

Chaiuni

APPENDIX A

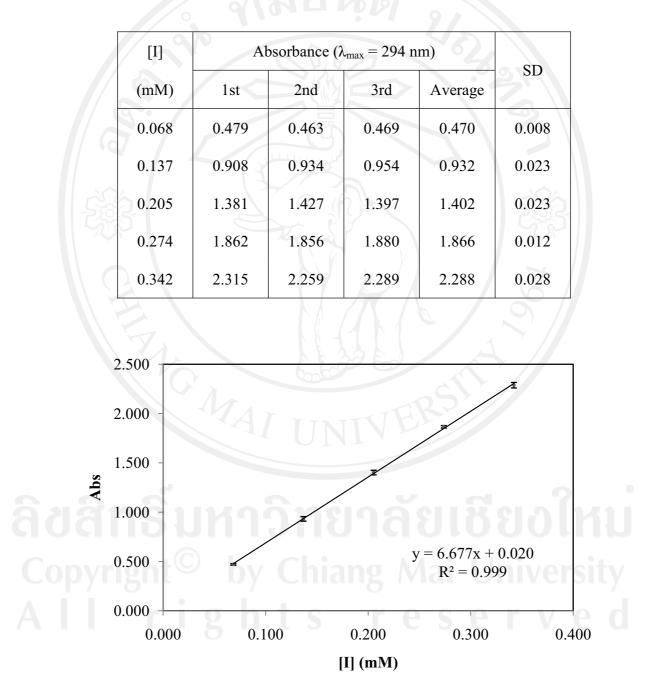


Table A.1 Calibration curve of chromone (I) in ACN for binding studies

Figure A.1 Calibration curve of chromone (I) in ACN for binding studies

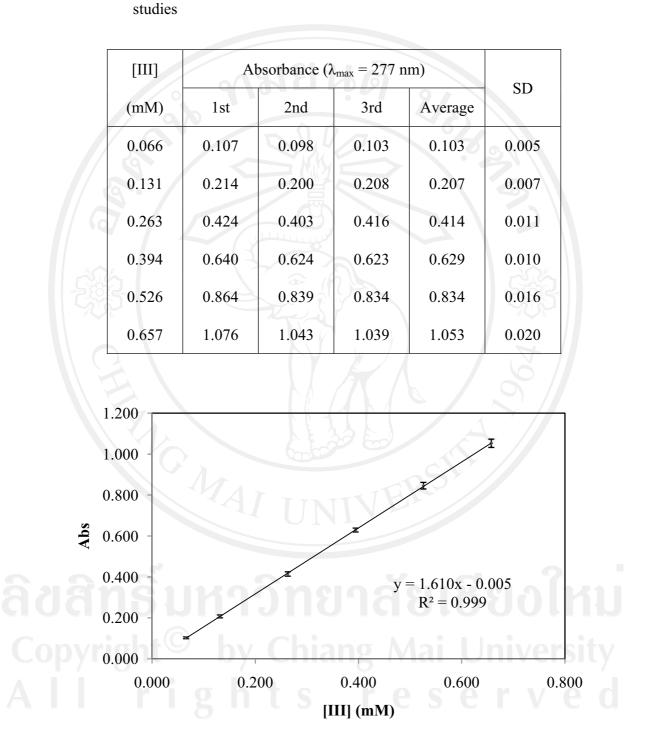
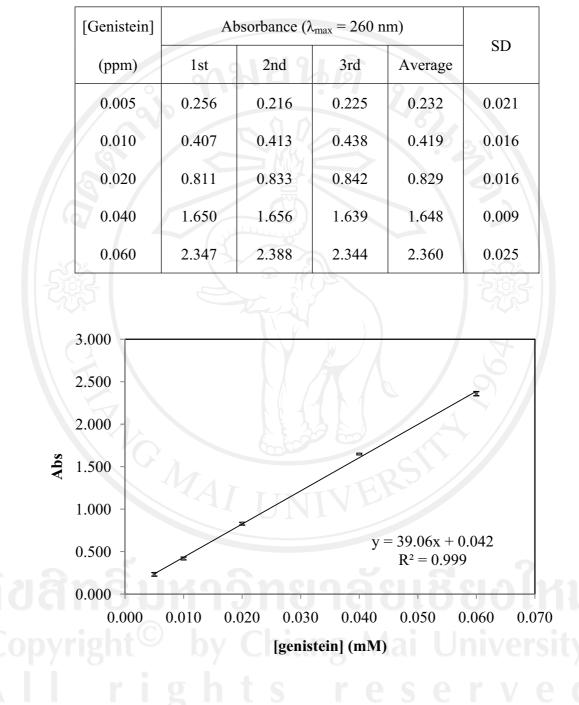



 Table A.2 Calibration curve of 4-hydroxyphenylacetic acid (III) in ACN for binding

Figure A.2 Calibration curve of 4-hydroxyphenylacetic (III) acid in ACN for binding studies

Table A.3 Calibration curve of genistein in ACN for binding studies

Figure A.3 Calibration curve of genistein in ACN for binding studies

Table A.4 The binding study of 0.30 mM chromone in ACN with 50 mg of PI-AA

Polymers	Ab	sorbance (λ	% Bound	SD		
	1st	2nd	3rd	Average	% Bound	SD
PI-AA	1.538	1.429	1.511	1.493	18.12	3.11
NIP	1.486	1.582	1.472	1.513	16.99	3.28

and its NIP

Table A.5 The binding study of 0.30 mM chromone in ACN with 50 mg of PI-MAA

an	d its NIP	A C			55	
Bolymora	At	osorbance (7	% Bound	SD		
Polymers	1st	2nd	3rd	Average	70 Doulld	SD
PI-MAA	1.526	1.488	1.497	1.504	17.52	1.09
NIP	1.514	1.478	1.462	1.485	18.56	1.46

Table A.6 The binding study of 0.30 mM chromone in ACN with 50 mg of PI-VP

Polymore	Ał	Absorbance ($\lambda_{max} = 294 \text{ nm}$)				SD
Polymers 1s	1st	2nd	3rd	Average	- % Bound	refsit
PI-VP	1.584	1.451	\$ 1.562	1.532	15.94	3.91
NIP	1.488	1.549	1.445	1.494	18.05	2.87

Table A.7 The binding study of 0.30 mM 4-hydroxyphenylacetic acid in ACN with

Dolymana	At	osorbance (7	$u_{\rm max} = 277 \ {\rm r}$	um)	0/ Dound	SD	
Polymers	1 st	2nd	3rd	Average	% Bound	SD	
PIII-AA	0.370	0.343	0.368	0.360	24.14	3.17	
NIP	0.276	0.299	0.301	0.292	38.53	2.92	

50 mg of PIII-AA and its NIP

Table A.8 The binding study of 0.30 mM 4-hydroxyphenylacetic acid in ACN with

50 mg of PIII-MAA and its NIP

Dalumara	Ab	osorbance (λ	$L_{\rm max} = 277 \ {\rm n}$	m)	0/ Dound	SD
Polymers	1st	2nd	3rd	Average	% Bound	SD
PIII-MAA	0.363	0.379	0.385	0.376	20.91	2.39
NIP	0.406	0.372	0.369	0.382	22.00	0.45

Table A.9 The binding study of 0.30 mM 4-hydroxyphenylacetic acid in ACN with

50 mg of PIII-VP and its NIP

Dalamara	t ^O At	osorbance ()	$n_{\rm max} = 277 \ {\rm m}$	m)Mai		ersit	
Polymers	Polymers 1st	2nd	3rd	Average	% Bound	sd V e	
PIII-VP	0.174	0.128	0.156	0.153	65.92	5.17	
NIP	0.278	0.299	0.289	0.289	35.57	2.34	

Table A.10 The binding study of 0.10 mM genistein in ACN with 50 mg of PI-AA

Dolumous	Al	osorbance (λ	$t_{\rm max} = 260 \ {\rm m}$	nm)	0/ Dound	SD	
Polymers -	1 st	2nd	3rd	Average	% Bound	SD	
PI-AA	1.620	1.640	1.682	1.647	22.19	1.49	
NIP	1.629	1.603	1.683	1.638	22.61	1.93	

and its NIP

 Table A.11
 The binding study of 0.10 mM genistein in ACN with 50 mg of

 PI-MAA and its NIP

Polymers	Ab	sorbance (λ	% Bound	SD		
	1st	2nd	3rd	Average	76 Doulld	5D
PI-MAA	1.816	1.780	1.835	1.810	14.49	1.32
NIP	1.798	1.670	1.727	1.732	18.20	3.03

Table A.12 The binding study of 0.10 mM genistein in ACN with 50 mg of PI-VP

Paluman	t ^C At	osorbance (7	$n_{\rm max} = 260 \ {\rm m}$	m)Mai	Uni	ersit _{SD}	
Polymers 1st	1st	2nd	3rd	Average	- % Bound	v e	
PI-VP	1.471	1.438	1.481	1.463	30.88	1.06	
NIP	1.468	1.458	1.448	1.458	31.13	0.47	

Table A.13 The binding study of 0.10 mM genistein in DCM with 50 mg of PI-AA

Deleveren	Ał	osorbance (λ	$L_{\rm max} = 260 \ {\rm n}$	m)	0/ David	SD	
Polymers	1 st	2nd	3rd	Average	% Bound	SD	
PI-AA	0.842	0.809	0.803	0.818	50.21	1.28	
NIP	0.608	0.832	0.691	0.710	56.77	6.89	

and its NIP

Table A.14 The binding study of 0.10 mM genistein in DCM with 50 mg of PI-MAA

and its NIP 🧲

Dolumora	Ab	sorbance (7	$L_{\rm max} = 260 \ {\rm r}$	ım)	% Bound	SD
Polymers 1	1st	2nd	3rd	Average	76 Doulid	3D
PI-MAA	1.225	1.116	1.149	1.163	29.19	3.40
NIP	1.142	1.085	1.099	1.109	32.52	1.81
		AL	JNI			

Table A.15 The binding study of 0.10 mM genistein in DCM with 50 mg of PI-VP

yrigh	t ^C At	osorbance ()	$n_{\rm max} = 260 \ {\rm m}$	m) Mai	Univ	versit	
Polymers	/mers	2nd	3rd	Average	8 Bound	sd V e	
PI-VP	0.786	0.757	0.737	0.760	53.74	1.50	
NIP	0.782	0.757	0.785	0.775	52.85	0.94	

Table A.16 The binding study of 0.10 mM genistein in ACN with 50 mg of PII-AA

Dolymous	At	osorbance ()	$a_{\rm max} = 260 \ {\rm m}$	im)	% Bound	SD	
Polymers	l st	2nd	3rd	Average	% Bound	50	
PII-AA	1.663	1.646	1.704	1.671	21.07	1.41	
NIP	1.675	1.651	1.686	1.671	21.08	0.85	

and its NIP

Table A.17 The binding study of 0.10 mM genistein in ACN with 50 mg of PII-MAA

and its NIP

Polymers 1s	Ab	osorbance (λ	% Bound	SD		
	1st	2nd	3rd	Average	% Bound	SD
PII-MAA	1.791	1.830	1.796	1.806	14.71	1.00
NIP	1.720	1.809	1.751	1.760	16.86	2.13
		AIT	JNI	ER		

Table A.18 The binding study of 0.10 mM genistein in ACN with 50 mg of PII-VP

Delument	t ^C At	osorbance ()	$t_{max} = 260 \text{ m}$	m)Mai	Univ % Dound	ersit	
Polymers	Polymers 1st	2nd	3rd	Average	8 Bound	sd V e	
PII-VP	1.746	1.707	1.696	1.716	18.93	1.24	
NIP	1.586	1.578	1.569	1.578	25.48	0.40	

Table A.19 The binding study of 0.10 mM genistein in DCM with 50 mg of PII-AA

Dolumora	At	osorbance (λ	$m_{max} = 260 \text{ m}$	m)	0/ Dound	SD
Polymers	1st	2nd	3rd	Average	% Bound	
PII-AA	0.849	0.798	0.701	0.783	52.36	4.58
NIP	0.968	0.816	0.941	0.908	44.71	4.94

and its NIP

 Table A.20
 The binding study of 0.10 mM genistein in DCM with 50 mg of

 PII-MAA and its NIP

Polymers 1st	Ab	sorbance (7	% Bound	SD		
	1st	2nd	3rd	Average	76 Bound	3D
PII-MAA	1.142	1.109	1.099	1.117	32.05	1.37
NIP	1.161	1.080	1.138	1.126	31.45	2.54

Table A.21 The binding study of 0.10 mM genistein in DCM with 50 mg of PII-VP

ovrigh	t ^O At	osorbance (7	0/ Dound	/ersit		
Polymers 1st	2nd	3rd	Average	8 Bound	sd V e	
PII-VP	1.066	1.062	1.038	1.055	35.77	0.92
NIP	0.792	0.790	0.785	0.789	51.98	0.22

Table A.22 The binding study of 0.10 mM genistein in ACN with 50 mg of PIII-AA

Dalarrage	Ał	osorbance (λ	$L_{\rm max} = 260 \ {\rm m}$	m)	0/ David	SD	
Polymers	1st	2nd	3rd	Average	% Bound	SD	
PIII-AA	1.885	1.893	1.857	1.878	11.27	0.89	
NIP	1.629	1.603	1.683	1.638	22.61	1.93	

and its NIP

 Table A.23
 The binding study of 0.10 mM genistein in ACN with 50 mg of

 PIII-MAA and its NIP

Polymers -	Ab	sorbance (7	% Bound	SD		
	1st	2nd	3rd	Average	76 Dound	30
PIII-MAA	1.812	1.814	1.836	1.821	14.00	0.63
NIP	1.720	1.809	1.751	1.760	16.86	2.13
		J IP	INI	ERP		

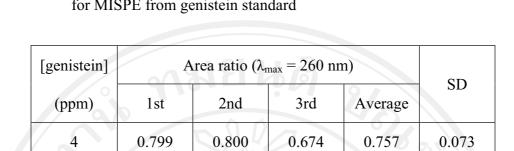
Table A.24 The binding study of 0.10 mM genistein in ACN with 50 mg of PIII-VP

Dalamana	t ^C At	osorbance ()	% Pound	ersit		
Polymers 1st	2nd	3rd	Average	% Bound	sd Ve	
PIII-VP	1.277	1.342	1.376	1.332	37.10	2.38
NIP	1.468	1.458	1.448	1.458	31.13	0.47

Table A.25 The binding study of 0.10 mM genistein in DCM with 50 mg of PIII-AA

Dalverang	At	osorbance (λ	$L_{\rm max} = 260 \ {\rm max}$	m)	0/ Dound	SD	
Polymers	1st	2nd	3rd	Average	% Bound	5D	
PIII-AA	1.074	1.147	1.160	1.127	31.41	2.82	
NIP	0.608	0.832	0.691	0.710	56.77	6.89	

and its NIP


 Table A.26 The binding study of 0.10 mM genistein in DCM with 50 mg of

 PIII-MAA and its NIP

Polymers	Ab	sorbance (7	% Bound	SD		
	1st	2nd	3rd	Average	70 Doulid	SD
PIII-MAA	1.012	1.067	1.089	1.056	35.73	2.41
NIP	1.161	1.080	1.138	1.126	31.45	2.54

Table A.27 The binding study of 0.10 mM genistein in DCM with 50 mg of PIII-VP

yrigh	4 ^O At	osorbance ()	$n_{\rm max} = 260 \ {\rm m}$	m) Mai	Univ	ersit	
Polymers	Polymers 1st	2nd	S 3rd	Average	• % Bound	v e	
PIII-VP	0.560	0.588	0.543	0.564	65.69	1.38	
NIP	0.782	0.757	0.785	0.775	52.85	0.94	

1.844

3.045

4.192

5.514

1.820

2.965

4.304

5.468

0.061

0.081

0.156

0.054

1.865

2.965

4.238

5.480

for MISPE from genistein standard

1.750

2.884

4.482

5.408

12

20

30

40

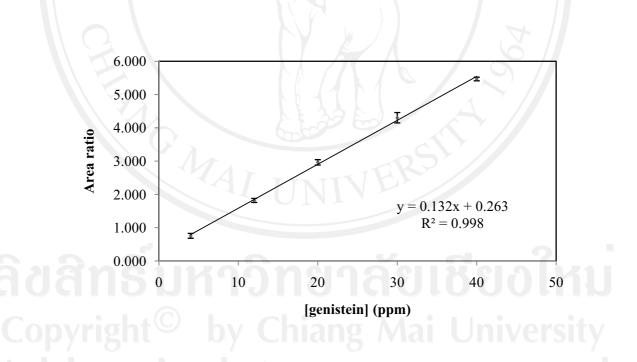
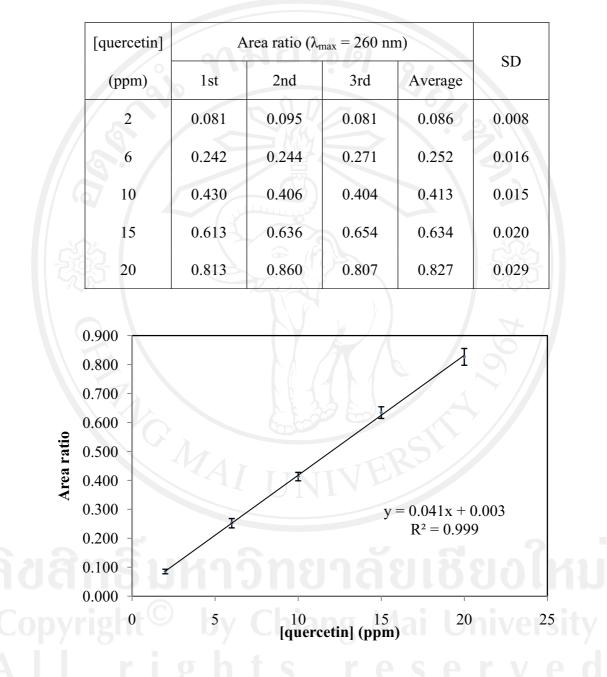



