TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
ABBREVIATIONS AND SYMBOLS	xv
CHAPTER 1 INTRODUCTION	
1.1 Silver Bismuth Sulfide (AgBiS ₂)	1
1.1.1 Physical properties	1
1.1.2 Chemical properties	4
1.1.3 Applications	4
1.1.4 Literature Review	5
1.2 Microwave irradiation method	7
1.3 Ultrasonic irradiation method	8
1.4 Hydrothermal/Solvothermal method	9
1.5 Template-based method	11
pyright Chiang Mai Univers	14

		Page
CHAPTER 2	EXPERIMENTAL PROCEDURE	
	2.1 Chemical reagents and equipments	
	2.1.1 Chemical reagents	20
	2.1.2 Equipments	20
	2.2 Synthesis of AgBiS ₂ by solvothermal method	
	2.2.1 Effect of liquid media	21
	2.2.2 Effect of temperature	22
	2.2.3 Effect of reaction time	23
	2.3 Characterization	
	2.3.1 X-ray Diffraction (XRD)	25
	2.3.2 Scanning Electron Microscopy (SEM)	26
	2.3.3 Transmission Electron Microscopy (TEM)	27
	2.3.4 Photoluminescence Spectroscopy	28
CHAPTER 3	RESULTS AND DISCUSSION	
	3.1 Effect of liquid media	29
	3.2 Effect of temperature	33
	3.3 Effect of reaction time Mai University	37
CHAPTER 4	CONCLUSION	50

1	Page
REFERENCES	51
APPENDICES	
APPENDIX A	59
5.1 Strontium carbonate (SrCO ₃) and Barium carbonate (BaCO ₃)	
5.1.1 Physical properties	60
5.1.1.1 Crystal structure of SrCO ₃ and BaCO ₃	60
5.1.1.2 Chemical properties	60
5.1.2 Applications	61
5.1.3 Literature Review	61
5.2 Chemical reagents and equipments	
5.2.1 Chemical reagents	66
5.2.2 Equipments	66
5.3 Synthesis method of SrCO ₃ and BaCO ₃	67
5.4 The results for the synthesized of SrCO ₃ and BaCO ₃ by	69
sonochemical method	
5.5 Conclusion of SrCO ₃ and BaCO ₃ by sonochemical method	80
APPENDIX B JCPDS used for the present research	81
APPENDIX C Camera constant used for the indexing of SAED pattern	99
APPENDIX D International publications	100
CURRICULUMVITAE 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	108

LIST OF TABLES

Tab	le	Page
1.1	Surfactant classification	17
3.1	Ring diffraction pattern values of AgBiS ₂ prepared in ethylene glycol	44
	at 200 °C for 24 h.	
3.2	Ring diffraction pattern values of AgBiS ₂ prepared in ethylene glycol	44
	at 200 °C for 48 h.	
3.3	Ring diffraction pattern values of AgBiS ₂ prepared in ethylene glycol	45
	at 200 °C for 72 h.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figu	gure	
1.1	Crystal structures of AgBiS ₂	4
1.2	General purpose autoclave popularly used for hydrothermal synthesis	10
1.3	Pressure temperature map of materials processing techniques	11
1.4	Schematic illustration of the micelle monomers	15
1.5	Schematic illustration of the commonly observed geometrical shapes of	19
	surfactant micelles in aqueous solution	
2.1	Schematic diagram used for preparing AgBiS ₂ using H ₂ O, PEG 200, PG	22
	and EG as liquid media.	
2.2	Schematic diagram used for preparing AgBiS ₂ proceeded at 140 °C,	23
	160°C, 180 °C and 200 °C for 24 h	
2.3	Schematic diagram used for preparing AgBiS ₂ using different	24
	reaction times.	
2.4	X-ray diffractometer	25
2.5	Scanning electron microscope	26
2.6	Transmission electron microscope	27
2.7	Luminescence spectrometer	28
3.1	XRD patterns of the products synthesized by a solvothermal method	29
	using PG, PEG 200, H ₂ O, EG as liquid media at 200 °C for 24 h.	
3.2	SEM image of the sample prepared in polyethylene glycol (PG) solution	30
	at 200 °C for 24 h	

