TABLE OF CONTENTS

	Pa	age
ACKNOWLEI iii	DGEMENT	
ABSTRACT (iv	THAI)	
ABSTRACT vi		
LIST OF TAB	LES	
x LIST OF FIGU xi	JRES	
CHAPTER 1	Introduction	1
	1.1 Background and Motivation	1
	1.2 Literature Review	2
	1.3 Purpose of the Study	4
	1.4 Education / Application Advantage	4
	1.5 Research Scope	5
	1.6 Research Methodologies	5
	1.7 Research Contributions	5
	1.8 Thesis Organization	6
CHAPTER 2	Voltage Sags	7
	2.1 Definition of Voltage Sags	7
	2.2 Causes of Voltage Sags	8
	2.3 Classification of Voltage Sags	9
	2.4 Effect of Voltage Sags	13
	2.5 Conclusion	16

CHAPTER 3	Voltage Sag Mitigation	17
	3.1 Introduction	17
	3.2 Solution using energy storage devices	17
	3.3 Solution without using energy storage devices	23
	3.4 Conclusion	27
CHAPTER 4	A 3-phase 4-wire 4-leg voltage sag compensator	31
	4.1 Introduction	31
	4.2 The system of a 3-phase 4-wire 4-leg voltage sag compensator base on three dimensions space vector modulation on <i>abc</i> coordinates.	32
	4.3 Conclusion	77
CHAPTER 5	Experimental Results	78
	5.1 Introduction	78
	5.2 The experimental results of single-phase voltage sag	80
	60% on unbalance load.	
	5.3 The experimental results of three-phase voltage sag	82
	60% on unbalance load.	
	5.4 The experimental results of single-phase voltage sag	84
	60% on nonlinear load.	
	5.5 The experimental results of three-phase voltage sag	87
	60% on nonlinear load.	
	5.6 Conclusion	89
CHAPTER 6	Conclusion and Future work	90
	6.1 Conclusion	90
	6.2 Future work	91
REFERENCES		92
VITA		96

ix

LIST OF TABLES

Table		Page
2.1	ามยนต	20
3.1	Solutions using energy storage devices.	28
3.2	Solutions without using energy storage devices.	30
4.1	Switching states, voltage terminals and switching vector in <i>abc</i> coordinates.	67
4.2	The duty cycle calculation, Region Pointer, non-zero switching vectors.	69
5.1	The components used in implementing the system shown in Fig. 5.1.	79

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
2.1	Definitions of voltage magnitude events as used in IEEE-	7
2.2	Equivalent circuit of an electric system showing the point of common coupling (PCC) for an induction motor and other	8
2.3	Phasor diagram of four types of voltage sags.	11
2.4	Three types of voltage sags due to two-phase-to-ground faults.	12
2.5	Regulated DC Power Supply	13
2.6	Adjustable Speed Drive(ASD) configuration.	15
5 3.1	Battery based UPS system.	19
3.2	Typical UPS with flywheel.	20
3.3	Typical superconducting magnetic energy storage system.	21
3.4	Typical fuel cell system used as energy storage device.	22
3.5	Typical dynamic voltage restorer.	23
3.6	Dynamic sag corrector, Dysc.	24
3.7	Typical static transfer switch system.	25
3.8	Transformer with electronic tap changer.	26
3.9	Typical AC-AC converter.	27
4.1	Block diagram of 3-phase, 4-wire, 4-leg voltage sag	32
4.2	compensator. Topology of the power electronic conversion block.	33
4.3	Phase shift of vectors.	33
4.4	Block Diagram of opto-isolation amplifier.	34
4.5	Function block diagram of voltage sag detection.	e 34
4.6	Function block diagram of Software Phase-Locked Loop (SPLL)	35
4.7	Linear model of SPLL.	35

4.8	Bode diagram of SPLL system using PI controller.	37
4.9	Root locus of SPLL system using PI controller.	37
4.10	Bode diagram of SPLL system using lag-lead controller.	39
4.11	Root locus of SPLL system using lag-lead controller.	39
4.12	The construction of voltage sag detector of this thesis.	40
4.13	DC/DC boost converter in this thesis.	41
4.14	Continuous-conduction mode.	43
4.15	The boost converter circuit.	44
4.16	Control system of boost converter.	46
4.17	Step response of boost converter (D=0.4).	47
4.18	Bode plot of boost converter (D=0.4).	47
4.19	Step response of boost converter (D=0.1).	48
4.20	Bode plot of boost converter (D=0.1).	48
4.21	Step response of boost converter (D=0.4) with PI control.	50
4.22	Bode plot of boost converter (D=0.4) with PI control.	50
4.23	Step response of boost converter (D=0.1) with PI control.	51
4.24	Bode plot of boost converter (D=0.1) with PI control.	51
4.25	The practical realization of the PI controller.	53
4.26	The DC/DC boost converter of this thesis.	55
4.27	The block diagram of solid state transfer switch.	56
4.28	The operation of solid state transfer switch.	57
4.29	Pulse transformer trigger circuit.	58
4.30	The circuit for 1 module of SCR.	58
4.31	The circuit board of trigger circuit.	59
4.32	Three phases capacitors split inverter.	60

4.33	DC-link capacitor is $1000 \mu F$.	61
4.34	DC link capacitor is 10000µF.	61
4.35	Four-leg voltage source inverter	62
4.36	Average large-signal model of four-leg inverter.	64
4.37	Switching vectors of a four-leg inverter.	65
4.38	Projection of the sixteen vectors into α, β plane.	65
4.39	Switching vector base on <i>abc</i> coordinate.	67
4.40	The simulation model of region pointer (<i>RP</i>) calculate.	71
4.41	The region pointer compared with Phase A voltage (positive magnitude 20%)	71
4.42	The region pointer from dsPIC30F6010 and Phase A voltage.	72
4.43	The sequence of region pointer (<i>RP</i>).	72
4.44	Switching signals to produce a voltage vector in region	73
	RP = 46.	
4.45	The duty cycles $d1, d2, d3$ and $d0$ from simulation program.	73
4.46	The circuit diagram of dsPIC30F6010 microcontroller.	76
4.47	The 3-phase 4-wire 4-leg inverter and dsPIC30F6010 microcontroller.	76
4.48	The LC low-pass filter of 3-phase 4-wire 4-leg inverter.	77
5.1	The block diagram of 3-phase, 4-wire, 4-leg voltage sag compensator.	78
5.2	The overall hardware of this thesis.	78
5.3	Voltage sag generator used in this thesis.	78
5.4	The experimental results of single-phase 60% voltage sag, 100 ms duration, unbalance load condition	81

5.5	The experimental results of three-phase 60% voltage sag unbalance load condition, 100 ms duration.	83
5.6	The nonlinear load circuit.	84
5.7	The experimental results of single-phase 60% voltage sag, 100 ms duration, nonlinear load condition without compensation.	85
5.8	The experimental results of single-phase 60% voltage sag, 100 ms duration, nonlinear load condition with compensation.	86
5.9	The experimental results of three-phase 60% voltage sag, 100 ms duration, nonlinear load condition without compensation.	87
5.10	The experimental results of three-phase 60% voltage sag, 100 ms duration, nonlinear load condition with compensation.	88

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved