TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
CHAPTER 1 INTRODUCTION AND RESEARCH OBJECTIVE	1
1.1 Introduction	1
1.2 Research objective	3
CHAPTER 2 THEORETICAL BACKGROUND	4
2.1 Titanium dioxide (TiO ₂)	4
2.2 Properties of TiO_2	7
2.2.1 Photocatalysis	8
2.2.2 Hydrophilicity and super-hydrophilicity	13
2.3 Practical applications	20
2.3.1 Self cleaning surface	20
2.3.2 Anti fogging surface	23
2.3.3 Antibacterial	26

	page
2.3.4 Air purification	27
2.3.5 Water treatment	27
2.4 Iron oxide	28
2.5 Properties of iron oxide	28
2.5.1 Iron (II) oxide (FeO)	29
2.5.2 Iron (III) oxide (Fe_2O_3)	30
2.5.3 Iron (II, III) oxide (fe_3O_4)	32
2.6 Practical applications of iron oxide	34
2.7 Synthesis of colloidal NPs	36
2.7.1 Synthesis of colloidal TiO ₂ NPs by sparking process	36
2.7.2 Synthesis of Fe2O3 NPs by pyrosol method	37
CHAPTER 3 EXPERIMENTAL PROCEDURE AND SAMPLE	40
CHARACTERIZATIONS	
3.1 Synthesis of colloidal TiO ₂ NPs by sparking process	40
3.1.1 Experimental setup and experimental procedure	40
3.1.2 Sample characterization	42
3.2 Synthesis of Fe_2O_3 NPs by pyrosol method	47
3.2.1 Experimental setup and experimental procedure	47
3.2.2 Sample characterization	e ₄₈ 0
3.3 Measurement instruments	48
3.3.1 Scanning electron microscopy (SEM)	48
3.3.2 Transmission electron microscopy (TEM)	49

	page
3.3.3 X-ray diffraction (XRD)	50
3.3.4 Raman spectroscopy	52
3.3.5 UV-vis spectroscopy	54
CHAPTER 4 RESULTS AND DISCUSSION	58
4.1 Synthesis of colloidal TiO ₂ NPs by sparking process	58
4.1.1 Relationship between NP concentration	58
and sparking time	
4.1.2 Morphology	61
4.1.3 Structural properties	65
4.1.4 Optical properties	70
4.1.5 Anti-bacterial activity	73
4.2 Synthesis of Fe_2O_3 NPs by pyrosol method	80
4.2.1 Morphology	80
4.2.2 Structural property	83
CHAPER 5 CONCLUSIONS AND SUGGESTIONS	85
REFERENCES Chi ang Mai Univer	88 5 103
APPENDIX AS IN THE SERVE	e ₁₀₄
APPENDIX B	107
CURRICULUM VITAE	139

LIST OF TABLES

Table	page
2.1 Refractive index of rutile and anatase TiO ₂	6
4.1 Comparison of anatase-rutile phase transformation temperature	68
at various particle sizes of TiO ₂ NPs	
4.2 The calculated diameter of the misted droplets and mean particle size	82
of α-Fe ₂ O ₃ particles using Eqs. (2.6)* and (2.7)**	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

ŀ	Figure		page
	2.1	Crystal structures of (a) anatase and (b) rutile TiO_2	5
	2.2	Percent reflectance of anatase and rutile at various wavelength regions	6
	2.3	Mobile charge carriers by (a) thermal generation	8
		(b) photo-excitation and (c) doping	
	2.4	Operation of a photochemical excited semiconductor particle	9
	2.5	Band-edge energies of typical semiconductors	11
	2.6	Oxidation-reduction reaction on the surface of TiO ₂	12
	2.7	Droplet on the solid surface	14
	2.8	Mechanism of photo-induced hydrophilicity	15
	2.9	Shape of water drops on the surface of glass, resin and hydrophobic resin	16
	2.10	Change of the contact angle of water with TiO ₂ -silicone thin film	17
		by UV irradiation	
	2.11	Chemisorbed water on the TiO ₂ surface	18
	2.12	Irradiation of light on the TiO ₂ surface	18
	2.13	Exposed chemisorbed water physisorbs and bonds with another water	19
		on the TiO ₂ surface	
	2.14	Physisorbed water on the TiO ₂ surface	19
	2.15	Major areas of activity in TiO ₂ photocatalysis	20
	2.16	(a) Ordinary surface and (b) hydrophobic surface (Lotus effect)	22

