Chapter 2
Basic Concepts and Preliminaries

The aim of this chapter is to give some definition and properties of the distribu-
tion, the special function, the Fourier transform, partial differential equations and the
elementary solution of the partial differential operators which will be used in the later
chapters.

2.1 Distribution

In this section, we give some definition and properties of the distribution which will
be used in the later chapters.

Definition 2.1.1. Let Q € R" and f : Q — R. The support of f is defined to be the
closure of the set S = {z € Q: f(x) # 0}. And support of f is denote by Suppf.

Definition 2.1.2. A set 0 C R"™ is compact if every sequence in ) has a convergent
subsequence whose limit is an element of €.

Definition 2.1.3. Let Q C R, define D = C§°(12) is the set of all infinitely differentiable
functions on 2 with compact support, ¢ € D is called test function.

Definition 2.1.4. A sequence of testing function ¢;(x);°, is said to converge to ¢(z)

in D if all p;(x) are zero outside a certain region in R"™ and if for every nonnega-
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Proposition 2.1.5. ([5]) D is closed under convergent, that is, the limit of every sequence
that converge in D is also in D.

Definition 2.1.6. A distribution is a mapping f : D — C such that
(1) (f,¢) is a well defined complex number for every ¢ € D,

(2) for any ¢4, ps € D and any scalars ay, ag,
(fsa1p1 + azpa) = ar(f, 1) + az(f, pa),
(3) for any sequence {¢,} in D such that lim ¢, = ¢ then lim (f, ¢,) = (f, ¢).

We note that each continuous(or even locally integrable) function f(z) generates a
distribution

(o) = / (@) () dar
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Definition 2.1.7. A reqular distribution is a distribution which is generated by a locally
integrable function.

Definition 2.1.8. A singular distribution is a distribution which is not generated by a
locally integrable function.

Definition 2.1.9. The Dirac-delta distribution with singularity & € R", denoted by
d(x — &), which is defined by

(0(z =€), ) = o(&).

Definition 2.1.10. Let z = (x1,29,...,2,) € Q@ C R", S is defined to be the set of all
real value functions ¢(x) that are infinitely smooth and are such that, all nonnegative
integer m and k = (ky, ka, ..., k),

™| D* ()] < Con,

k1+kat..+kn

F1 o F .
Ozt Ozy? ...0zkn

for some a constant C,,, and denote D¥ by DF =
Definition 2.1.11. A tempered distribution is a mapping f : S — C such that
(1) (f,p) is a well defined complex number for every ¢ € S,

(2) for any 5,9 € S and any scalars aq, as,
< frarp1 +azpr >=a1 < f, 01 > +az < fp2 >,
(3) for any sequence {¢,} in S such that lim ¢, = ¢ then lim (f, @,) = (f, ¢).

Definition 2.1.12. A space C of distributions is said to be a convolution algebra if it
possesses the following properties:

(1) C is a linear space.
(2) C is closed under convolution.

(3) Convolution is associative for any three distributions in C.

0

Definition 2.1.13. Let f be a distribution. The derivative 0_f as the distribution given
Tk

by

of .\ _ 99
<8_xk’ > - _< ’(‘9_@)’

and more generally D* f denoted by
(D', ¢) = (~=1)*(f, D"g),
where |k| = k1 + ko + - - + ky.

Proposition 2.1.14. ([23]) Let x be an n-dimensional real variable and y an m-dimensional
real variable. Also, let p(x,y) be a testing function in D define over R™™. If f(x) is a
distribution defined over R™, then 0(y) = (f(x), p(x,y)) is a testing function of y in D.
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Proposition 2.1.15. ([7]) Let f be a distribution in m dimensions and g be a distribution
i n dimensions. Then the functional h defined by

(h(z,y), p(z,y)) = (f(2),{9(y), p(z,9)))

18 a distribution in m + n dimensions.

Definition 2.1.16. The distribution A in Proposition (2.1.15) is called the tensor ( or
direct ) product of f(z) and g(y) and is denoted by h(z,y) = f(z) x g(y), that is,

(f(@) x g(y), o(x,y)) = {f(2), (9(v), p(z,9))). (2.1.1)

Definition 2.1.17. The support of a distribution f is defined as the complement of the
largest open set on which f is zero.

