
Chapter 2
Basic Concepts and Preliminaries

The aim of this chapter is to give some definition and properties of the distribu-
tion, the special function, the Fourier transform, partial differential equations and the
elementary solution of the partial differential operators which will be used in the later
chapters.

2.1 Distribution

In this section, we give some definition and properties of the distribution which will
be used in the later chapters.

Definition 2.1.1. Let Ω ⊂ Rn and f : Ω → R. The support of f is defined to be the
closure of the set S = {x ∈ Ω : f(x) �= 0}. And support of f is denote by Suppf .

Definition 2.1.2. A set Ω ⊂ Rn is compact if every sequence in Ω has a convergent
subsequence whose limit is an element of Ω.

Definition 2.1.3. Let Ω ⊂ Rn, define D = C∞
0 (Ω) is the set of all infinitely differentiable

functions on Ω with compact support, ϕ ∈ D is called test function.

Definition 2.1.4. A sequence of testing function ϕi(x)∞i=1 is said to converge to ϕ(x)
in D if all ϕi(x) are zero outside a certain region in Rn and if for every nonnega-

tive integers m1,m2, . . . , mn the sequence
{

∂m1+m2+···+mnϕi(x)

∂x
m1
1 ∂x

m2
2 ...∂xmn

n

}∞

i=1
converges uniformly

to ∂m1+m2+···+mnϕ(x)

∂x
m1
1 ∂x

m2
2 ...∂xmn

n
on Rn.

Proposition 2.1.5. ([5]) D is closed under convergent, that is, the limit of every sequence
that converge in D is also in D.

Definition 2.1.6. A distribution is a mapping f : D → C such that

(1) 〈f, ϕ〉 is a well defined complex number for every ϕ ∈ D,

(2) for any ϕ1, ϕ2 ∈ D and any scalars a1, a2,

〈f, a1ϕ1 + a2ϕ2〉 = a1〈f, ϕ1〉 + a2〈f, ϕ2〉,

(3) for any sequence {ϕn} in D such that lim
n→∞

ϕn = ϕ then lim
n→∞

〈f, ϕn〉 = 〈f, ϕ〉.

We note that each continuous(or even locally integrable) function f(x) generates a
distribution

〈f, ϕ〉 =

∫
f(x)ϕ(x)dx.
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Definition 2.1.7. A regular distribution is a distribution which is generated by a locally
integrable function.

Definition 2.1.8. A singular distribution is a distribution which is not generated by a
locally integrable function.

Definition 2.1.9. The Dirac-delta distribution with singularity ξ ∈ Rn, denoted by
δ(x − ξ), which is defined by

〈δ(x − ξ), φ〉 = φ(ξ).

Definition 2.1.10. Let x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn, S is defined to be the set of all
real value functions ϕ(x) that are infinitely smooth and are such that, all nonnegative
integer m and k = (k1, k2, . . . , kn),

‖x‖m|Dkϕ(x)| ≤ Cmk,

for some a constant Cmk and denote Dk by Dk = ∂k1+k2+...+kn

∂x
k1
1 ∂x

k2
2 ...∂xkn

n

.

Definition 2.1.11. A tempered distribution is a mapping f : S → C such that

(1) 〈f, ϕ〉 is a well defined complex number for every ϕ ∈ S,

(2) for any ϕ1, ϕ2 ∈ S and any scalars a1, a2,

< f, a1ϕ1 + a2ϕ2 >= a1 < f, ϕ1 > +a2 < f, ϕ2 >,

(3) for any sequence {ϕn} in S such that lim
n→∞

ϕn = ϕ then lim
n→∞

〈f, ϕn〉 = 〈f, ϕ〉.

Definition 2.1.12. A space C of distributions is said to be a convolution algebra if it
possesses the following properties:

(1) C is a linear space.

(2) C is closed under convolution.

(3) Convolution is associative for any three distributions in C.

Definition 2.1.13. Let f be a distribution. The derivative
∂f

∂xk

as the distribution given

by

〈 ∂f

∂xk

, φ〉 = −〈f,
∂φ

∂xk

〉,

and more generally Dkf denoted by

〈Dkf, φ〉 = (−1)|k|〈f,Dkφ〉,

where |k| = k1 + k2 + · · · + kn.

Proposition 2.1.14. ([23]) Let x be an n-dimensional real variable and y an m-dimensional
real variable. Also, let ϕ(x, y) be a testing function in D define over Rn+m. If f(x) is a
distribution defined over Rn, then θ(y) = 〈f(x), ϕ(x, y)〉 is a testing function of y in D.
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Proposition 2.1.15. ([7]) Let f be a distribution in m dimensions and g be a distribution
in n dimensions. Then the functional h defined by

〈h(x, y), ϕ(x, y)〉 = 〈f(x), 〈g(y), ϕ(x, y)〉〉

is a distribution in m + n dimensions.

Definition 2.1.16. The distribution h in Proposition (2.1.15) is called the tensor ( or
direct ) product of f(x) and g(y) and is denoted by h(x, y) = f(x) × g(y), that is,

〈f(x) × g(y), ϕ(x, y)〉 = 〈f(x), 〈g(y), ϕ(x, y)〉〉. (2.1.1)

Definition 2.1.17. The support of a distribution f is defined as the complement of the
largest open set on which f is zero.

Proposition 2.1.18. ([7]) Let f and g be distributions in n dimensions. Then the function
h defined by

〈h, ϕ〉 = 〈f(x) × g(y), ϕ(x + y)〉 (2.1.2)

is a distribution provided that it satisfies either of the following conditions:

(1) Either f or g has bounded support, or

(2) In one dimension the supports of both f and g are bounded on the same side ( for
instance, f = 0 for x < a, and g = 0 for y < b ).

Definition 2.1.19. The distribution h in Proposition (2.1.15) is called the convolution
of f and g and is denoted by h = f ∗ g, that is,

〈f ∗ g, ϕ〉 = 〈f(x) × g(y), ϕ(x + y)〉. (2.1.3)

Now we shall give some helpful properties of convolutions.

Proposition 2.1.20. ([7],[23]) Let f, g and h be distributions.

(1) For δ is the Dirac-delta function, we have

f ∗ δ = f. (2.1.4)

(2) If f and g satisfy at least one of the (1) and (2) of proposition 2.1.12, then

f ∗ g = g ∗ f. (2.1.5)

(3) If P (D) is a linear partial differential operator with constant coefficients and f
and g satisfy at least one of the (1) and (2) of proposition 2.1.12, then

P (D)f ∗ g = P (D)(f ∗ g) = f ∗ P (D)g. (2.1.6)
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2.2 The Special Functions and Fourier Transform

In this section, we shall present the definitions of the special function. In addition,
we shall give some properties of the gamma function.

Definition 2.2.1. The gamma function is denoted by Γ and is defined by

Γ(z) =

∫ ∞

0

ettz−1dt, (2.2.1)

where z is a complex number with Re z > 0.

A result that yields an immediate analytic continuation from the left half plane is
the following properties.

Proposition 2.2.2. ([1]) Let z be a complex number. Then

(1) Γ(z) =
Γ(z + 1)

z
, z �= 0,−1,−2, . . . , (2.2.2)

(2) Γ(z)Γ(1 − z) =
π

sin πz
, z �= 0,±1,±2, . . . . (2.2.3)

Proposition 2.2.3. ([1]) (Legendre’s duplication formula) Let z be a complex number.
Then

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z), z �= 0,−1,−2, . . . . (2.2.4)

Definition 2.2.4. Let x = (x1, x2, ..., xn) be a point of the n-dimensional Euclidean space
Rn. Denoted by

V = x2
1 + x2

2 + ... + x2
p − x2

p+1 − x2
p+2 − ... − x2

p+q (2.2.5)

the nondegenerated quadratic form and p + q = n is the dimension of the space Rn.
Let Γ+ = {x ∈ Rn : x1 > 0 and u > 0} and Γ+ denotes it closure. For any complex

number α, define the function

RH
α (V ) =

{
u

α−n
2

Kn(α)
, for x ∈ Γ+,

0, for x �∈ Γ+,
(2.2.6)

where the constant Kn(α) is given by the formula

Kn(α) =
π

n−1
2 Γ(2+α−n

2
)Γ(1−α

2
)Γ(α)

Γ(2+α−p
2

)Γ(p−α
2

)
. (2.2.7)

The function RH
α (V ) is called the ultra-hyperbolic kernel of Marcel Riesz and was in-

troduced by Y. Nozaki [17].
It is well known that RH

α (u) is an ordinary function if Re(α) ≥ n and is a distribution
of α if Re(α) < n. Let supp RH

α (V ) denote the support of RH
α (u) and suppose supp

RH
α (V ) ⊂ Γ̄+, that is supp RH

α (u) is compact.
From S.E.Trione [22], RH

2k is an elementary solution of the operator �k that is

�kRH
2k(u) = δ(x) (2.2.8)
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Definition 2.2.5. Let x = (x1, x2, ..., xn) be a point of Rn and |x| = (x2
1 + x2

2 + ... + x2
n)

1
2

the function Re
α(x) denoted the elliptic kernel of Marcel Riesz and is defined by

Re
α(x) =

|x|α−n

Wn(α)
(2.2.9)

where

Wn(α) =
π

n
2 2αΓ

(
α
2

)
Γ
(

n−α
2

) (2.2.10)

α is a complex parameter and n is the dimension of Rn.
It can be shown that Re

−2k(x) = (−1)k�kδ(x) where �k is defined by (??). It follows
that Re

0(x) = δ(x), [2].
Moreover, we obtain (−1)kRe

2k(x) is an elementary solution of the operator �k that
is

�k((−1)kRe
2k(x) = δ(x) (2.2.11)

[See 10, Lemma 2.4]

Lemma 2.2.6. (The convolution of RH
α (x) and Re

α(x))
Let Re

α(x) and RH
α (x) be defined by (2.2.9) and (2.2.6) respectively, then we obtain

the following formulas:

(1)Re
α(x) ∗ Re

α(x) = Re
α+β(x) where α and β are complex parameters

(2)RH
α (x) ∗ RH

α (x) = RH
α+β(x) for α and β are both integers and except only the case

both α and β are both integers.

Proof. Proof of the first formula, [5]
Proof of the second formula, for the case α and β are both even integers [See 5] ,

and for the case α is odd and β is even or α is even and β is odd , we know from Trione
[21]

�kRH
α (x) = RH

α−2k(x) (2.2.12)

and

�kRH
2k(x) = δ(x) , k = 0, 1, 2, 3, · · · (2.2.13)

where �k is the ultra-hyperbolic operator iterated k-times defined by

�k =

(
p∑

i=1

∂2

∂x2
i

−
p+q∑

j=p+1

∂2

∂x2
j

)k

.

Now let m be an odd integer, we have

�kRH
m(x) = RH

m−2k(x)

and
RH

2k(x) ∗ �kRH
m(x) = RH

2k(x) ∗ RH
m−2k(x)
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or (
�kRH

2k(x)
) ∗ RH

m(x) = RH
2k(x) ∗ RH

m−2k(x)

δ ∗ RH
m(x) = RH

2k(x) ∗ RH
m−2k(x).