Figure A.4 Calibration curve of genistein in ACN using 2-napthol internal standard for MISPE from genistein standard

Table A.28 Calibration curve of genistein in ACN using 2-napthol internal standard

for MISPE from quercetin standard

Figure A.5 Calibration curve of quercetin in ACN using 2-napthol internal standard for MISPE from quercetin standard

Table A.29 Calibration curve of quercetin in ACN using 2-napthol internal standard

Washing Conditions*		Are	a ratio (λ ₁		CD		
	Polymers	1st	2nd	3rd	Avg.	% Recovery	SD
	PIII-VP	1.894	1.924	1.868	1.895	63.91	0.95
	NIP	1.840	1.915	1.933	1.896	63.96	1.66
2	PIII-VP	1.740	1.761	1.722	1.741	58.74	0.87
	NIP	1.886	1.918	1.853	1.886	63.61	1.54
	PIII-VP	2.550	2.588	2.514	2.551	86.03	1.24
5	NIP	2.638	2.601	2.674	2.638	88.96	1.22
4	PIII-VP	1.402	1.370	1.399	1.390	46.71	0.78
4	NIP	1.550	1.482	1.493	1.508	50.97	1.40

 Table A.30 Percentage of genistein recovery from PIII-VP and its NIP after MISPE

 process in various using washing conditions

*Washing conditions;

(1) 40% MeOH in water

(2) 20% ACN in water
(3) 0.1% FA in 20% ACN in water
(4) 0.1% FA in 30% ACN in water

Eluting Conditions*	A	rea ratio (λ	0/Decement			
	1st	2nd	3rd	Average	%Recovery	SD
1	1.346	1.393	1.465	1.401	47.27	1.64
2	2.395	2.588	2.514	2.499	84.29	2.66
3	2.176	2.123	2.221	2.173	73.29	1.34

 Table A.31 Percentage of genistein recovery from PIII-VP after MISPE process in various eluting conditions

*Eluting conditions;

(1) ACN

(2) 1% FA in ACN

(3) 1% TEA in ACN

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

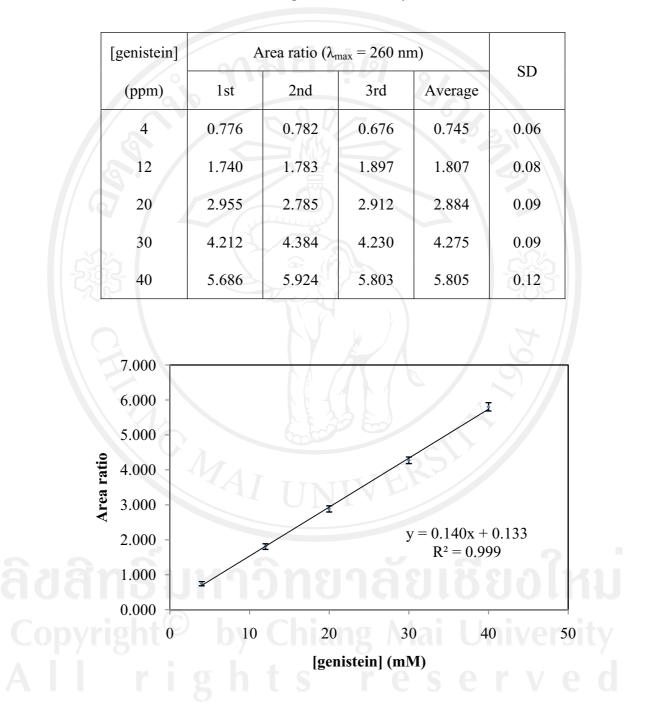


 Table A.32 Calibration curve of genistein in ACN using 2-napthol as internal standard for MISPE of genistein from soybean extracts