xiii

2.17	Dependence of the anti-fogging ability on the contact angle of water	23
2.18	The difference of the fogging with steam between normal glass and	24
	the photocatalyst coated glass	
2.19	Time dependence of the water contact angle in ambient atmosphere:	25
	(a) Upon UV illumination and (b) in the dark	
2.20	Chemical structure of iron (II) oxide	29
2.21	Chemical structure of Fe ₂ O ₃	30
2.22	Chemical structure of Fe ₃ O ₄	33
2.23	Schematic diagram of the nucleation mechanism of colloidal NPs	37
	deposited by the sparking off two metallic sharp tips	
2.24	Schematic diagrams of the pyrosol apparatus	38
3.1	Schematic diagrams of the sparking apparatus	41
3.2	(a) High DC voltage power supply and (b) An experiment	41
3.3	Flow chart of the experimental procedures for study of antibacterial	43
	activity of TiO ₂ NPs	
3.4	Standard preparation for TEM analysis	44
3.5	The experimental setup	47
3.6	Scanning electron microscopy (SEM)	49
3.7	Transmission electron microscopes (TEM)	50
3.8	X-ray diffraction (XRD)	51
3.9	Raman spectroscope	52
3.10	Raman scattering	53

Figure

Figure

3.11	UV-vis spectroscope	54
3.12	Schematic diagram of the absorption transitions between direct	56
	Parabolic bands	
4.1	Photograph of TiO ₂ NPs deposited into 10 ml of distilled water	58
	at various sparking time	
4.2	Weight loss of Ti wires vs. sparking time	59
4.3	Total mass of the NPs and weight loss vs. sparking time	60
4.4	TEM images and their corresponding SAED patterns	62
	of the as-deposited NPs at sparking times of (a) 1 h, and (b) 5 h	
4.5	Size distributions of the as-prepared TiO ₂ NPs	63
4.6	SEM images of (a) the as-deposited NPs on quartz substrate	64
	by two drops of the NP-dispersed water (b) the annealed sample	
	at 250 and (d) 500°C	
4.7	(a) Raman spectra, (b) the main anatase peak and	66
	(c) plot of main anatase peak and its FWHM against	
	the as-prepared NPs, the annealed samples at 250 and 500 $^{\circ}\text{C}$	
4.8	Plot of the phase transformation temperature against	68
	the mean particle size of TiO ₂ NPs	
4.9	Plots of optical transmittance against the wavelength of	70
	the as-deposited NPs and the annealed samples at 250 and 500 $^{\circ}$ C	
	for 1 h. Inset: the variation of $(\alpha hv)^2$ versus hv of the thin films for	
	estimation of the $E_{\rm g}$	

Figure

4.10 Temporal spectral changes of MB solution, (a) concentration of $10 \mu M$ 72 containing the as-prepared TiO₂ NPs at the various sparking times under sunbath for 1 h, (b) at dilute concentrations from 10 μ M to 2.5 μ M without TiO₂ NPs, and (c) decomposition rate of MB vs. concentration of TiO₂ NPs

4.11	Petri dishes of <i>E.coli</i> (a) in UV light without TiO ₂ NPs and	75
	supplemented with TiO_2 NPs (b) in the dark and (c) under UV	
	light, incubated at reaction times of 0, 1, 2 and 4 h	
4.12	Plot of the survival rates of <i>E.coli</i> against the reaction time	76
	in UV light without NPs, supplement with NPs in the dark	
4.13	SEM images of (a) controlled and (b) treated <i>E.coli</i> cells	77
	with TiO ₂ NPs under UV light for 4 h	
4.14	Cross section TEM image of treated <i>E.coli</i> cell with TiO ₂ NPs	78
	under UV light for 4 h	
4.15	SEM images (a) and their size distribution of Fe_2O_3 NPs	81
	at the precursor concentrations of 0.01, 0.1 and 1 M	
4.16	Plot of theoretical and Experimental mean diameter against various	82
	concentration of precursor solution	
4.17	XRD patterns for α -Fe ₂ O ₃ NPs with various concentration	83
	of precursor solution	
4.18	Raman spectrum of α -Fe ₂ O ₃ NPs	84