1.5.4 Micellar Liquid Chromatography in Pharmaceutical Analysis	46
1.6 Zinc	48
Copyri.6.1 Uses by Chiang Mai Univers	48
A 1.6.2 Deficiency ts reserve	50
1.6.3 Toxicity	51
1.6.4 Determination of Zinc in Pharmaceutical Preparations	53

xi

	Page
2.3.2.1 Standards and Reagents Preparations	69
2.3.2.2 Preparation of Pharmaceutical Sample Solutions for Zinc Determination	70
2.3.2.3 Instruments Setup	70
2.3.2.4 Sequential Injection Method	72
2.3.3 Micellar Liquid Chromatography for Some Pharmaceutical	75
Determination 2.3.3.1 Standards, Reagents and Samples Preparations	75
2.3.3.2 Determination of Some Cough-Cold Pharmaceutical Preparations	76
CHAPTER III RESULTS AND DISCUSSIONS	78
3.1 Reverse Flow Injection Analysis Determination of Chlortetracycline	78
3.1.1 Manifold Design	80
3.1.2 Absorption Spectra of CTC and Its Yttrium (III) Complex	83
3.1.3 Optimization of Chemical and Physical Variable by Univariate	84
Adam Method 3.1.3.1 Effect of Wavelength	85
Copyrigh 3.1.3.2 Effect of pH on the Complex Formation	87
3.1.3.3 Concentration of Yttrium (III) e s e v e	88
3.1.3.4 The Effect Concentration of CTAB	90

xiii

3.1.3.5 Effect of Mixing Coil Length	92
3.1.3.6 Effect of Flow Rate	93
3.1.3.7 Effect of Injection Volume	95
3.1.3.8 Summary of the Studied Range and Optimized Value	96
3.1.4 Simplex Optimization	97
3.1.5 Analytical Characteristics	102
3.1.5.1 Calibration Graph and Detection Limit	101
3.1.5.2 Accuracy	104
3.1.5.3 Repeatability and Reproducibility	104
3.1.6 Interference Study	106
3.1.7 Determination of CTC in Pharmaceutical Preparations	109
3.2 Sequential Injection Analysis Determination of Zinc in Pharmaceutical	111
Preparations	
3.2.1 Optimization of Chemical and Physical Variable	112
3.2.1.1 Spectral characteristics	114
3.2.1.2 Effect of Wavelength	115
3.2.1.3 Optimum conditions for the reaction	117
Copyright [©] 3.2.1.3.1 Effect of pHng Mai Univer	Siliy
3.2.1.3.2 Aspiration order of reagents and sample	e ¹¹⁹
3.2.1.3.3 Effect of Flow Rate	120

Page

Page

3.2.1.3.4 Sample and Reagents Aspiration Volumes	125
Optimizations	
3.2.1.3.5 The Effect of PAN Concentration	131
3.2.1.3.6 The Effect of Concentration of Triton X - 100	133
3.2.2 Analytical Characteristics	135
3.2.2.1 Linear Range	135
3.2.2.2 Calibration Curve and Detection Limit	137
3.2.2.3 Repeatability and Reproducibility	138
3.2.3 Interference Study	139
3.2.4 Determination of Zinc in Pharmaceutical Preparation Samples	142
3.3 Determination of Active Ingredients in Cough – Cold Pharmaceutical	143
Preparations by Micellar Liquid Chromatography	
3.3.1 Development and Optimization of the Micellar Liquid	146
Chromatography Methods	
3.3.1.1 Wavelength Selection	146
3.3.1.2 Effect of SDS Concentration	147
3.3.1.3 Effect of Pentanol Concentration	148
Copyrigh 3.3.1.4 Effect of Flow Rate ang Mai Univers	150
A 3.3.1.5 Effect of pH S reserve	150
3.3.2. Analytical Figures	154
3.3.2.1 Linearity, Calibration Curve and Limit of Detection	154

	Page
3.3.2.2 Precision	159
3.3.2.3 Stability	161
3.3.2.4 Accuracy	163
3.3.3 Interference Study	163
3.3.4 Analysis of Pharmaceutical Preparations	163
CHAPTER IV CONCLUSIONS	168
4.1 Conclusions	169
4.1.1 Reverse Flow Injection Analysis Determination of Chlortetracycline	168
4.1.2 Sequential Injection Analysis Determination of Zinc in	169
Pharmaceutical Preparations	
4.1.3 Determination of Active Ingredients in Cough - Cold	171
Pharmaceutical Preparations by Micellar Liquid Chromatography	
4.2 Suggestion for Further Works	172
REFERENCES	174
APPENDIX	191
ลิ curriculum vitae วิทยาลัยเชียงให	195
Copyright [©] by Chiang Mai Univers	ity
All rights reserve	d

xvi

LIST OF TABLES

T	able	010101	Page
	1.1	FI methods utilizing various colour-forming reactions 17	
	1.2	FI methods utilizing various colour- forming reaction	21
	1.3	Applications of SIA to pharmaceutical assays analysis	30
	1.4	Application of MLC in pharmaceutical analysis	49
	1.5	Comparison of reagents for the spectrophotometric determination of zinc	54
	1.6	Analytical characteristics of some methods for the determination of	56
	Ż	tetracycline, chlortetracycline and oxytetracycline	
	1.7	Determination of active ingredients in cold preparations	63
	2.1	Experimental protocol as shown in the FIAlab for Windows software	74
	3.1	Effect of type of manifold on peak height.	81
	3.2	Preliminary conditions before optimization of the rFI systems	84
ź	3.3	Effect of varying wavelengths on analytical signal of CTC from rFI	86
		system	
	3.4	Effect of varying pH on analytical signal of CTC from rFI system	87
ິລີປ	3.5	Effect of yttrium concentration on analytical signal of CTC from rFI	89
Cor)Vr	system C by Chiang Mai Univers	itv
	3.6	Effect of varying CTAB concentration on sensitivity for CTC	91
AI		determination 8 II US I E S E I V E	
	3.7	Effect of varying mixing coil length on sensitivity for CTC determination	92

xvii

		•	•
X	V1	1	1

Table	le Page	
3.8	Effect of flow rate on sensitivity for CTC determination	94
3.9	Effect of injection volume	95
3.10	Univariate optimization of chemical and FIA conditions	96
3.11	The results of the initial simplex optimization for CTC determination	98
3.12	The summarization of the initial simplex optimization	99
3.13	The summarization of the second simplex optimization	99
3.14	The summarization of the third simplex optimization	100
3.15	The summarization of all simplex optimization of chemical and FI	101
	variables for chlortetracycline determination	
3.16	Peak height for calibration curve	102
3.17	The recoveries of the added CTC with varying concentrations in sample	104
	solution (n=5)	
3.18	Repeatability and reproducibility of replicate determination of CTC	105
3.19	Recoveries 2.0 x 10^{-5} mol 1^{-1} CTC in solution of some excipients (n=5)	106
3.20	Results obtained from CTC determination in commercial pharmaceutical	110
ລິມສີ	preparations by the proposed method and reference procedure	<u>-</u>
3.21	The determination of zinc by spectrophotometry by complexing with	113
Соруг	chromatic reagent in micellar media NAI UNIVERS	sity
3.22	Preliminary conditions before optimization of the rFI systems	114
3.23	The influence of wave length on peak heights and precision	116
3.24	Influence of pH on peak heights and precision	118

Table

Table		1 ago		
3.25	Influence of aspiration order of reagent and sample	121		
3.26	3.26 Influence of flow rate of aspiration of sample on peak heights an			
	precision			
3.27	Influence of flow rate of aspiration of reagent on peak heights and	123		
	precision			
3.28	Influence of flow rate of sending sample to detector 1			
3.29	Influence of aspiration volume of buffer on peak heights and precision			
3.30	Influence of aspiration volume of Triton X-100 on peak heights and 1			
	precision			
3.31	Influence of aspiration volume of standard/sample on the peak heights	129		
	and precision			
3.32	Influence of aspiration volume of PAN on the peak heights and precision 1			
3.33	Influence of PAN concentration on peak heights and precision			
3.34	Influence of Triton X-100 concentration on peak heights and precision			
3.35	Optimization parameters			
3.36	Peak height at various zinc concentrations for linearity checking of the	136		
	calibration curve	• •		
3.37	Repeatability and reproducibility of replicate determination of 0.1	140		
	μg ml ⁻¹ zinc(II) hts reserve	e (
3.38	Repeatability and reproducibility of replicate determination of 0.5	141		
	μg ml ⁻¹ zinc(II)			

