
Chapter 1
Introduction

The theory of distributions was initiated by the Russian mathematician S.L.
Sobelev in 1936. The concept of distributions was independently developed by the
French mathematician L. Schwartz in the 1950s. Since Schwartz was the one who
developed the theory almost to its present form. Distributions are often called Schwartz
distributions. Schwartz published his theory of distribution that we call generalized
function and he established the properties of generalized function. His theory has many
useful on many areas of mathematics, particularly on partial differential equations.
Generalized function theory has been used in many field of science and engineering.
Distributions are often called Schwartz distributions.
It is well know that for the heat equation

∂

∂t
u(x, t) = c2�u(x, t) (1.0.1)

with the initial conditions
u(x, 0) = f(x)

where

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

(1.0.2)

is the Laplace operator and u(x, t) = (x1, x2, . . . , xn, t) ∈ R
n × [0,∞), R

n is the n-
dimensional Euclidean space. We obtain the solution

u(x, t) =
1

(4c2πt)n/2

∫
Rn

exp

(
−|x − y|2

4c2t

)
f(y)dy (1.0.3)

as the solution of (1.0.1). Now, (1.0.3) can be written u(x, t) = E(x, t) ∗ f(x) where

E(x, t) =
1

(4c2πt)n/2
exp

(
− |x|2

4c2t

)
. (1.0.4)

E(x, t) is called the heat kernel, where |x|2 = x2
1 + x2

2 + · · · + x2
n and t > 0, [see9,

p.208-209].
In [16], K. Nonlaopon and A. Kananthai extended (1.0.1) to the equation

∂

∂t
u(x, t) = c2�u(x, t) (1.0.5)

with the initial condition

u(x, 0) = f(x) (1.0.6)

where

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q
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p + q = n is the dimension of the Euclidean space R
n, u(x, t) is an unknown function,

f(x) is a given generalized function and c is a positive constant. They obtain

u(x, t) = E(x, t) ∗ f(x) (1.0.7)

as a solution of (1.0.5) which satisfis (1.0.6) where E(x, t) is the kernel of (1.0.5) and is
defined by

E(x, t) =
iq

(4c2πt)n/2
exp

(
−

∑p
i=1 x2

i −
∑p+q

j=p+1 x2
j

4c2t

)
. (1.0.8)

where i =
√−1 and

∑p
i=1 x2

i >
∑p+q

j=p+1 x2
j . Moreover, they obtain E(x, t) → δ as t → 0,

where δ is the Dirac-delta distribution.
In[14], A. Kananthai studied the equation

∂

∂t
u(x, t) = c2♦ku(x, t) (1.0.9)

with the initial condition
u(x, 0) = f(x),

where the operator ♦ was first introduced by A. Kananthai [10, pp.27-37] and is named
the Diamond operator which is defined by

♦k =

(
p∑

i=1

∂2

∂x2
i

)2

−
(

p+q∑
j=p+1

∂2

∂x2
j

)2
k

. (1.0.10)

p + q = n is the dimension of space R
n, u(x, t) is an unknown function, f(x) is a given

generalized function and c is a positive constant. They obtain u(x, t) = E(x, t) ∗ f(x)
as a solution of (1.0.9) where

E(x, t) =
1

(2π)n

∫
Ω

exp

c2t

(
p∑

i=1

ξ2
i

)2

−
(

p+q∑
j=p+1

ξ2
j

)2
k

+ i(ξ, x)

 dξ (1.0.11)

and Ω ⊂ R
n is the spectrum of E(x, t) for any fixed t > 0. The function E(x, t) is called

the diamond heat kernel or elementary solution (1.0.9).
It is well known that for the 1-dimensional wave equation

∂2

∂t2
u(x, t) = c2 ∂2

∂x2
u(x, t), (1.0.12)

we obtain u(x, t) = f(x + ct) + g(x − ct) as a solution of the equation where f and g
are continuous. Also for the n-dimensional wave equation

∂2

∂t2
u(x, t) + c2(−�)u(x, t) = 0, (1.0.13)

with the initial condition

u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x)
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where f and g are given continuous functions. By solving the Cauchy problem for such
equation, the Fourier transform has been applied and the solution is given by

û(ξ, t) = f̂(ξ) cos (2π|ξ|) t + ĝ(ξ)
sin (2π|ξ|) t

2π|ξ|
where |ξ|2 = ξ2

1 + ξ2
2 + · · ·+ ξ2

n [see 6, p177]. By using the inverse Fourier transform, we
obtain u(x, t) in the convolution form, that is

u(x, t) = f(x) ∗ Ψt(x) + g(x) ∗ Φt(x) (1.0.14)

where Φt is an inverse Fourier transform of Φ̂t(ξ) =
sin (2π|ξ|) t

2π|ξ| and Ψt is an inverse

Fourier transform of Ψ̂t(ξ) = cos (2π|ξ|) t =
∂

∂t
Φ̂(ξ).

In,[19] W. Satsanit, A. Kananthai studied the equation

∂2

∂t2
u(x, t) + c2 (�)k u(x, t) = 0 (1.0.15)

with u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x) where c is a positive constant, k is a nonneg-

ative integer, f and g are continuous and absolutely integrable function. The equation
(1.0.15) is motivated by the heat equation of the form

∂

∂t
u(x, t) = −c2 (�)k u(x, t)

[see 16]. They obtain

u(x, t) = f(x) ∗ Ψt(x) + g(x) ∗ Φt(x) (1.0.16)

as a solution of (1.0.15) where Φt is an inverse Fourier transform of Φ̂t(ξ) =

sin c
(√

s2 − r2
)k

t

c
(√

s2 − r2
)k

and Ψt is an inverse Fourier transform of Ψ̂t(ξ) = cos c
(√

s2 − r2
)k

t

=
∂

∂t
Φ̂t(ξ) where r2 = ξ2

1 + ξ2
2 + · · · + ξ2

p and s2 = ξ2
p+1 + ξ2

p+2 + · · · + ξ2
p+q .

We also study the asymptotic form of u(x, t) in (1.0.15) by using ε approximation and
obtain u(x, t) = O(ε−n/k). Moreover, if we put k = 1 and p = 0 in (1.0.15) then (1.0.16)
reduces to the solution of the n− dimensional wave equation and also if k = 2, n = 1
and p = 0 in (1.0.15) then (1.0.16) reduces to the solution of beam equation.

In 1988, S.E. Trione [23] has shown that the n− dimensional ultra-hyperbolic equa-
tion

�ku(x) = δ(x) (1.0.17)

where �k is the ultra-hyperbolic operator iterated k− times is defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

)k

, (1.0.18)
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and x ∈ R
n, then u(x) = RH

α (V ) is an elementary solution of the �k operator where
RH

2k(x) is defined by

RH
α (V ) =

{
V

α−n
2

Kn(α)
, for x ∈ Γ+,

0, for x 	∈ Γ+,
(1.0.19)

where the constant Kn(α) is given by the formula

Kn(α) =
π

n−1
2 Γ(2+α−n

2
)Γ(1−α

2
)Γ(α)

Γ(2+α−p
2

)Γ(p−α
2

)
. (1.0.20)

The function RH
α (V ) is called the ultra-hyperbolic kernel of Marcel Riesz and was in-

troduced by Y. Nozaki [17].
By putting p = 1 in (1.0.19) and (1.0.20) and remembering the Legendre’s duplica-

tion of Γ(z).

Γ(2z) = 22z−1π− 1
2 Γ(z)Γ(z + 1

2
) then the formula (1.0.19) reduces to

MH
α (V ) =

{
V

α−n
2

Hn(α)
, for x ∈ Γ+,

0, for x 	∈ Γ+,
(1.0.21)

Here V = x2
1 − x2

2 − . . . − x2
n and Hn(β) = π(n−2)/22β−1Γ(β−n+2

2
)Γ(β

2
).

Next, A. Kananthai has shown that the n− dimensional Laplacian equation �ku(x) =
δ(x) where �k is the Laplace operator iterated k− times defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

)k

(1.0.22)

and x ∈ R
n, then u(x) = (−1)kRe

2k(x) is an elementary solution of the �k operator
where Re

2k(x) is defined by

Re
α(x) =

|x|α−n

Wn(α)
(1.0.23)

where

Wn(α) =
π

n
2 2αΓ

(
α
2

)
Γ

(
n−α

2

) (1.0.24)

α is a complex parameter and n is the dimension of R
n.

In 1997[5], A. Kananthai first introduced the Diamond operator ♦k iterated k−
times, defined by

♦k =

(
p∑

i=1

∂2

∂x2
i

)2

−
(

p+q∑
j=p+1

∂2

∂x2
j

)2
k

, p + q = n

is the dimension of the n− dimensional Euclidean space R
n, for x = (x1, x2, . . . , xn)

∈ R
n and k is a nonnegative integer. The operator ♦k can be expressed in the form

♦k = �k�k = �k�k, (1.0.25)



5

where �k is the ultra-hyperbolic operator iterated k− times and �k is the Laplacian
operator iterated k− times defined by (1.0.18) and (1.0.21) respectively. He has shown
that the solution of the convolution form u(x) = (−1)kRe

2k(x) ∗ RH
2k(x) is a unique

elementary solution of ♦k, where Re
2k(x) and RH

2k(x) are defined by (1.0.23) and (1.0.19)
respectively, that is

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ. (1.0.26)

In 2009, W. Satsanit [18], first introduced ⊗k operator and �k operator where ⊗k

is the operator iterated k− times defined by

⊗k =

(
p∑

i=1

∂2

∂x2
i

)3

−
(

p+q∑
j=p+1

∂2

∂x2
j

)3
k

(1.0.27)

or the ⊗k operator can be express in the following form

⊗k =

(
p∑

i=1

∂2

∂x2
i

)3

−
(

p+q∑
j=p+1

∂2

∂x2
j

)3
k

=

(
p∑

i=1

∂2

∂x2
i

−
p+q∑

j=p+1

∂2

∂x2
j

)k [(
p∑

i=1

∂2

∂x2
i

)2

+

(
p∑

i=1

∂2

∂x2
i

)
·

(
p+q∑

j=p+1

∂2

∂x2
j

)
+

(
p+q∑

j=p+1

∂2

∂x2
j

)2 ]k

= �k

(
�2 − 1

4
(� + �)(�− �)

)k

=

(
3

4
♦� +

1

4
�3

)k

(1.0.28)

Similarly the �k operator is defined by

�k =

(
3

4
♦� +

1

4
�3

)k

. (1.0.29)

where ♦, � and � are defined by (1.0.10), (1.0.22) and (1.0.18) with k = 1 respectively.
In 1988, S.E. Trione [21] studied the elementary solution of the ultra-hyperbolic

Klein-Gordon operator iterated k− times is defined by

(
� + m2

)k
=

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

+ m2

)k

,

(1.0.30)

and she obtained is the elementary solution WH
2k(v, m) defined by

WH
2k(v, m) =

∞∑
r=0

(−1)rΓ(k + r)

r!Γ(k)

(
m2

)r
RH

2k+2r(v), (1.0.31)
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where RH
α+2r(v) is defined by (1.0.19).

Next, A. Kananthai [12] studied the operator(♦ + m4
)k

G(x) = δ(x), (1.0.32)

he obtain the function

G(x) =
[
WH

2k(v,m) ∗ W e
2k(s,m)

] ∗ (
S∗k(x)

)∗−1
(1.0.33)

is an Green function for the operator (♦ + m4)
k

iterated k− times, and W e
2k(s,m) is

defined by

W e
2k(s,m) =

∞∑
r=0

(−1)rΓ(k + r)

r!Γ(k)

(
m2

)r
(−1)k+rRe

2k+2r(s), (1.0.34)

and Re
2k+2r(s) is defined by (1.0.23) with α = 2k + 2r, m is a nonnegative real number

and

S(x) = δ − m2
(
WH

2 (v,m) ∗ W e
2 (s,m)

) ∗ (
RH

−2(v) + Re
−2(s)

)
(1.0.35)

S∗k(x) denotes the convolution of S(x) itself k− times,
(
S∗k(x)

)
is the inverse of S∗k(x)in

the convolution algebra.
In[16], A. Kananthai, G. Sritanratana studied non-linear equation

♦ku(x) = f
(
x,�k−1�ku(x)

)
, (1.0.36)

where ♦k is defined by (1.0.10), � is the Laplacian operator, � is the ultra-hyperbolic
operator,p+ q = n, x ∈ R

n and u(x) is an unknown function, f is first derivative for all
x ∈ Ω ∪ ∂Ω, Ω is an open subset of R

n and ∂Ω denotes the boundary of Ω, n is even
with n ≥ 4 and if f is bounded on Ω, then

u(x) = (−1)k−1Re
2(k−1)(s) ∗ RH

2k(υ) ∗ W (x)

is a solution (1.0.36) with the boundary condition

u(x) = RH
2k(υ) ∗ (−1)k−2 (Re2(k − 2))(m)

for x ∈ ∂Ω and m = (n−4)
2

.
Furthermore, W. Satsanit first introduced the operator �k iterated k− times which

is defined by

�k =

(
p∑

i=1

∂2

∂x2
i

)6

−
(

p+q∑
j=p+1

∂2

∂x2
j

)6
k

, (1.0.37)

where p + q = n is the dimension of the n− dimensional Euclidean space R
n and k is a

nonnegative integer. Actually (1.0.37) can be rewritten in the following form

�k = ⊗k�k, (1.0.38)

where the operators ⊗k and �k are defined by (1.0.28) and (1.0.29) respectively.
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The thesis is organized as follow: In chapter 2, we give some useful definitions
and properties of the special function, partial differential equations, distributions and
elementary solution.

In chapter 3, we study the nonlinear equation of the form

∂

∂t
u(x, t) − c2(−⊗)ku(x, t) = f(x, t, u(x, t))

, where ⊗k is the operator iterated k-times, defined by

⊗k =

(
p∑

i=1

∂2

∂x2
i

)3

−
(

p+q∑
j=p+1

∂2

∂x2
j

)3
k

, where p + q = n is the dimension of the Euclidean space R
n, u(x, t) is an unknown

for (x, t) = (x1, x2, . . . , xn, t) ∈ R
n × (0,∞), k is a positive integer and c is a positive

constant, f is the given function in nonlinear form depending on x, t and u(x, t). On
suitable conditions for f , p, q, k and the spectrum, we obtain the unique solution u(x, t)
of such equation.Moreover,if we put p = 0, k = 1, we obtain the solution of non-linear
heat equation.

In chapter 4, we study the generalized wave equation of the form

∂2

∂t2
u(x, t) + c2(⊗)ku(x, t) = 0

with the initial conditions

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x)

where u(x, t) ∈ R
n× [0,∞), R

n is the n-dimensional Euclidean space, ⊗k is the operator
iterated k−times defined by

⊗k =

(
p∑

i=1

∂2

∂x2
i

)3

−
(

p+q∑
j=p+1

∂2

∂x2
j

)3
k

c is a positive constant, k is a nonnegative integer, f and g are continuous and absolutely
integrable functions. We obtain u(x, t) as a solution for such equation. Moreover, by ε-
approximation we also obtain the asymptotic solution u(x, t) = O(ε−n/3k). In particular,
if we put k = 1 and p = 0, the u(x, t) reduces to the solution of the wave equation

∂2

∂t2
u(x, t) + c2(�)3u(x, t) = 0.

which is related to the triharmonic wave equation.
In chapter 5, we propose to use the idea of A. Kananthai [7] and A.H. Zemanian

[23], to find the Green function of the (⊗ + m6)
k

operator iterated k−times, that is we
consider the equation (⊗ + m6

)k
G(x) = δ(x)

and m is positive real number, δ(x) is the Dirac-delta distribution. At first we find the

green function of the operator (⊗ + m6)
k

and after that we apply such a green function
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to solve the solution of the equation (⊗ + m6)
k
G(x) = f(x) where f is a generalized

function and G(x) is an unknown for x ∈ R
n.

In chapter 6, we study the �k operator iterated k− times and is defined by

�k =

(
p∑

i=1

∂2

∂x2
i

)6

−
(

p+q∑
j=p+1

∂2

∂x2
j

)6
k

,

where p+q = n is the dimension of the Euclidean space R
n, u(x) is an unknown function

for x = (x1, x2, . . . , xn) ∈ R
n, f(x) is the generalized function, k is a positive integer.

Firstly, we study the solution of the equation �ku(x) = f(x). It is found that the solu-
tion u(x) depends on the condition of p and q and a solution is related to the solution
of the Laplace equation and the wave equation. Finally, we study the solution of the
nonlinear equation �ku(x) = f(x, �k−1Lk �k u(x). It is found that the existence of the
solution u(x) of such an equation depends on the condition of f and �k−1Lk �k u(x).
Moreover a solution u(x) related the inhomogeneous equation depends on the condition
of p, q and k.