Figure A.6 Calibration curve of genistein in ACN using 2-napthol internal standard for MISPE of genistein from soybean extracts

Table A.33 The percentage of genistein recovery from MISPE process of PIII-VP in

Sample	A	rea ratio (λ_r	0/ Decovery	SD		
	1 st	2nd	3rd	Avg	% Recovery	50
MIP	2.919	2.567	2.219	2.568	73.08	9.95
NIP	2.654	2.655	2.328	2.545	72.42	5.37

soybean extracts

Table A.34 The percentage of genistein recovery from MISPE process of PI-II-III in

soybean extracts

Sample	А	rea ratio (λ ₁	9/ Basayamy	SD		
	1st	2nd	3rd	Avg	% Recovery	30
MIP	2.463	2.757	2.739	2.653	74.85	4.30
NIP	2.538	2.856	2.741	2.712	76.52	4.53

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

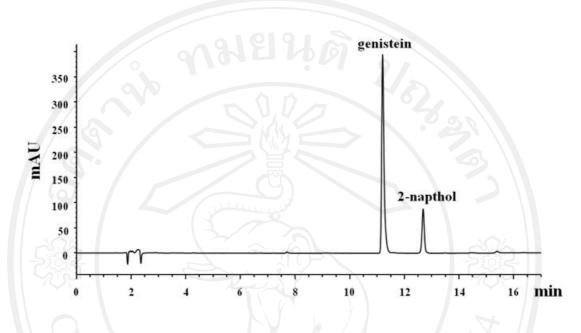
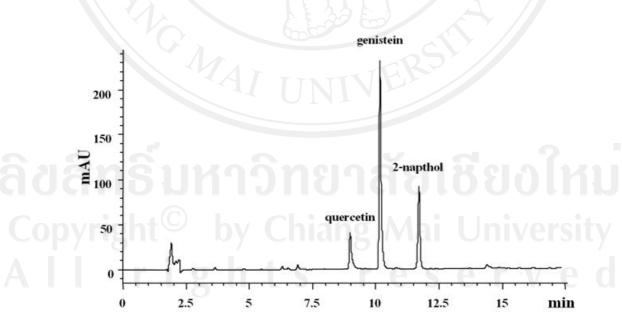
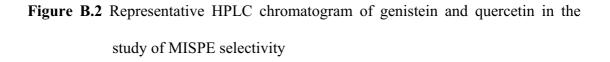
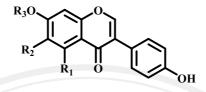





Figure B.1 Representative HPLC chromatogram of genistein in optimization of

MISPE process

Name	R ₁	R ₂	R ₃	MW
Daidzein	Н	H	н	254
Glycitein	Н	OCH ₃	Н	284
Genistein	ОН	Н	Н	270
Daidzin	Н	Н	Glu	416
Glycitin	Н	OCH ₃	Glu	446
Genistin	ОН	Н	Glu	432
Acetyldaidzin	Н	Н	Glu-COCH ₃	458
Acetylglycitin	Н	OCH ₃	Glu-COCH ₃	488
Acetylgenistein	ОН	H	Glu-COCH ₃	474
Malonyldaidzin	H	Н	Glu-COCH ₂ COOH	502
Malonylglycitin	Н	OCH ₃	Glu-COCH ₂ COOH	532
Malonylgenistein	ОН	Н	Glu-COCH ₂ COOH	518