Thus
RH

m(x) = RH
2k(x) ∗ RH

m−2k(x)

Since m is odd, hence m − 2k is odd and 2k is a positive even. Put α = 2k , β =
m − 2k, we obtain

RH
α (x) ∗ RH

β (x) = RH
α+β(x)

for α is a nonnegative even and β is odd.
For the case α is a negative even and β is odd , by (2.2.8) we have

�kRH
0 (x) = RH

−2k(x)

or
�kδ = RH

−2k(x).

Where RH
0 (x) = δ. Now for m is odd,

RH
−2k(x) ∗ �kRH

m(x) = RH
−2k(x) ∗ RH

m−2k(x)

or (
�kRH

2k(x)
) ∗ RH

m(x) = RH
−2k(x) ∗ RH

m−2k(x)

δ ∗ RH
m(x) = RH

−2k(x) ∗ RH
m−2k(x).

Thus
RH

m−2(2k)(x) = RH
−2k(x) ∗ RH

m−2k(x).

Put α = −2k and β = m − 2k , now α is a negative even and β is odd. Then we
obtain

RH
α (x) ∗ RH

β (x) = RH
α+β(x).

That completes the proof.

Lemma 2.2.7. The function RH
−2k(x) and Re

−2k(x) are the inverse of the convolution
algebra of R2k and Re

2k respectively, that is

RH
−2k(x) ∗ RH

2k(x) = RH
−2k+2k(x) = R0(x) = δ(x)

and
(−1)kRe

−2k(x) ∗ (−1)kRe
2k(x) = (−1)2kRe

−2k+2k(x) = S0(x) = δ(x)

Proof. [See 21, p.118, p.158], [See 1, p.123] and [See 5, p.10].

Definition 2.2.8. Let x = (x1, x2, ..., xn) be a point of Rn and the function WH
α (u,m) is

defined by

WH
α (u,m) =

∞∑
r=0

(−1)rΓ
(

α
2

+ r
)

r!Γ
(

α
2

) (
m2
)r

RH
α+2r(u) (2.2.14)

where RH
α+2r(u) is defined by (2.2.6) and m is a nonnegative real number.
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Lemma 2.2.9. (The existence of the convolution WH
2k(u,m) ∗W e

2k(v,m)) The convolu-
tion WH

2k(u,m) ∗ W e
2k(v, m) exists and is a tempered distribution where WH

2k(u,m) and
W e

2k(v,m) are defined by (2.3.11) and (2.3.12) with α = 2k.

Proof. From (2.3.11) and (2.3.12), we have

WH
2k(u,m) ∗ W e

2k(v, m) =

( ∞∑
r=0

(−1)rΓ (k + r)

r!Γ (k)

(
m2
)r

RH
2k+2r(u)

)

∗
( ∞∑

r=0

(−1)rΓ (k + r)

r!Γ (k)

(
m2
)r

Re
2k+2r(v)

)

=
∞∑

r=0

∞∑
s=0

(−1)sΓ (k + s)

s!Γ (k)

(
m2
)s (−1)rΓ (k + r)

r!Γ (k)

(
m2
)r

×2(−1)k+r
[
RH

2k+2s(u) ∗ Re
2k+2r(v)

]
.

A.Kananthai [12] has shown RH
2k+2s(u)∗Re

2k+2r(v) exists and is a tempered distribu-
tion. It follows that WH

2k(u,m) ∗ W e
2k(v,m) exists and also is a tempered distribution.

Lemma 2.2.10. Given P is a hyper-function then

Pδk(p) + kδ(k−1)(p) = 0

where δ(k) is the Dirac-delta distribution with k derivatives.

Proof. [7].

Lemma 2.2.11. Given the equation

�u(x) = f(x, u(x)), (2.2.15)

where f is defined and has continuous first derivatives for all x ∈ Ω ∪ ∂Ω, Ω is an
open subset of Rn and ∂Ω is the boundary of Ω. Assume that f is bounded, that is
|f(x, u)| ≤ N and the boundary condition u(x) = 0 for x ∈ ∂Ω. Then we obtain u(x)
as a unique solution of (2.2.15)

Proof. We can prove the existence of the solution u(x) of (2.2.15) by the method of
iterations and the Schuder’s estimates.The details of the proof are given by Courant
and Hilbert , [4].

Definition 2.2.12. Let f ∈ L1(R
n)-the space of integrable function in Rn. The Fourier

transform of f(x) is defined by

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−i(ξ,x)f(x)dx (2.2.16)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1 + ξ2x2 + · · ·+ ξnxn is
the inner product in Rn and dx = dx1dx2 . . . dxn.

Also, the inverse of Fourier transform is defined by

f(ξ) =
1

(2π)n/2

∫
Rn

ei(ξ,x)f̂(x)dx. (2.2.17)

If f is a distribution with compact supports by [23, Theorem 7.4-3] Eq.(2.1) can be
written as

f̂(ξ) =
1

(2π)n/2

〈
f(x), e−i(ξ,x)

〉
. (2.2.18)
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Definition 2.2.13. Let t > 0 and p is a real number
f(t) = O(tp) as t → 0 ⇔ t−p|f(t)| is bounded as t → 0

and f(t) = o(tp) as t → 0 ⇔ t−p|f(t)| → 0 as t → 0

Lemma 2.2.14. Given the function

f(x) = exp

−
√√√√−

(
p∑

i=1

x2
i

)3

+

(
p+q∑

j=p+1

x2
j

)3


where (x1, x2, . . . , xn) ∈ Rn, p + q = n,

p∑
i=1

x2
i <

p+q∑
j=p+1

x2
j . Then

|
∫

Rn

f(x)dx| ≤ ΩpΩq

18
· Γ(n

3
)Γ(p

6
)Γ(6−n

6
)

Γ(6−q
6

)
,

where Γ denotes the Gamma function. That is
∫

Rn f(x)dx is bounded.

Proof.∫
Rn

f(x)dx =

∫
Rn

exp

−
√√√√−

(
p∑

i=1

x2
i

)3

+

(
p+q∑

j=p+1

x2
j

)3
 dx.

Let us transform to bipolar coordinates defined by

x1 = rω1, x2 = rω2, . . . , xp = rωp

dx1 = rdω1, dx2 = rdω2, . . . , dxp = rdωp

and
xp+1 = sωp+1, xp+2 = sωp+2, . . . , xp+q = sωp+q

dxp+1 = sdωp+1, dxp+2 = sdωp+2, . . . , dxp+q = sdωp+q

where ω2
1 + ω2

2 + . . . + ω2
p = 1 and ω2

p+1 + ω2
p+2 + . . . + ω2

p+q = 1.
Thus ∫

Rn

f(x)dx =

∫
Rn

exp
[
−
√

s6 − r6
]
rp−1sq−1drdsdΩpdΩq

where dx = rp−1sq−1drdsdΩpdΩq, dΩp and dΩq are the elements of surface area on the
unit sphere in Rp and Rq respectively,

|
∫

Rn

f(x)dx| ≤
∫

Rn

exp
[
−
√

s6 − r6
]
rp−1sq−1drdsdΩpdΩq.

By computing directly, we obtain∫
Rn

f(x)dx = ΩpΩq

∫ ∞

0

∫ s

0

exp
[
−
√

s6 − r6
]
rp−1sq−1drds

where Ωp =
2πp/2

Γ(p/2)
and Ωq =

2πq/2

Γ(q/2)
. Thus

|
∫

Rn

f(x)dx| ≤ ΩpΩq

∫ ∞

0

∫ s

0

exp
[
−
√

s6 − r6
]
rp−1sq−1drds.
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Put r3 = s3 sin θ, 3r2dr = s3 cos θdθ and 0 ≤ θ ≤ π

2
,

|
∫

Rn

f(x)dx| ≤ ΩpΩq

3

∫ ∞

0

∫ s

0

e−
√

s6−s6 sin2 θsp−1(sin θ)
p−3
3 sq cos θdθds

=
ΩpΩq

3

∫ ∞

0

∫ s

0

e−s3 cos θsp+q−1(sin θ)
p−3
3 cos θdθds.

Put y = s3 cos θ, ds =
dy

3s2 cos θ
,

|
∫

Rn

f(x)dx| ≤ ΩpΩq

9

∫ π/2

0

∫ ∞

0

e−y(
y

cos θ
)

n−3
3 (sin θ)

p−3
3 cos θdθ

dy

cos θ

=
ΩpΩq

9

∫ π/2

0

∫ ∞

0

e−yy
n−3

3 (cos θ)
3−n

3 (sin θ)
p−3
3 dydθ

=
ΩpΩq

9
Γ
(n

3

)∫ π/2

0

(cos θ)
3−n

3 (sin θ)
p−3
3 dθ

=
ΩpΩq

18
Γ
(n

3

)
β

(
p

6
,
6 − n

6

)
|
∫

Rn

f(x)dx| ≤ ΩpΩq

18

Γ(n
3
)Γ(p

6
)Γ(6−n

6
)

Γ(6−q
6

)
.

That is
∫

Rn f(x)dx is bounded.

Definition 2.2.15. The spectrum of the kernel E(x, t) defined by (2.3.8) is the bounded

support of the Fourier transform Ê(ξ, t) for any fixed t > 0.

Definition 2.2.16. Let ξ = (ξ1, ξ2, . . . , ξn) be a point in Rn and write

u = ξ2
1 + ξ2

2 + · · · + ξ2
p − ξ2

p+1 − ξ2
p+2 − · · · − ξ2

p+q, p + q = n.

Denote by Γ+ = {ξ ∈ Rn : ξ1 > 0 and u > 0} the set of an interior of the forward
cone and denote by Γ+ the closure of Γ+. Let Ω be the spectrum of E(x, t) for any fixed

t > 0 and Ω ⊂ Γ+. Let Ê(ξ, t) be the Fourier transform of E(x, t) and define

Ê(ξ, t) =


1

(2π)n/2
exp

c2t

( p∑
i=1

ξ2
i

)3

−
(

p+q∑
j=p+1

ξ2
j

)3
k
 , for ξ ∈ Γ+

0, for ξ /∈ Γ+

(2.2.19)

Lemma 2.2.17. (The Fourier transform of (⊗)kδ)

F(⊗)kδ =
(−1)3k

(2π)n/2

[(
ξ2
1 + ξ2

2 + . . . + ξ2
p

)3 − (ξ2
p+1 + ξ2

p+2 + . . . + ξ2
p+q

)3]k
where F is the Fourier transform defined by Eq.(2.2.18) and if the norm of ξ is given

by ‖ξ‖ = (ξ2
1 + ξ2

2 + . . . + ξ2
n)

1/2
then

F(⊗)kδ ≤ M

(2π)n/2
‖ξ‖6k,
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which M is the positive constant and F(⊗)k is bounded and continuous on the space
S ′ of the tempered distribution. Moreover, by Eq.(2.2.17)

(⊗)kδ = F−1 1

(2π)n/2

[(
ξ2
p+1 + ξ2

p+2 + . . . + ξ2
p+q

)3 − (ξ2
1 + ξ2

2 + . . . + ξ2
p

)3]k
Proof. By Eq. (2.3)

F ⊗k δ =
1

(2π)n/2

〈
(⊗)kδ, e−i(ξ.x)

〉
=

1

(2π)n/2

〈
δ, (⊗)ke−i(ξ.x)

〉
=

1

(2π)n/2

〈
δ, (⊗)k−1(⊗)e−i(ξ.x)

〉
=

1

(2π)n/2

〈
δ, (⊗)k−1

(
3

4
♦� +

1

4
�3

)
e−i(ξ.x)

〉
=

1

(2π)n/2

〈
δ, (⊗)k−1

(
3

4
♦�
)

e−i(ξ.x)

〉
+

1

(2π)n/2

〈
δ, (⊗)k−1

(
1

4
�3

)
e−i(ξ.x)

〉

=
1

(2π)n/2

〈
δ, (⊗)k−1 3

4
(−1)2

( p∑
i=1

ξ2
i

)2

−
(

p+q∑
j=p+1

ξ2
j

)2
 (−1)

(
n∑

i=1

ξ2
i

)
e−i(ξ.x)

〉

+
1

(2π)n/2

〈
δ, (⊗)k−1 1

4
(−1)3

[(
p∑

i=1

ξ2
i

)
−
(

p+q∑
j=p+1

ξ2
j

)]3

e−i(ξ.x)

〉

=
1

(2π)n/2

〈
δ, (⊗)k−1 3

4
(−1)3

( p∑
i=1

ξ2
i

)2

−
(

p+q∑
j=p+1

ξ2
j

)2
( n∑

i=1

ξ2
i

)
e−i(ξ.x)

〉

+
1

2π)n/2

〈
δ, (⊗)k−1

1

4
(−1)3

[(
p∑

i=1

ξ2
i

)
−
(

p+q∑
j=p+1

ξ2
j

)]3
 e−i(ξ.x)

〉

=
(−1)3

(2π)n/2

〈
δ, (⊗)k−1

( p∑
i=1

ξ2
i

)3

−
(

p+q∑
j=p+1

ξ2
j

)3
 e−i(ξ.x)

〉

By keeping on operator (⊗) with k − 1 times , we obtain

F(⊗)kδ =
(−1)3k

(2π)n/2

[(
ξ2
1 + ξ2

2 + . . . + ξ2
p

)3 − (ξ2
p+1 + ξ2

p+2 + . . . + ξ2
p+q

)3]k
Now,

|F(⊗)kδ| =
1

(2π)n/2

∣∣∣(ξ2
1 + ξ2

2 + . . . + ξ2
p

)3 − (ξ2
p+1 + ξ2

p+2 + . . . + ξ2
p+q

)3∣∣∣k
=

1

(2π)n/2

∣∣ξ2
1 + ξ2

2 + ξ2
3 + . . . + ξ2

p − ξ2
p+1 − ξ2

p+2 − . . . − ξ2
p+q

∣∣k ·∣∣∣(ξ2
1 + . . . + ξ2

p

)2
+
(
ξ2
1 + . . . + ξ2

p

) (
ξ2
p+1 + . . . + ξ2

p+q

)
+
(
ξ2
p+1 + . . . + ξ2

p+q

)2∣∣∣k
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or

|F(⊗)kδ| ≤ 1

(2π)n/2

∣∣ξ2
1 + . . . + ξ2

n

∣∣k ∣∣∣(ξ2
1 + . . . + ξ2

n

)2
+
(
ξ2
1 + . . . + ξ2

n

)2
+
(
ξ2
1 + . . . + ξ2

n

)2∣∣∣k
≤ M

(2π)n/2
‖ξ‖6k

where ‖ξ‖ = (ξ2
1 + ξ2

2 + . . . + ξ2
n)

1/2
, ξi(i = 1, 2, . . . , n) ∈ R and M is a positive con-

stant. Hence we obtain F⊗δ is bounded and continuous on the space S ′ of the tempered
distribution.

Since F is 1 − 1 transformation from the space S ′ of the tempered distribution to
the real space R, then by (2.2.17)

⊗δ = F−1 1

(2π)n/2

[(
ξ2
p+1 + ξ2

p+2 + . . . + ξ2
p+q

)3 − (ξ2
1 + ξ2

2 + . . . + ξ2
p

)3]
.

That completes the proof.

2.3 Partial Differential Equation

A partial differential operator L of order m in N variables

L =
∑
|α|≤m

AαDα, (2.3.1)

where α = (α1, . . . , αN) is a multi-index, the α′
ns are non-negative integers, |α| =

α1, α2, . . . , αN and Aα = Aα1,α2,...,αN
(x1, x2, . . . , xN) are functions in RN (possibly con-

stant), and

Dα =

(
∂

∂x1

)α1

, . . . ,

(
∂

∂xN

)αN

=
∂|α|

∂xα1
1 . . . ∂xαN

N

. (2.3.2)

For example, the most general linear partial differential operator of order 2 in two
independent variables is

L =
∑
|α|≤m

AαDα

= A2,0(x1, x2)
∂2

∂x2
1

+ A1,1(x1, x2)
∂2

∂x1∂x2

+ A0,2(x1, x2)
∂2

∂x2
2

+ A1,0(x1, x2)
∂

∂x1

+ A0,1(x1, x2)
∂

∂x2

+ A0,0(x1, x2). (2.3.3)

When seeking solution of the equation L(x) = Y we may be interested in a solution
which is a differential function, or just a function with Dα understood as generalized
derivatives, or finally, we may seek a solution which is a distribution. For this reason
the solutions of such an equation are classed as follows,

1) Classical Solution. Let f be a function on RN . Every function u on RN which is
sufficiently differentiable so that ∑

|α|≤m

AαDα
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is well defined as a function and such that the equation

Lu =
∑
|α|≤m

AαDαu = f (2.3.4)

is satisfied is called a classical solution of (2.3.4).
2) Weak solution. By a weak solution of (2.3.4) we mean a function on RN which

need not be sufficiently differentiable to make Lu meaningful in the classical sense. In
the case f may be a function or a distribution.

3) Distributional Solution. Let f ∈ D′(RN). Every u ∈ D′(RN) satisfied (2.3.18) is
called a distributional solution of (2.3.4).

Note that if f in (2.3.4) is a singular distribution, then the equation cannot have a
classical solution. The remarkable fact is that including distributions one can generate
new solutions of classical equations (equations where f is a function). Some classical
equations may not even have a classical solution, but can have distributional solutions.

Equations of the form

LG = δ (2.3.5)

are of particular interest. Suppose G is a distribution satisfying (2.3.19). Then, for any
distribution f with compact support, the convolution f ∗ G is well defined and

L (f ∗ G) =
∑
|α|≤m

AαDα (f ∗ G)

=
∑
|α|≤m

Aα (f ∗ DαG)

= f ∗
∑

|α|≤m

AαDαG


= f ∗ δ = f

Thus, if G is a solution of LG = δ, then f ∗ G is a solution of Lu = f . This explains
the importance of the equations Lu = δ.

Definition 2.3.1. Consider the linear partial differential equation

P (D)u = f, (2.3.6)

where f is a distribution, u is an unknown function, and P (D) a linear partial differential
operator with constant coefficients. A function E(x) is called elementary solution of
equation (2.3.6) if P (D)E(x) = δ, where δ is the Dirac-delta function.

Lemma 2.3.2. Let L be the operator defined by

L =
∂

∂t
+ c2(−�)k (2.3.7)

where �k is the operator iterated k-times defined by

�k =

( p∑
i=1

∂2

∂x2
i

)3

+

(
p+q∑

j=p+1

∂2

∂x2
j

)3
k

,
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p+q = n is the dimension of Rn, (x1, x2, . . . , xn) ∈ Rn, t ∈ (0,∞), k is a positive integer
and c is the positive constant. Then we obtain

E(x, t) =
1

(2π)n

∫
Ω

exp

−c2t

( p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k

+ i(ξ, x)

 dξ (2.3.8)

as the elementary solution of (2.3.7) in the spectrum Ω ⊂ Rn for t > 0.

Proof. Let LE(x, t) = δ(x, t) where E(x, t) is the kernel or the elementary solution of
the operator L and δ is the Dirac-delta distribution. Thus

∂

∂t
E(x, t) + c2(−�)kE(x, t) = δ(x)δ(t)

take the Fourier transform defined by (2.2.1) to both sides of the equation

∂

∂t
Ê(ξ, t) + c2

( p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k

Ê(ξ, t) =
1

(2π)n/2
δ(t).

Thus

Ê(ξ, t) =
H(t)

(2π)n/2
exp

−c2t

( p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k


where H(t) is the Heaviside function. Since H(t) = 1 for t > 0,

Ê(ξ, t) =
1

(2π)n/2
exp

−c2t

( p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k
 ,

so we have

E(ξ, t) =
1

(2π)n/2

∫
Rn

ei(ξ,x)Ê(ξ, t)dξ.

By (2.2.3),

E(ξ, t) =
1

(2π)n/2

∫
Ω

ei(ξ,x)Ê(ξ, t)dξ

where Ω is the spectrum of E(x, t). Thus

E(x, t) =
1

(2π)n

∫
Ω

exp

−c2t

( p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k

+ i(ξ, x)

 dξ.

for t > 0. �
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Lemma 2.3.3. Given the equation �ku(x) = δ(x) for x ∈ Rn, where �k is defined by
(??). Then

u(x) = (−1)kRe
2k(x)

is an elementary solution of the �k operator where Re
2k(x) is defined by (??), with

α = 2k.

Proof. [See 10, Lemma 2.4, p.31]. �

Lemma 2.3.4. Given the equation �ku(x) = δ(x) for x ∈ Rn, where �k is defined by
(??). Then

u(x) = RH
2k(x)

is an elementary solution of the �k operator where RH
2k(x) is defined by (??), with

β = 2k

Proof. [See 10, p.11]. �

Lemma 2.3.5. Given the equation(
� + m2

)k
K(x) = δ(x) (2.3.9)

where (� + m2)
k

is the operator iterated k−times defined by (1.0.30) then K(x) =
WH

2k(u,m) is an elementary solution or Green function of (2.3.9) where WH
2k(u, m) is

defined by (1.0.31) with α = 2k.

Proof. [See 22, p.21, formula VI3].

From (1.0.30) if q = 0 then (� + m2)
k

reduces to the Helmholtz operator (� + m2)
k

where

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

.

Thus, by (1.0.30), for q = 0 we obtain the equation(� + m2
)k

K(x) = δ(x) (2.3.10)

with an elementary solution K(x) = WH
2k(v, m) where

v = x2
1 + x2

2 + · · · + x2
p.

Now,

WH
2k(v, m) =

∞∑
r=0

(−1)rΓ
(

2k
2

+ r
)

r!Γ
(

2k
2

) (
m2
)r

RH
2k+2r(v). (2.3.11)

We have RH
2k(v) = 2(−1)kRe

2k(). Thus, we write

W e
2k(v, m) =

∞∑
r=0

(−1)rΓ
(

2k
2

+ r
)

r!Γ
(

2k
2

) (
m2
)r

2(−1)k+rRe
2k+2r(v). (2.3.12)

In general, if p = n

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

.
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and
v = x2

1 + x2
2 + · · · + x2

n.

we obtain

K(x) = W e
2k(v, m)

as an elementary solution of (2.3.10).

Lemma 2.3.6. Given the equation

�ku(x) = 0, (2.3.13)

where �k is defined by (1.0.18) and x = (x1, x2, . . . , xn) ∈ Rn then u(x) = (RH
2(k−1)(V ))(m)

is a solution of (2.3.13) where (RH
2(k−1)(V ))(m) is defined by (1.0.19) with m - derivatives,

m = n−4
2

, n ≥ 4 and n is even dimension with β = 2(k − 1) and V is defined by (2.2.5).

Proof. We first to show that the generalized function δ(m)(r2 − s2) where r2 = x2
1 +

x2
2 + . . . + x2

p and s2 = x2
p+1 + x2

p+2 + . . . + x2
p+q , p + q = n is a solution of the equation

�u(x) = 0, (2.3.14)

where � is defined by (??) with k = 1 and x = (x1, x2, . . . , xn) ∈ Rn

∂

∂xi

δ(m)(r2 − s2) = 2xiδ
(m+1)(r2 − s2)

∂2

∂x2
i

δ(m)(r2 − s2) = 2δ(m+1)(r2 − s2) + 4x2
i δ

(m+2)(r2 − s2)

�δ(m)(r2 − s2) =

p∑
i=1

∂2

∂x2
i

δ(m)(r2 − s2)

= 2pδ(m+1)(r2 − s2) + 4r2δ(m+2)(r2 − s2)

= 2pδ(m+1)(r2 − s2) + 4(r2 − s2)δ(m+2)(r2 − s2)

+ 4s2δ(m+2)(r2 − s2)

= 2pδ(m+1)(r2 − s2) − 4(m + 2)δ(m+1)(r2 − s2)

+ 4s2δ(m+2)(r2 − s2)

= (2p − 4(m + 2))δ(m+1)(r2 − s2) + 4s2δ(m+2)(r2 − s2).

By Lemma 2.2.11 with P = r2 − s2. Similarly ,

p+q∑
j=p+1

∂2

∂x2
j

δ(m)(r2 − s2) = (−2q + 4(m + 2))δ(m+1)(r2 − s2)

+ 4r2δ(m+2)(r2 − s2).

Thus

�δ(m)(r2 − s2) =

p∑
i=1

∂2

∂x2
i

δ(m)(r2 − s2) −
p+q∑

j=p+1

∂2

∂x2
i

δ(m)(r2 − s2)

= (2(p + q) − 8(m + 2))δ(m+1)(r2 − s2) − 4(r2 − s2)δ(m+2)(r2 − s2)

= (2n − 8(m + 2))δ(m+1)(r2 − s2) + 4(m + 2)δ(m+1)(r2 − s2)

= (2n − 4(m + 2))δ(m+1)(r2 − s2).
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If 2n − 4(m + 2) = 0, we have �δ(m)(r2 − s2) = 0. That is u(x) = δ(m)(r2 − s2) is a
solution of (2.3.9) with m = n−4

2
, n ≥ 4 and n is even dimension. We write

�ku(x) = �(�k−1u(x)) = 0.

From the above proof we have �k−1u(x) = δ(m)(r2 − s2) with m = n−4
2

, n ≥ 4 and
n is even dimension. Convolving the above equation by RH

2(k−1)(V ) , we obtain

RH
2(k−1)(V ) ∗ �k−1u(x) = RH

2(k−1)(V ) ∗ δ(m)(r2 − s2)

�k−1(RH
2(k−1)(V )) ∗ u(x) = (RH

2(k−1)(V ))(m), where V = (r2 − s2)

δ ∗ u(x) = u(x) = (RH
2(k−1)(V ))(m) (2.3.15)

by (2.2.8) and V = r2 − s2 is defined by Definition (2.2.5).
Thus u(x) = (RH

2(k−1)(V ))(m) is a solution of (2.3.13) with m = n−4
2

, n ≥ 4 and n is
even dimension.

Lemma 2.3.7. Given the equation

�ku(x) = 0, (2.3.16)

where �k is defined by (1.0.22) and x = (x1, x2, . . . , xn) ∈ Rn. We obtain

u(x) = (−1)k−1(Re
2(k−1)(x))(m)

is a solution of (2.3.16) where (Re
2(k−1)(x))(m) is defined by (2.2.9) with m-derivatives,

m = n−4
2

, n ≥ 4 and n is even dimension with α = 2(k − 1).

Proof. The proof of Lemma 2.3.7 is similar to the proof of Lemma 2.3.6.

Lemma 2.3.8. Given the equation

⊗kG(x) = δ(x) (2.3.17)

then

G(x) =
(
RH

6k(x) ∗ (−1)2kRe
4k(x)

) ∗ (C∗k(x)
)∗−1

(2.3.18)

is the Green function or an elementary solution for the ⊗k operator iterated k−times
where ⊗k is defined by (??), and

C(x) =
3

4
RH

4 (x) +
1

4
(−1)2Re

4(x) (2.3.19)

C∗k(x) denotes the convolution of C(x) itself k−times ,
(
C∗k(x)

)∗−1
denotes the inverse

of C∗k(x) in the convolution algebra, RH
6k(x) is defined by (1.0.19) with α = 6k and

Re
4k(x) is defined by (1.0.23) with α = 4k. Moreover G(x) is a tempered distribution.
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Proof. From (??), we have

⊗kG(x) =

(
3

4
♦� +

1

4
�3

)k

G(x) = δ(x)

or we can write (
3

4
♦� +

1

4
�3

)(
3

4
♦� +

1

4
�3

)k−1

G(x) = δ(x).

Convolving both sides of the above equation by RH
6 (x) ∗ (−1)2Re

4(x),(
3

4
♦� +

1

4
�3

)
∗ (RH

6 (x) ∗ (−1)2Re
4(x)
)(3

4
♦� +

1

4
�3

)k−1

G(x)

= δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x)

or (
3

4
�
(
RH

2 (x)
) ∗ �2(−1)2Re

4(x) ∗ RH
4 (x) +

1

4
�3RH

6 (x) ∗ (−1)2Re
4(x)

)
∗(

3

4
♦� +

1

4
�3

)k−1

G(x) = δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x)

By (2.2.8) and (2.2.11), we obtain(
3

4
δ ∗ δ ∗ RH

4 (x) +
1

4
δ ∗ (−1)2Re

4(x)

)
∗
(

3

4
♦� +

1

4
�3

)k−1

G(x)

= δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x).

Thus (
3

4
RH

4 (x) +
1

4
(−1)2Re

4(x)

)
∗
(

3

4
♦� +

1

4
�3

)k−1

G(x) = RH
6 (x) ∗ (−1)2Re

4(x)

keeping on convolving both sides of the above equation by RH
6 (x) ∗ (−1)2Re

4(x) up to
k − 1 times, we obtain

C∗k(x) ∗ G(x) =
(
RH

6 (x) ∗ (−1)2Re
4(x)
)∗k

the symbol ∗k denotes the convolution of itself k−times. By properties of Rα(x) [See,
Lemma 2.2.6], we have(

RH
6 (x) ∗ (−1)2Re

4(x)
)∗k

= RH
6k(x) ∗ (−1)2kRe

4k(x).

Thus,

C∗k(x) ∗ G(x) = RH
6k(x) ∗ (−1)2kRe

4k(x). (2.3.20)

Now, consider the function C∗k(x), since RH
6 (x) ∗ (−1)2Re

4(x) is a tempered distri-
bution. Thus C(x) defined by (2.3.19) is a tempered distribution, we obtain C∗k(x) is a
tempered distribution, RH

6k(x) ∗ (−1)2kRe
4k(x) ∈ S ′, the space of tempered distribution.
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Choose S ′ ⊂ D′
R where D′

R is the right-side distribution which is a subspace of D′ of
distribution.

Thus RH
6k(x)∗(−1)2kRe

4k(x) ∈ D′
R. It follow that RH

6k(x)∗(−1)2kRe
4k(x) is an element

of convolution algebra, since D′
R is a convolution algebra. Hence Zemanian [23], the

equation (2.3.20) has a unique solution

G(x) =
(
RH

6k(x) ∗ (−1)2kRe
4k(x)

) ∗ (C∗k(x)
)∗−1

(2.3.21)

where
(
C∗k(x)

)∗−1
is an inverse of C∗k(x) in the convolution algebra, G(x) is called the

Green function or an elementary solution of the ⊗k operator. That completes the proof.

Lemma 2.3.9. Given the equation

�kH(x) = δ(x) (2.3.22)

then

H(x) =
(
RH

4k(x) ∗ (−1)3kRe
6k(x)

) ∗ (S∗k(x)
)∗−1

(2.3.23)

is the Green function or an elementary solution for the �k operator iterated k−times
where �k is defined by (1.0.29), and

S(x) =
3

4
(−1)2Re

4(x) +
1

4
RH

4 (x) (2.3.24)

S∗k(x) denotes the convolution of S(x) itself k−times,
(
S∗k(x)

)∗−1
denotes the inverse

of S∗k(x) in the convolution algebra, RH
4k(x) is defined by (2.2.6) with α = 4k and

Re
4k(x) is defined by (2.2.9) with α = 6k. Moreover H(x) is a tempered distribution.

Proof. The proof of Lemma 2.3.9 is similar to the proof of Lemma 2.3.8.

Lemma 2.3.10. Given the equation

Lk
1K(x) = δ(x) (2.3.25)

where Lk
1 be the operator iterated k−times defined by

Lk
1 = (

3

4
�2 +

1

4
�2)k (2.3.26)

and � and � is defined by (1.0.22) and (1.0.18) with k = 1 respectively. Then we
obtain K(x) is an elementary solution of the Lk

1 operator where

K(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

) ∗ (C∗k(x)
)∗−1

(2.3.27)

and

C(x) =
3

4
RH

4 (x) +
1

4
(−1)2Re

4(x). (2.3.28)

C∗k(x) denotes the convolution of C(x) itself k−times,
(
C∗k(x)

)∗−1
denotes the inverse

of C∗k(x) in the convolution algebra RH
4k(x) is defined by (2.2.6) with α = 4k and Re

4k(x)
is defined by (2.2.9) with α = 4k. Moreover K(x) is a tempered distribution.
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Proof. The proof of Lemma 2.3.10 is similar to the proof of Lemma 2.3.8.

Lemma 2.3.11.

Lk
2I(x) = δ(x) (2.3.29)

where Lk
2 be the operator defined by Lk

2 = (3
4
�2+ 1

4
�2)k , � and � is defined by (1.0.22)

and (1.0.18) with k = 1 respectively. Then we obtain I(x) is an elementary solution of
the Lk

2 operator where

I(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

) ∗ (S∗k(x)
)∗−1

(2.3.30)

and

S(x) =
3

4
(−1)2Re

4(x) +
1

4
RH

4 (x)

S∗k(x) denotes the convolution of S itself k−times ,
(
S∗k(x)

)∗−1
denotes the inverse of

S∗k(x) in the convolution algebra. Moreover I(x) is a tempered distribution.

Proof. The proof of Lemma 2.3.11 is similar to the proof of Lemma 2.3.8.

Lemma 2.3.12. Given the equation(♦ + m4
)k

H(x) = δ(x) (2.3.31)

then

H(x) =
[
WH

2k(u,m) ∗ W e
2k(v,m)

] ∗ (I∗k(x)
)∗−1

(2.3.32)

is an Green function for the operator (♦ + m4)
k

iterated k−times where ♦ is the Dia-
mond operator defined by (1.0.10), m is nonnegative real number and

I(x) = δ − m2
(
WH

2 (u,m) ∗ W e
2 (v, m)

) ∗ (RH
−2(u) + Re

−2(v)
)

(2.3.33)

I∗k(x) denotes the convolution of I itself k−times,
(
I∗k(x)

)∗−1
denotes the inverse of

I∗k(x) in the convolution algebra. Moreover I(x) is a tempered distribution.

Proof. [See 12].