3.39	Tolerance limits of interferences ions on the determination of 1 μ g ml ⁻¹ 14		
	zinc(II) at optimum conditions		
3.40	Determination of zinc(II) in pharmaceutical preparations sample with the	143	
	propose SIA method and flame atomic absorption spectrophotometric		
	method		
3.41	Structures, dissociation constants and octanol-water partition constants of	145	
S	acetaminophen, guaifenesin, phenylephrine, pseudoephedrine and		
5	phenylpropanolamine		
3.42	Comparison of peak area between the wave length of 210 and 254 nm	147	
3.43	Effect of concentration of SDS	149	
3.44	Effect of concentration pentanol	151	
3.45	Effect of Flow rate	152	
3.46	Characteristic parameters of the calibration equations, LODs and LOQs	156	
	for the proposed method for simultaneous determination of five drugs.		
3.47	Intra – day repeatability for the five drugs (% RSD, $n = 10$)	160	
3.48	Inter – day repeatability for the five drugs (% RSD, $n = 10$)	160	
3.49	Accuracy results for five drugs analysis by MLC	162	
CO _{3.50}	Comparative analysis of pharmaceuticals with micellar and aqueous-	164	
	organic reversed-phase liquid chromatography Serve	e d	

LIST OF ILLUSTRATIONS

Figure

- 1.1 The basic components of the FIA system; P = pump, C = carrier stream, R 6
 = reagent stream, S = injection port, M = mixing reactor, D = detector, W = waste
- 1.2 The analog output has the form of a FIA peak, the recording starting at S $_{6}$ (time of injection), H is the peak height, W is the peak width at a selected level, A is a peak area, T is the residence time corresponding to the peak height measurement and t_b is the peak width at the base line.
- 1.3 General types of transport in closed tubes and the recorded profiles at the 7 detector.
- 1.4 Effects of convection and diffusion on concentration profiles of analyses at 8 the detector; (a) no dispersion; (b) dispersion by convective process; (c) dispersion by convective process and radical diffusion; (d) dispersion by diffusion.
- 1.5 Dispersed sample zone in flow system; an original homogeneous sample 9 zone (top left) disperses during its movement through a tubular reactor (top center), thus changing from an original square profile (bottom left) of original concentration C^0 to a continuous concentration gradient with maximum concentration C_{max} at the apex of the peak.

Figure		Page		
1.6	.6 Scheme of a peristaltic pump. A flexible tube is placed between the rotating			
	head and a fixed piece. The rollers are squeezed onto the tubing.			
1.7	The comparison of FIA and SIA			
1.8	Dispersion in FIA and SIA			
1.9	The schematic representation of a surfactant molecule	35		
1.10	The molecular structure of alkyl phosphate, alkyl sulfonate, and alkyl	36		
	benzene sulfonate.			
1.11	The molecular structure of fatty amine salts which were the first style of	36		
	cationic surfactant synthesized			
1.12	The molecular structure of an alcohol ethoxylate and an alkylphenol	37		
	ethoxylate			
1.13	Three zwitterionic surfactants : an ammonium carboxylate, an ammonium	38		
	sulfate and an amine oxide			
1.14	The aggregation of N monomers to form a normal, aqueous micelle, the	39		
	open circles represent polar head groups and may be anionic, cationic,			
0.0	nonionic or zwitterionic			
a 3 ^{1.15}	Solute-micelle and solute-stationary phase interaction in micellar mobile	42		
Copyr 1.16	phases Solute – micelle and solute – stationary phase hydrophobic (♠) and	47		
	electrostatic interaction (\hat{T}) with an anionic surfactant : (a) non polar	d		
	solute, (b) anionic solute and (c) cationic solute			

1.17 Structures of tetracycline and its derivatives

57

Figure

C A

- 2.1 The rFI manifold designed for CTC determination by injection of the 71 reagent solution into the merging stream of the buffer and sample/standard solution
- SI manifold for the determination of zinc(II) : A (valve 1), a combined 73 buffer solution and masking agent ; B(valve 2), Triton X 100 ; C(valve 3), sample ; D(valve 4), PAN solution ; E(valve 5) water and 150 cm /0.7 mm (length/i.d.) holding coil
- 3.1 The 2 type of rFI manifolds designed for CTC determination (A) injection 82 of the yttrium (III) as reagent solution into the buffer stream before merging with the sample/standard solution (B) injection of the reagent solution into the merging stream of the buffer and sample/standard solution. (Y = Y connector, I = home-made injection valve.
- 3.2 The absorption spectra of CTC (A), CTC-yttrium(III) complex (B) and 83 CTC-yttrium(III) complex in CTAB medium (C)

3.3	Lanthanide – tetracycline complex	85
3.4	Effect of varying wavelengths on sensitivity for CTC determination	86
3.5	Effect of varying pH on sensitivity for CTC determination	88
3.6	Effect of varying yttrium(III) concentration on sensitivity for CTC	89
	determination g h t s r e s e r v e	d

Figure		Page		
3.7	Effect of varying CTAB concentration on sensitivity for CTC	91		
	determination			
3.8	Effect of varying mixing coil length on sensitivity for CTC determination	93		
3.9	Effect of flow rate on sensitivity for CTC determination			
3.10	Effect of varying injection volume on sensitivity for CTC determination			
3.11	Sensitivity vs. experiment number for simplex method			
3.12	The FIA-gram of standard CTC solutions			
3.13	Calibration curve for CTC determination	103		
3.14	Absorption spectra of zinc complex and its reagent blank curve. (A) PAN –	115		
	Triton X – 100, (B) zinc– PAN – Triton X –100. The concentration of zinc			
	= $5 \ \mu g \ ml^{-1}$, PAN = $1.0 \times 10^{-4} \ mol \ l^{-1}$, and Triton X – $100 = 1\%$,			
	respectively ; in carbonate buffer solution $pH = 9.0$			
3.15	Influence of wave length on peak heights and precision	116		
3.16	Influence of pH on peak heights and precision	118		
3.17	Influence of the aspiration order designed on the peak heights and precision	121		
3.18	Influence of flow rate of aspiration of sample on peak heights and precision	122		
3.19	Influence of flow rate of aspiration of reagent on peak heights and precision	123		
CO _{3.20} /1	Influence of flow rate of sending sample to detector	125		
3.21	Influence of aspiration volume of buffer on peak heights and precision	127		
3.22	Influence of aspiration volume of Triton – X 100r on peak heights and	128		
	precision			

xxiv

Figure		Page			
3.23	Influence of aspiration volume of standard/sample on the peak heights and precision				
3.24	Influence of aspiration volume of PAN on the peak heights and precision				
3.25	Influence of PAN concentration on peak heights and precision				
3.26	Influence of Triton X – 100 concentration of peak heights and precision				
3.27	The curve showing the linear range for zinc(II) determination				
3.28	SIA gram for zinc(II) determination				
3.29	Calibration curve for zinc(II) determination				
3.30) SIA gram for 0.5 μ g ml ⁻¹				
3.31	3.31 Effect of pH on the retention acetaminophen (AC), guaifenesin(GUA),				
	phenylephrine(PE), pseudoephedrine(PSUED) and				
	phenylpropanolamine(PP). Micellar mobile phase: 0.150 mol l ⁻¹ SDS, 2%				
	v/v pentanol				
3.32	Calibration curve for acetaminophen	157			
3.33	Calibration curve for guaifenesin				
3.34	Calibration curve for phenylephrine				
3.35	Calibration curve for pseudoephedrine	158			
3.36	Calibration curve for phenylpropanolamine	159			
3.37	Stability study at room temperature of 20 μ g ml-1 five drugs	161			
A 3.38	Chromatograms of some pharmaceutical preparations	166			

ABBREVIATIONS AND SYMBOLS

		ABERA
	AU	absorbance unit
	b	pathlength
	CTC	chlortetracycline
	FIA	flow injection analysis
	h	hour
	i.d.	inner diameter
	in.	inch a faith and a faith a fai
5	25	liter
	LOD	limit of detection
	LOQ	limit of quantitation
	mg	milligram
	min	minute
	ml	milliliter
	mm	millimeter
	mV	millivolt
	nm	nanometer
	o.d.	outer diameter
0 0	PDMS	poly(dimethylsiloxane)
อปส	PTFE	polytetrafluoroethylene
	RSD	relative standard deviation
Сору	SD	standard deviation ang Mai University
	sec	second
	SIA	sequential injection analysis esternove endo
	v/v	volume by volume
	μg	microgram
	μl	microliter

xxvi