Proposition 2.1.18. ([7]) Let f and g be distributions inn dimensions. Then the function
h defined by

(h,p) = (f (@) x g(y), p(x +y)) (2.1.2)
18 a distribution provided that it satisfies either of the following conditions:
(1) FEither f or g has bounded support, or

(2) In one dimension the supports of both f and g are bounded on the same side ( for
instance, f =0 for x < a, and g =0 fory <b ).

Definition 2.1.19. The distribution A in Proposition (2.1.15) is called the convolution
of f and g and is denoted by h = f % g, that is,

(fxg,0) = (f(x) x g(y), p(z + 1)) (2.1.3)

Now we shall give some helpful properties of convolutions.
Proposition 2.1.20. ([7],[23]) Let f,g and h be distributions.

(1) For ¢ is the Dirac-delta function, we have
Fxd=1. (2.1.4)
(2) If f and g satisfy at least one of the (1) and (2) of proposition 2.1.12, then
Frg=gxf. (2.1.5)

(3) If P(D) is a linear partial differential operator with constant coefficients and f
and g satisfy at least one of the (1) and (2) of proposition 2.1.12, then

P(D)f+g=P(D)(f*g)=f*P(D)g. (2.1.6)
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2.2 The Special Functions and Fourier Transform

In this section, we shall present the definitions of the special function. In addition,
we shall give some properties of the gamma function.

Definition 2.2.1. The gamma function is denoted by I' and is defined by

[(z) = / e't*1dt, (2.2.1)
0

where z is a complex number with Rez > 0.

A result that yields an immediate analytic continuation from the left half plane is
the following properties.

Proposition 2.2.2. ([1]) Let z be a complex number. Then

(1) T(z) = @ 2 40,—1,-2,..., (2.2.2)

(2) T(2)0(1 — 2) = 240,41, 42, (2.2.3)

sin mz
Proposition 2.2.3. ([1]) (Legendre’s duplication formula) Let z be a complex number.
Then

L(2)(z + %) =212/ (22), 2 #0,-1,-2,.... (2.2.4)

Definition 2.2.4. Let x = (21, %3, ..., &,) be a point of the n-dimensional Euclidean space
R™. Denoted by

V223 + 25+ + T — Doy T g == T, (2.2.5)

the nondegenerated quadratic form and p + ¢ = n is the dimension of the space R".
Let I'y = {x € R": 2y > 0 and u > 0} and I'; denotes it closure. For any complex
number «, define the function

T
RH(v)={ fy for €l (2.2.6)
0, forx g 'y,
where the constant K, («) is given by the formula
nT_IF 2+a—n r 1o r
Ko(a) = T2 LN (2.2.7)

D(=5-2)0 (%)
The function RZ (V) is called the ultra-hyperbolic kernel of Marcel Riesz and was in-
troduced by Y. Nozaki [17].

It is well known that R (u) is an ordinary function if Re(«) > n and is a distribution
of a if Re(a) < m. Let supp RZ (V) denote the support of R (u) and suppose supp
RE(V) c T, that is supp R (u) is compact.

From S.E.Trione [22], R is an elementary solution of the operator (¥ that is

OFRE (u) = §(z) (2.2.8)
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Definition 2.2.5. Let z = (zy, %9, ..., ¥,,) be a point of R" and |z| = (2% + 23 + ... + xi)%
the function RS (x) denoted the elliptic kernel of Marcel Riesz and is defined by

B |x’a—n

Wi (a)

RS (x) (2.2.9)

where
7220 (3)
r(5)

2

W(a) = (2.2.10)

« is a complex parameter and n is the dimension of R”.
It can be shown that R, (z) = (—1)*A*§(x) where AF is defined by (??). It follows
that R§(z) = d(x), [2].
Moreover, we obtain (—1)*RS,(z) is an elementary solution of the operator A that
1s
AF((=1)FRS, () = 6(x) (2.2.11)
[See 10, Lemma 2.4]

Lemma 2.2.6. (The convolution of RZ(z) and R¢(z))
Let R¢(x) and R (x) be defined by (2.2.9) and (2.2.6) respectively, then we obtain
the following formulas:

(1) Rg(x) * Re (v) = R, 5(x) where o and 3 are complex parameters

(2)RE (x) * Rl (x) = RY, 5(x) for a and 3 are both integers and except only the case
both o and ( are both integers.

Proof. Proof of the first formula, [5]
Proof of the second formula, for the case o and /3 are both even integers [See 5] ,

and for the case o is odd and 3 is even or « is even and (3 is odd , we know from Trione
[21]
O"R™(2) = RY ,, (x) (2.2.12)

and
O"RE (x) =6(z) , k=0,1,2,3,--- (2.2.13)
where [J* is the ultra-hyperbolic operator iterated k-times defined by
P g2 Pre oo 5
Now let m be an odd integer, we have
DRy, (2) = Ry (@)

and

Ry (x) * O Ryl (2) = Ry (x) * Ryl_op(w)

m
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or
(O Rsp.(2)) * Ry (2) = Ry () * Ry oy ()
0% Ry () = Ry () * Ry _op ().
Thus
Ry(x) = Ryj(x) % Ry o(2)
Since m is odd, hence m — 2k is odd and 2k is a positive even. Put a = 2k , § =
m — 2k, we obtain

Rl (z) * Rf (x) = Ril, 5(w)
for « is a nonnegative even and ( is odd.
For the case « is a negative even and /3 is odd , by (2.2.8) we have

ORy (2) = Ry ()

or

0%s = RY,, (2).
Where R (z) = 6. Now for m is odd,

Ry ()« 0" Ry, (x) = Ry, () * Ry (@)

or
(OFRa(2)) * Rp(w) = Ry () % Ry o (@)
0% R () = Ry () % R o ().
Thus
Rg—?(%) (z) = Rg?k(x) * RZ—Qk('r)'
Put o = —2k and § = m — 2k , now « is a negative even and 3 is odd. Then we
obtain

Rl (x) * Rf (z) = Ry 5(x).
That completes the proof.

Lemma 2.2.7. The function R%,, (z) and R®,, (z) are the inverse of the convolution
algebra of R* and RS, respectively, that is

R (w) * Ry (v) = RYy 51,(2) = Ro(w) = 0(2)

and
(—1)" Ry (2) % (=1)"Rgy(z) = <_1)2kRe—2k+2k<x> = So(x) = d(x)
Proof. [See 21, p.118, p.158], [See 1, p.123] and [See 5, p.10].

Definition 2.2.8. Let # = (21,73, ..., z,) be a point of R" and the function W (u, m) is
defined by

Z + d (m*)" Reya (u) (2.2.14)

|
p— r! F

where R, (u) is defined by (2.2.6) and m is a nonnegative real number.
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Lemma 2.2.9. (The existence of the convolution W (u, m)* W&, (v,m)) The convolu-
tion W (u, m) * W, (v,m) exists and is a tempered distribution where W (u, m) and
Ws,.(v,m) are defined by (2.3.11) and (2.3.12) with o = 2k.

Proof. From (2.3.11) and (2.3.12), we have

WL (. m) » Wyl m) = (Z i ey Ré’k+2r<u>>

DT (R+7) o e
* <Z T () (m ) R2kz+2r(v)>
R o1 _1 SF k S 2\ S _1 T]_—‘ k: r 2\ T
> ey ) iy )

X2(=1)"" [Rij g, (u) * Rig, (v)] -
A Kananthai [12] has shown R} ., (u) % RS, (v) exists and is a tempered distribu-
tion. It follows that W (u, m)* W (v,m) exists and also is a tempered distribution.

Lemma 2.2.10. Given P is a hyper-function then

P6*(p) + k6D (p) = 0
where 6% is the Dirac-delta distribution with k derivatives.
Proof. [7].

Lemma 2.2.11. Given the equation
Ou(z) = f(z,u(z)), (2.2.15)

where f is defined and has continuous first derivatives for all x € Q U 02,  is an
open subset of R" and 0f2 is the boundary of €2. Assume that f is bounded, that is
|f(z,u)] < N and the boundary condition u(z) = 0 for = € 9€2. Then we obtain u(x)
as a unique solution of (2.2.15)

Proof. We can prove the existence of the solution u(x) of (2.2.15) by the method of
iterations and the Schuder’s estimates.The details of the proof are given by Courant
and Hilbert , [4].

Definition 2.2.12. Let f € L;(R")-the space of integrable function in R”. The Fourier
transform of f(x) is defined by
~ 1 )
— —Z(ﬁ,ﬂ?)
fiO) = i /R D fa)n (2.2.16)

where & = (&1, &2, ...,&), © = (21, 22,...,x,) € R™ (&, 2) = a1+ Eomg + -+ - + &y, 18
the inner product in R” and dx = dxdzs . . . dx,.
Also, the inverse of Fourier transform is defined by

£(6) = W /R ) ). (2.2.17)

If f is a distribution with compact supports by [23, Theorem 7.4-3] Eq.(2.1) can be
written as

€)= G (1) 7€), (2.2.18)
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Definition 2.2.13. Let ¢t > 0 and p is a real number
f(t)=0(t?) ast — 0 < t7P|f(t)| is bounded as t — 0
and f(t) =o(t?) ast - 0 < t7P|f(t)] - 0ast — 0

Lemma 2.2.14. Given the function

f(z) =exp |— —(Zw?) —i—(Z x?)

Jj=p+1
p+q
where (21, 22,...,2,) € R", p+q=n, Za: < Zx Then
=1 Jj=p+1
0,0, T(HrE)r(Ex
[ [ payany < 2l BEIHONCE).
» 8 (1)

where I' denotes the Gamma function. That is [, f(2)dz is bounded.

Proof.
P 3 p+a 3
~ f(z)dz = /n exp [—4|— <fo> + ( Z xf) dx.
i=1 '

Jj=p+1

Let us transform to bipolar coordinates defined by

T =Trwy, T2 =TwWa, ..., Tp=TWp
dry = rdw, drg =rdws,..., dx,=rdw,
and
Tpt1 = SWpt1, Tpy2 = SWpy, ..., Tpyq = SWpiq
dzp i1 = sdwpi1, dTpio = sdwpio, ..., dTpiq = sdwpiq

where w? + w3 + .. +w —landw+1+w+2+ W =1

p+q
Thus
f(x)dx = / exp [— s6 — 7“6] P s drdsdQ,d<Q,
Rn n

where dr = 1?71 s4 drdsdQ,dQ,, d©Q, and dQ, are the elements of surface area on the
unit sphere in R? and RY respectively,

| =y (z)dx| < / exp [—\/56 — r6] P51 drdsd,dQ,.
By computing directly, we obtain

f(z)dz = Qqu/ / exp [—\/ s6 — 7’6} rP~ st drds
Rr o Jo

2mP/2 2m1/2
h Q) =———and O, = ——. Th
B N7 I 075 M

| f(x)dz| < Q,0Q / / eXp s6 — 7“6] rP~ s drds.
R
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Put r® = s%sin 6, 3r?dr = s3cosfdf and 0 <6 < g
Q.0 oo s — -
| [ flx)dx| < %/ / e~ V=050 p=1(gin 0)"5 5 cos Odfds
R o Jo

0,0, [* [° -
_ p3 Q/ /6—53C‘>S(’sp+‘1_1(sir19)33 cos 0dlds.

dy
_ 3 ~dy
Put y = s’ cos ), ds = AN
| [ f(x)da] < / / Ve 095 om0
5 a 0059 o3 0
B p9 / / 33(008 9) (s1n9) 3 dyde
0, (n
—4 5 ir <§>/o (cos@) (sm@) > 40
_ B n p 6—n
18 F<3>5<6’ 6 )
INEAINEA ) =
” Sy

That is [5, f(x)dz is bounded.

Definition 2.2.15. The spectrum of the kernel E(x,t) defined by (2.3.8) is the bounded
support of the Fourier transform E(&,t) for any fived t > 0.

Definition 2.2.16. Let £ = (&1,&s,...,&,) be a point in R™ and write

u=E+E+ - +E &~y —— &, PTa=n.

Denote by I'y = {5_6 R™: & >0 and wu > 0} the set of an interior of the forward
cone and denote by Iy the closure of I'. Let Q) be the spectrum of E(x,t) for any fized
t>0and Q CTy. Let E(¢,t) be the Fourier transform of E(x,t) and define

/

k
1 p p+q
10 | e | (fo) (Zf) ;. for £€Ty
i=1

B - =

07 fO’f’ 5 ¢ F-i-
(2.2.19)

\

Lemma 2.2.17. (The Fourier transform of (®)*§)

k

-1 3k
F(©)s =t (€ + 6+ 8)' = G+ Gt + 8]

where F is the Fourier transform defined by Eq.(2.2.18) and if the norm of £ is given
by €] = (& + &+ ...+ &)Y then

M
el

F(®)* < o
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which M is the positive constant and F(®)* is bounded and continuous on the space
S’ of the tempered distribution. Moreover, by Eq.(2.2.17)

1 k
(@5 =F " Gy (G +8aa b +60)" — @ +8+ . +6)’]
Proof. By Eq. (2.3)

1 )
k — k —i(&.x
FRYy = (QW)"/2 8, e )>

1
(27r)”/2 <
1
27r)” /2 <

= (2 1)n/2 <(5, (®)k’—1 (%(}A A 353) e—i(g.x)>

- a8 () ) (s ()

remitea))

3

3 , 2) g-itea)

e (o [(e)  (Se)] ) e
2m)n/2 \ 7 4 N ‘ T !

_ (_1)3 <5 <®>k71 (Zp:§2> < % 5 )3] €:v)>

ICZRER i=1 i j=p+1

—1)3 k
F(@)s = éﬂlﬂ G+t 48) @t Gt T8
Now,
k
|‘7:(®)k(5| - ( )n/2 (61 +€2 51%)3 - ( p+1 + 52 -t 5;—&-11)3
1
:W’51+52+53 R AT ST S A

9|k

@4 )+ (4. +O) (. + ) (E . )




19

or
F(@)] < W\§§+...+§3\’“](§f+...+§i)2+(§%+...+§2)2+(§%+...+§
M
< Goymll”

where ||¢]| = (2 4+ + ...+ & =1,2,....,n) € Rand M is a positive con-
stant. Hence we obtain F®J is bounded and continuous on the space S’ of the tempered
distribution.

Since F is 1 — 1 transformation from the space S’ of the tempered distribution to
the real space R, then by (2.2.17)

®6 = F 1

oy [t Bt o)’ — (80 ).

That completes the proof.

2.3 Partial Differential Equation

A partial differential operator L of order m in N variables

L= A.D" (2.3.1)
o <rm
where « = (aq,...,ay) is a multi-index, the o/ s are non-negative integers, |a| =
1,9, ay and Ay = Aay .. ax (T1, T2, ..., 2x) are functions in RY (possibly con-
stant), and
d \™" o\ olel
Do =) ) = T X (2.3.2)
oy 0x N Oxt ... 0x\Y

For example, the most general linear partial differential operator of order 2 in two
independent variables is

Ly= Z A,D*

la|<m
92 2 o2
= Agp(z1, xQ)O_x% + A 1 (24, $2)M + Aga(x, $2)8—$§
0 0
+  Ayo(z, 182)8—331 + Ao (21, 932)8—962 + Ago(r1,72). (2.3.3)

When seeking solution of the equation L(x) =Y we may be interested in a solution
which is a differential function, or just a function with D® understood as generalized
derivatives, or finally, we may seek a solution which is a distribution. For this reason
the solutions of such an equation are classed as follows,

1) Classical Solution. Let f be a function on RY. Every function v on RY which is
sufficiently differentiable so that

2
n

)]

k
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is well defined as a function and such that the equation

Lu= Y A, D= f (2.3.4)

laj<m

is satisfied is called a classical solution of (2.3.4).

2) Weak solution. By a weak solution of (2.3.4) we mean a function on RY which
need not be sufficiently differentiable to make Lu meaningful in the classical sense. In
the case f may be a function or a distribution.

3) Distributional Solution. Let f € D'(RY). Every u € D'(RY) satisfied (2.3.18) is
called a distributional solution of (2.3.4).

Note that if f in (2.3.4) is a singular distribution, then the equation cannot have a
classical solution. The remarkable fact is that including distributions one can generate
new solutions of classical equations (equations where f is a function). Some classical
equations may not even have a classical solution, but can have distributional solutions.

Equations of the form

LG =4 (2.3.5)

are of particular interest. Suppose G is a distribution satisfying (2.3.19). Then, for any
distribution f with compact support, the convolution f * G is well defined and

L(f*G) = Y AD*(f*G)

laf<m

= ) Aa(f=DG)

laf<m

= fx| ) ADG

la|<m
= fxo=Ff

Thus, if G is a solution of LG = 4, then f x G is a solution of Lu = f. This explains
the importance of the equations Lu = 4.

Definition 2.3.1. Consider the linear partial differential equation
P(D)u = f, (2.3.6)

where f is a distribution, u is an unknown function, and P(D) a linear partial differential
operator with constant coefficients. A function E(zx) is called elementary solution of
equation (2.3.6) if P(D)E(z) = d, where 0 is the Dirac-delta function.

Lemma 2.3.2. Let L be the operator defined by

0
L=—+c3—-®)F 2.3.
8t+c( ®) (2.3.7)

where ®" is the operator iterated k-times defined by

p 02 3 p+q 82 3 F
k __ . —
= ( 8%2) +<Z 8302) ’
i=1 v j=p+1 J
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p+q = n is the dimension of R", (x1,z9,...,z,) € R" t € (0,00), k is a positive integer
and c is the positive constant. Then we obtain

E(z,t) = (271T)n/ﬂexp —c*t (;gf) + ( Z ff) +i(&,x)| d¢ (2.3.8)

Jj=p+1

as the elementary solution of (2.3.7) in the spectrum Q C R" for ¢ > 0.
Proof. Let LE(x,t) = §(z,t) where E(x,t) is the kernel or the elementary solution of
the operator L and ¢ is the Dirac-delta distribution. Thus

0 2 k _
9 Bl + (-8)* Blot) = 6a)6(0)

take the Fourier transform defined by (2.2.1) to both sides of the equation

k

P 3 ptq 3
0 —— — 1
&E(fi) + ¢ (;53) + <j:].Z+1€]2> B t) = W(S(t)-
Thus

k
e H(t) 2 . 2 ’ o 2 ’
E(€7t) = (27T)n/2 eXp | =¢C t Zfz + Z 5]

i=1 j=p+1

where H (t) is the Heaviside function. Since H(t) = 1 for ¢ > 0,

k

P 3 pa 3
FED = gnewe |- (326) + (£ ) )|
1=1

Jj=p+1

so we have

1 . —
BED = e / 6 B(E 1) dE.

By (2.2.3),

1

(2m)"/2 e B(E 1)

E(&,t) =

S~

where (2 is the spectrum of E(z,t). Thus

k

E(z,t) = (271T)n/ﬂexp —c*t <;§3> +(Z ff) +i(&, )| dE.

Jj=p+1

for t > 0. O
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Lemma 2.3.3. Given the equation Afu(z) = §(z) for x € R™, where AF is defined by

(??). Then
uz) = (=1)" Ry (x)

is an elementary solution of the AF operator where R§, () is defined by (??), with
a = 2k.

Proof. [See 10, Lemma 2.4, p.31]. O
Lemma 2.3.4. Given the equation (Fu(z) = §(x) for z € R", where (0¥ is defined by
(7?). Then

u(w) = Ry ()

is an elementary solution of the (0¥ operator where RE (z) is defined by (??), with
B =2k

Proof. [See 10, p.11]. O
Lemma 2.3.5. Given the equation
(O +m?)* K(z) = () (2.3.9)

where (O +m?)* is the operator iterated k—times defined by (1.0.30) then K(z) =
Wi (u,m) is an elementary solution or Green function of (2.3.9) where W (u, m) is

defined by (1.0.31) with a = 2k.

Proof. [See 22, p.21, formula VI3].
From (1.0.30) if ¢ = 0 then (0 + m2)" reduces to the Helmholtz operator (A + m?2)"
where

¢ &
A — 9o L9
o3 o T T aa

Thus, by (1.0.30), for ¢ = 0 we obtain the equation
(A +m?)* K(z) = 6(x) (2.3.10)
with an elementary solution K(x) = WJi(v, m) where

2 2 2
V=27 + Ty A T,

Now,
00 7. % +r .
Wak(v,m) Z r. i) ) (m*)" Rojyo,(v). (2.3.11)
r=0 2

We have R (v) = 2(=1)FRS, (). Thus, we write

(% 4
>

W (v,m) =

Mg

(%) 2(~ 1) Ry 5, (0). (23.12)

In general, if p=n
0? 82 0?
A = . .
o2 T T T
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and

[

v:x%+x§+---+xn.
we obtain
K(x) = Wg(v,m)
as an elementary solution of (2.3.10).
Lemma 2.3.6. Given the equation
OFu(x) = 0, (2.3.13)
where [I¥ is defined by (1.0.18) and z = (1, 73, . . ., ¥,) € R” then u(z) = (Rf(k_l)(V))(m)

is a solution of (2.3.13) where (Rﬁk_l)(V))(m) is defined by (1.0.19) with m - derivatives,
m = "4 n >4 and n is even dimension with § =2(k — 1) and V is defined by (2.2.5).

Proof. We first to show that the generalized function 6™ (r? — s%) where 72 = 22 +
T3+ . ..+x12) and s = a:gﬂ +x§+2+...+x§+q ,p+q = n is a solution of the equation

Ou(x) =0, (2.3.14)
where [ is defined by (??) with £k = 1 and = = (21, 29,...,2,) € R"

8ii6(m) (r? — %) = 22,6 D (12 — §?)

82
Wé(m) (r? — s2) = 200"+ (12 — §%) 4 42262 (2 — §?)

Ly

2 2L N~ P 2 o

D6 (r* — s7) = @5’”(7" —5%)

=1 O

= 2poM (2 = 5%) 4 4p25mHD (2 _ g2)

= 26D (12 — §%) 4 4(r? — 526" (r? — 57

+ 4525mHD (12 — )

= 6™ (12 — §%) — 4(m 4 2)6 D (12 — 5?)

+ 45202 (12 — 5?)

= (2p — 4(m +2))0" TV (12 — ) 4 4525 (2 — 52).
By Lemma 2.2.11 with P = r? — s2. Similarly ,

p+q
Z (r? — §%) = (=2¢ + 4(m 4 2))0™ ) (2 — §?)
_p+1 J
+ 4725 (2 _ ),
Thus
22y N P smr 2y S P s 2
06 (r —s)— 8x5 (r —s)—j;lax?(S )(r? — §%)

= (2(p +q) — 8(m +2))0™ V(12 — §?) — 4(r? — s (p2 — §?)
(2n — 8(m +2))0" V(12 — ) + 4(m + 2)6" TV (12 — 5?)
= (2n — 4(m + 2))0 TV (r? — §?).
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If 2n — 4(m + 2) = 0, we have 5™ (r?2 — s2) = 0. That is u(x) = §™(r? — s?) is a
solution of (2.3.9) with m = 5%, n > 4 and n is even dimension. We write

OFu(z) = OO u(z)) = 0.

From the above proof we have 0¥ u(z) = 60 (r? — s?) with m = 252, n > 4 and
n is even dimension. Convolving the above equation by Ré{k_l)(V) , we obtain

Ryl ) (V) * O (@) = Rfy_y) (V) % 8" (= %)

Dk_l(Rik—n(V)) *u(r) = (Rik—l)(v))(m)u where V. = (7"2 - 52)

& xu(x) = u(z) = (R (V)™ (2.3.15)

by (2.2.8) and V = 7? — s% is defined by Definition (2.2.5).
Thus u(z) = (Rf(kfl)(V))(m) is a solution of (2.3.13) with m = %34, n > 4 and n is
even dimension.

Lemma 2.3.7. Given the equation
AFu(z) =0, (2.3.16)
where AF is defined by (1.0.22) and z = (21, 29, ..., x,) € R". We obtain
u(z) = (=1 (R ()™

is a solution of (2.3.16) where (Rg(k_l)(x))(m) is defined by (2.2.9) with m-derivatives,

m = "4 n >4 and n is even dimension with oo = 2(k — 1).

Proof. The proof of Lemma 2.3.7 is similar to the proof of Lemma 2.3.6.

Lemma 2.3.8. Given the equation

®"G(z) = o(w) (2.3.17)
then

G(x) = (RE ()  (=1)* RSy (x)) * (C**(2)) (2.3.18)

is the Green function or an elementary solution for the ®* operator iterated k—times
where ®* is defined by (2?), and

3 1
C(z) = ZRf(a;) + Z(—1)2R2(x) (2.3.19)
C*k(x) denotes the convolution of C'(z) itself k—times , (C’*’“(m))*_1 denotes the inverse
of C**(x) in the convolution algebra, R (x) is defined by (1.0.19) with @ = 6k and
RS, (x) is defined by (1.0.23) with oo = 4k. Moreover G(z) is a tempered distribution.
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Proof. From (?7?), we have

2 G(x) = GQA + }LD?’) Glx) = 6()

or we can write

3 1 3 1o\
(oo 1) (8.4 15) " it

Convolving both sides of the above equation by R (z) * (=1)?RS(x),

(ZQA + iDg’) v (RE(2) # (~17R5(@)) GQA + iDS) )
= 0(x) * R (x) * (—1)*R(x)

or

(ZD (Ry (z)) = A*(—1)*R5(z) * Ri(z) + iDgRé{(I) * (—1)2RZ(£L’)) *

GQA T }153) © Glr) = 8(a) * Rl 2) + (~11Ri(a)

By (2.2.8) and (2.2.11), we obtain

(Za 5 e R (1) + 10+ (—1)2RZ(Q:)) ; GOA T —D3) e

Thus

(Srtw + Sewem) » (Soa+300) 6 = R @) + (1R

keeping on convolving both sides of the above equation by R (x) * (—1)?R5(x) up to
k — 1 times, we obtain

CHa) # Gle) = (R (@) » (~1)*R(a)) ™

the symbol *k denotes the convolution of itself k—times. By properties of R,(z) [See,
Lemma 2.2.6], we have

(RE(x)  (—1)°R;(2))™ = RE(x) * (~1)* Ry (x).
Thus,
C**(2) * G(x) = RE (z) * (—1)** RS, (). (2.3.20)

Now, consider the function C**(z), since R (z) * (—1)?R5(x) is a tempered distri-
bution. Thus C(z) defined by (2.3.19) is a tempered distribution, we obtain C**(z) is a
tempered distribution, RE (x) x (—1)* RS, (z) € S', the space of tempered distribution.
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Choose &' C D, where Dy, is the right-side distribution which is a subspace of D’ of
distribution.

Thus RE (z)*(—1)* RS, (z) € Dy. It follow that RE (x)*(—1)%* RS, () is an element
of convolution algebra, since D% is a convolution algebra. Hence Zemanian [23], the
equation (2.3.20) has a unique solution

G(x) = (RE () % (=1)* RSy (x)) * (C*(x))"" (2.3.21)

where (C”“’“(ac))*_1 is an inverse of C**(z) in the convolution algebra, G(z) is called the
Green function or an elementary solution of the ®* operator. That completes the proof.

Lemma 2.3.9. Civen the equation

®"H(x) = 0(x) (2.3.22)
then

H(z) = (RE(2) * (~1)** Ry () * (S*(2))" (2.3.23)

is the Green function or an elementary solution for the ®* operator iterated k—times
where ®" is defined by (1.0.29), and

() = %-1)233@) + in (2) (2.3.24)

S*k(x) denotes the convolution of S(z) itself k—times, (S*k(:c))*_l denotes the inverse
of S**(z) in the convolution algebra, R (z) is defined by (2.2.6) with o = 4k and
RS, (x) is defined by (2.2.9) with o = 6k. Moreover H (z) is a tempered distribution.

Proof. The proof of Lemma 2.3.9 is similar to the proof of Lemma 2.3.8.
Lemma 2.3.10. Given the equation
LYK (z) = §(z) (2.3.25)

where L¥ be the operator iterated k—times defined b
1 y
3 1
FA% + ) (2.3.26)

and A and O is defined by (1.0.22) and (1.0.18) with & = 1 respectively. Then we
obtain K (z) is an elementary solution of the L} operator where

Ly = (

K(z) = (RE(2) % (—1)* Ry (z)) * (C™*(2)) ™ (2.3.27)
and
3 H 1 2 pe

C**(x) denotes the convolution of C(x) itself k—times, (C’*k(x))*_l denotes the inverse
of C**(z) in the convolution algebra R (z) is defined by (2.2.6) with a = 4k and RS, ()
is defined by (2.2.9) with o = 4k. Moreover K (x) is a tempered distribution.
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Proof. The proof of Lemma 2.3.10 is similar to the proof of Lemma 2.3.8.
Lemma 2.3.11.
LEI(x) = §(x) (2.3.29)

where L4 be the operator defined by L5 = (302+1A?)% | A and O is defined by (1.0.22)
and (1.0.18) with k£ =1 respectively. Then we obtain /(z) is an elementary solution of
the L} operator where

I(z) = (RIE(2)  (—1)* RS (x)) * (57 () (2.3.30)
and
Sy =2 (A1) Ri(x) + R ()

S*%(x) denotes the convolution of S itself k—times , (S*k(x))*_l denotes the inverse of
S*k(x) in the convolution algebra. Moreover I(z) is a tempered distribution.

Proof. The proof of Lemma 2.3.11 is similar to the proof of Lemma 2.3.8.
Lemma 2.3.12. Given the equation

(O +m")" H(z) = §(x) (2.3.31)
then

H(z) = [Wik(u,m) * Ws,(v,m)] = (1’*’“(%))*71 (2.3.32)

is an Green function for the operator ({ + m4)k iterated k—times where < is the Dia-
mond operator defined by (1.0.10), m is nonnegative real number and

I(z) = 6 —m® (Wi (u,m) * Wi (v,m)) x (R",(u) + R ,(v)) (2.3.33)

I**(z) denotes the convolution of I itself k—times, (I *’“(9&))*_1 denotes the inverse of
I**(x) in the convolution algebra. Moreover I(z) is a tempered distribution.

Proof. [See 12].