Fi	gure	Page
3.	3 SEM image of the sample prepared in polyethylene glycol 200	31
	(PEG 200) solution at 200 °C for 24 h.	
3.	4 SEM image of the sample prepared in water solution at 200 °C for 24 h.	31
3.	5 SEM image of the sample prepared in ethylene glycol (EG) solution at	32
	200 °C for 24 h.	
3.	XRD patterns of the products in ethylene glycol (EG) solution	33
	at 140°C, 160°C, 180°C and 200 °C for 24 h.	
3.	7 SEM image of the products in ethylene glycol (EG) solution using	34
	chemical reactions proceeded at 140 °C for 24 h.	
3.	8 SEM image of the products in ethylene glycol (EG) solution using	35
	chemical reactions proceeded at 160 °C for 24 h.	
3.	9 SEM image of the products in ethylene glycol (EG) solution using	35
	chemical reactions proceeded at 180 °C for 24 h.	
3.	10 SEM image of the products in ethylene glycol (EG) solution using	36
	chemical reactions proceeded at 200 °C for 24 h.	
3.	11 XRD patterns of the products in ethylene glycol (EG) solution using	37
	chemical reactions proceeded at 200 °C for 24 h, 48 h and 72 h.	
3.	12 SEM image of the products in ethylene glycol (EG) solution using	38
	chemical reactions proceeded at 200 °C for 24 h.	
A 1 ₃ .	13 SEM image of the products in ethylene glycol (EG) solution using	e 390
	chemical reactions proceeded at 200 °C for 48 h.	

Figu	re	Page
3.14	SEM image of the products in ethylene glycol (EG) solution using	39
	chemical reactions proceeded at 200 °C for 72 h.	
3.15	SEM , SEAD and TEM image of AgBiS ₂ produced in EG (a,b and c)	40
	at 200 °C for 24h.	
3.16	SEM, SEAD and TEM image of AgBiS ₂ produced in EG (a,b and c)	41
	at 200 °C for 48 h.	
3.17	SEM, SEAD and TEM image of AgBiS ₂ produced in EG (a,b and c)	42
	at 200 °C for 72 h.	
3.18	HRTEM and Simulated patterns of AgBiS ₂ produced in ethylene glycol	43
	at 200 °C for 24 h	
3.19	PL emissions of AgBiS ₂ produced in EG at 200 °C for 24 h - 72 h	48
5.1	Crystal structures of SrCO ₃ and BaCO ₃	60
5.2	Schematic diagram used for preparing BaCO ₃ and SrCO ₃ nanocrystallines.	68
5.3	XRD patterns of SrCO ₃ synthesized by the sonochemical method	69
	at 80 °C for different lengths of time.	
5.4	XRD patterns of BaCO ₃ synthesized by the sonochemical method	70
	at 80 °C for different lengths of times.	
5.5	FITR spectra of SrCO ₃ synthesized by the sonochemical method	72
	at 80 °C for different lengths of times.	
5.6	FITR spectra of BaCO ₃ synthesized by the sonochemical method	73
	at 80 °C for different lengths of times.	
5.7	SEM image of SrCO ₃ synthesized by sonochemical method	75
	at 80 °C for 1 h.	

Figu	igure	
5.8	SEM image of SrCO ₃ synthesized by sonochemical method	75
	at 80 °C for 3 h.	
5.9	SEM image of SrCO ₃ synthesized by sonochemical method	76
	at 80 °C for 5 h.	
5.10	SEM image of BaCO ₃ synthesized by sonochemical method	76
	at 80 °C for 1 h.	
5.11	SEM image of BaCO ₃ synthesized by sonochemical method	77
	at 80 °C for 3 h.	
5.12	SEM image of BaCO ₃ synthesized by sonochemical method	77
	at 80 °C for 5 h.	
5.13	TEM images and SAED patterns of (a-c) SrCO ₃ and (d-f) BaCO ₃	78
	synthesized by sonochemical method at 80 °C for 1 h, 3 h and 5 h,	
	respectively.	
	141 UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Å = Angstrom

°C = Degree Celsius

eV = electron Volt

kV = Kilo Volt

g = Gram

h = Hour

mmol = Millimol

ml = Milliliter

mm = Millimeter

nm = Nanometer

 $\mu m = Micrometer$

JCPDS = Joint Committee for Powder Diffraction

Standards

MW = Molecular Weight

PL = Photoluminescence Spectrometry

SAED = Selected Area Electron Diffraction

SEM = Scanning Electron Microscope

TEM = Transmission Electron Microscope

W = Watt

XRD = X-ray Diffraction Spectrometry