Figure B.3 Structural formula and molecular weight of the main isoflavones detected

in soybean^{29,72}

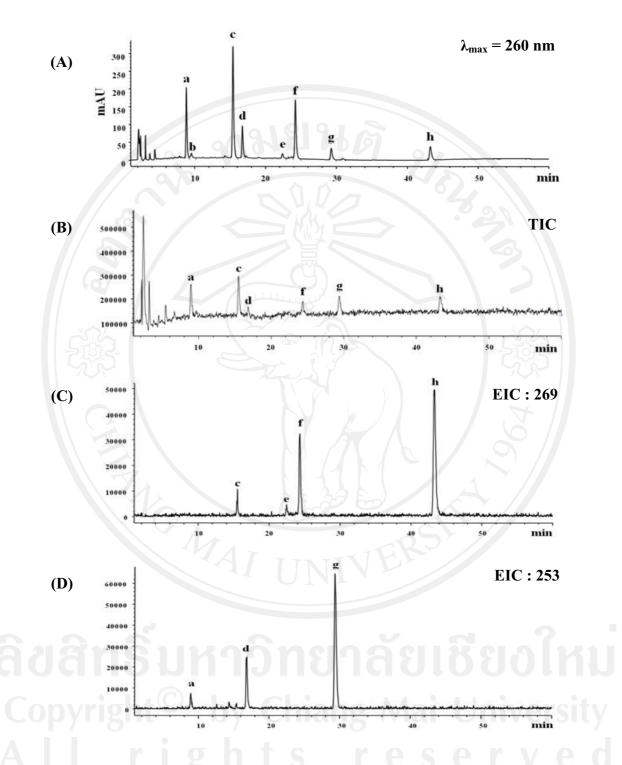


Figure B.4 The HPLC-UV (A) and MS (B-D) chromatograms of soybean extract. (B)Total ion chromatogram; (C) reconstructed ion chromatogram for genistein and its derivatives; (D) reconstructed ion chromatogram for daidzein and its derivatives.

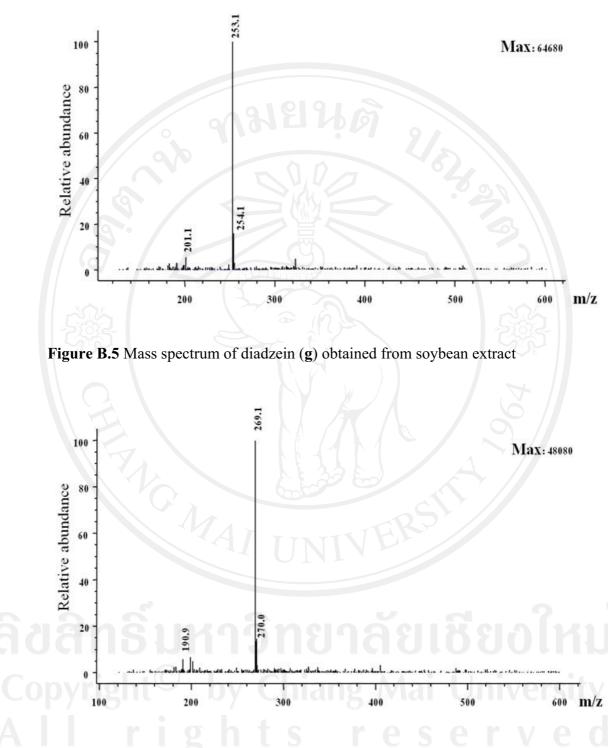


Figure B.6 Mass spectrum of genistein (h) obtained from soybean extract

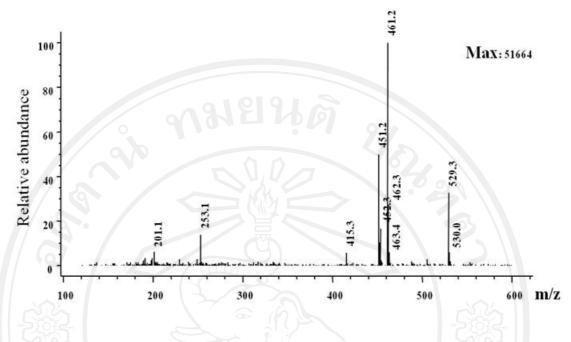


Figure B.7 Mass spectra of malonyl daidzin (a) obtained from soybean extract

Table B.1 Calculation of genistein relative content in soybean extract

	Calculation of	Equation	
â	Area ratio (A _{ri})	$A_{ri} = \frac{A_i}{A_{IS}}$ Where A_i = peak area of peak i $i = a, b, c \dots h$	(B.1)
Со	Total area ration (A _{Tr})	$A_{Tr} = A_{ra} + A_{rb} + A_{rc} + \cdots A_{rh}$	(B.2)
A	% Relative content	% Relative content $= \frac{A_{ri}}{A_{Tr}} \times 100$	(B.3)

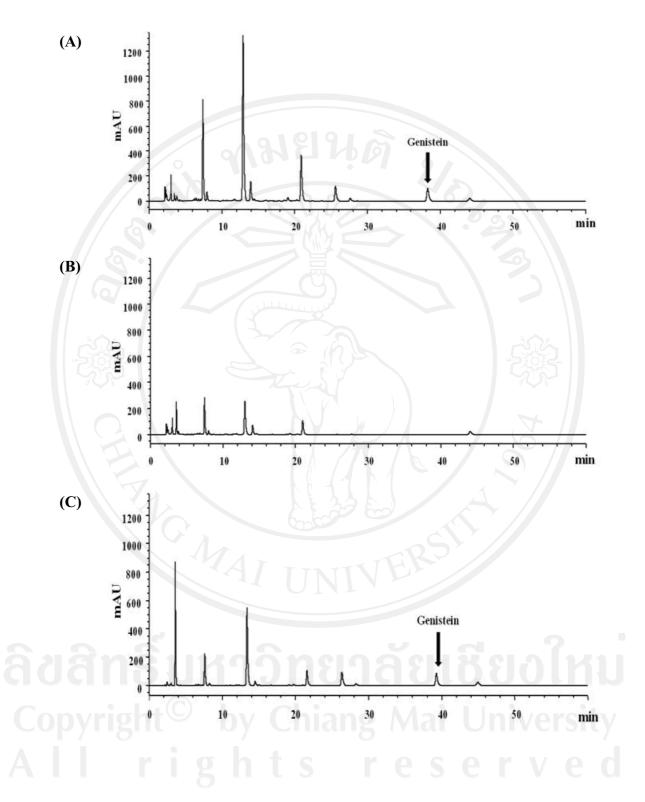


Figure B.8 Representative HPLC chromatogram of soybean extracts; (A) before MISPE process; (B) after loaded solution; (C) after MISPE process using PIII-VP

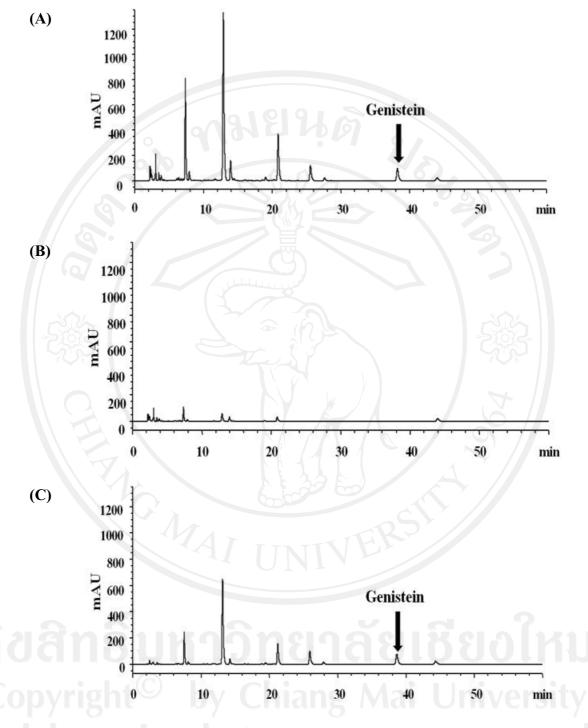


Figure B.9 Representative HPLC chromatogram of soybean extracts; (A) before MISPE process; (B) after loaded solution; (C) after MISPE process using PI-II-III

105

CURRICULUM VIVATE

Name

Miss Chanchira Wiwatsamretkun

Date of Birth

12nd March 1984

Education

High School, Niyomsilp-Anusorn School, Phetchabun, Thailand (1998-2001)

- Set

Bachelor of Science (Chemistry), Chiang Mai University, Chiang Mai, Thailand (2002-2006)

Scholarship

B.Sc Scholarship supported by Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST)

M.S. Scholarship supported by Center of Eecellence for Innovation in Chemistry: PERCH-CIC

List of conferences

Poster Presentation, "Synthesis of Molecularly Imprinted Polymer Selective to Some Flavonoids in Plant Extracts" at the 6th International Congress on Chemistry for Innovation (PERCH-CIC Congress VI), Pattaya, Chonburi, Thailand. May 3-6 2009. Oral Presentation, "Moleculary Imprinted Polymeric Material of Isoflavone" at The Sixth Thailand Materials Science and technology Conference, Bangkok, Thailand. August 26-27 2010.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved