
Chapter 3
A Non-Linear Heat Equation

In this chapter, we study the nonlinear equation of the form

∂
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u(x, t) − c2(−⊗)ku(x, t) = f(x, t, u(x, t))

where ⊗k is the operator iterated k-times, defined by
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where p + q = n is the dimension of the Euclidean space Rn, u(x, t) is an unknown
for (x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), k is a positive integer and c is a positive
constant, f is the given function in nonlinear form depending on x, t and u(x, t). On
suitable conditions for f , p, q, k and the spectrum, we obtain the unique solution u(x, t)
of such equation.Moreover,if we put p = 0, k = 1, we obtain the solution of non-linear
heat equation.

3.1 Main Results

Theorem 3.1.1. Let L be the operator defined by

L =
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− c2(−⊗)k (3.1.1)

where ⊗k is the operator iterated k-times defined by
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,

p+q = n is the dimension of Rn, (x1, x2, . . . , xn) ∈ Rn, t ∈ (0,∞), k is a positive integer
and c is the positive constant. Then we obtain
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as the elementary solution of (3.1.1) in the spectrum Ω ⊂ Rn for t > 0, where
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Proof. Let LE(x, t) = δ(x, t) where E(x, t) is the kernel or the elementary solution of
the operator L and δ is the Dirac-delta distribution. Thus

∂

∂t
E(x, t) − c2(−⊗)kE(x, t) = δ(x)δ(t)

take the Fourier transform defined by (??) to both sides of the equation
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where H(t) is the Heaviside function. Since H(t) = 1 for t > 0,
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so we have
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By (??),
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where Ω is the spectrum of E(x, t). Thus
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for t > 0. �

Theorem 3.1.2. (The properties of E(x, t))
The kernel E(x, t) defined by (3.1.2) have the following properties

(1) E(x, t) ∈ C∞ - the space of continuous function for x ∈ Rn, t > 0 with infinitely
ditterentiable.

(2)

(
∂

∂t
− c2(−⊗)k

)
E(x, t) = 0 for t > 0.

(3) |E(x, t)| ≤ 22−n

πn/2

M(t)

Γ(p/2)Γ(q/2)
for t > 0 where M(t) is a function of t in the

spectrum and Γ denote the Gamma function. Thus E(x, t) is bounded for any
fixed t > 0.
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(4) lim
t→0

E(x, t) = δ.

Proof. (1) From (??)
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∂xn
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Thus E(x, t) ∈ C∞ for x ∈ Rn, t > 0.
(2) By computing directly, we obtain(
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Thus

|E(x, t)| ≤ 1
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By changing to bipolar coordinates

ξ1 = rw1, ξ2 = rw2, . . . , ξp = rwp and ξp+1 = swp+1, ξp+2 = swp+2, . . . , ξp+q = swp+q

where

p∑
i=1

w2
i = 1 and

p+q∑
j=p+1

w2
j = 1

Thus

|E(x, t)| ≤ 1

(2π)n

∫
Ω

exp
[
c2t

(
r6 − s6

)k
]
rp−1sq−1drdsdΩpdΩq

where dξ = rp−1sq−1drdsdΩpdΩq, dΩp and dΩq are the elements of surface area of the
unit sphere in Rp and Rq respectively. Since Ω ⊂ Rn is the spectrum of E(x, t) and
suppose 0 ≤ r ≤ R and 0 ≤ s ≤ L where R and L are constants. Thus we obtain

|E(x, t)| ≤ ΩpΩq

(2π)n

∫ R

0

∫ L

0

exp
[
c2t

(
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)k
]
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=
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M(t) for any fixed t > 0 in the spectrum Ω

=
22−n

πn/2

M(t)

Γ(p/2)Γ(q/2)
(3.1.3)
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where M(t) =

∫ R

0

∫ L

0

exp
[
c2t

(
r6 − s6

)k
]
rp−1sq−1drds is a function for t > 0, Ωp =

2πp/2

Γ(p/2)
and Ωq =

2πq/2

Γ(q/2)
. Thus for any fixed t > 0, E(x, t) is bounded.

(4) From (2.5),

lim
t→0

E(x, t) =
1

(2π)n

∫
Ω

ei(ξ,x)dξ =
1

(2π)n

∫
Rn

ei(ξ,x)dξ = δ(x),

for x ∈ Rn, [8, p. 396, Eq. (10.2.19b)]. �

Theorem 3.1.3. Given the nonlinear equation

∂

∂t
u(x, t) − c2(−⊗)ku(x, t) = f(x, t, u(x, t)) (3.1.4)

for (x, t) ∈ Rn × (0,∞), k is a positive number and with the following conditions on u
and f as follows

(1) u(x, t) ∈ C(6k)(Rn) for any t > 0 where C(6k)(Rn) is the space of continuous function
with 6k-derivative.

(2) f satisfies the Lipchitz condition,

|f(x, t, u) − f(x, t, w)| ≤ A|u − w|
where A is constant with 0 < A < 1.

(3)

∫ ∞

0

∫
Rn

|f(x, t, u(x, t))| dxdt < ∞ for x = (x1, x2, . . . , xn) ∈ Rn, 0 < t < ∞ and

u(x, t) is continuous function on Rn × (0,∞).

Then obtain the convolution

u(x, t) = E(x, t) ∗ f(x, t, u(x, t)) (3.1.5)

as a unique solution of (3.1.4) for x ∈ Ω where Ω is a compact subset of Rn and
0 ≤ t ≤ T with T is a constant and E(x, t) is an elementary solution defined by (2.3.8)
and also u(x, t) is bounded for any fixed t > 0. In particular, if we put k = 1 and p = 0
in (3.1.4), then (3.1.4) reduces to the nonlinear heat equation

∂

∂t
u(x, t) + c2�3u(x, t) = f(x, t, u(x, t))

which is related to the heat equation.

Proof. Convolving both sides of (3.1.4) with E(x, t), that is

E(x, t) ∗
[

∂

∂t
u(x, t) − c2(−⊗)ku(x, t)

]
= E(x, t) ∗ f(x, t, u(x, t))

or [
∂

∂t
E(x, t) − c2(−⊗)kE(x, t)

]
∗ u(x, t) = E(x, t) ∗ f(x, t, u(x, t)),



32

so

δ(x, t) ∗ u(x, t) = E(x, t) ∗ f(x, t, u(x, t)).

Thus

u(x, t) = E(x, t) ∗ f(x, t, u(x, t))

=

∫ ∞

−∞

∫
Rn

E(r, s)f(x − r, t − s, u(x − r, t − s))drds

where E(r, s) is given by definition (2.2.16). We next show that u(x, t) is bounded on
Rn × (0,∞). We have

|u(x, t)| ≤
∫ ∞

−∞

∫
Rn

|E(r, s)||f(x − r, t − s, u(x − r, t − s))|drds

≤ 22−nNM(t)

πn/2Γ(p/2)Γ(q/2)
by condition (3) and (??)

where N =

∫ ∞

−∞

∫
Rn

|f(x − r, t − s, u(x − r, t − s))|drds. Thus u(x, t) is bounded on

Rn × (0,∞). To show that u(x, t) is unique. Now, We next to show that u(x, t) is
unique. Let w(x, t) be another solution of (3.1.4), then

w(x, t) = E(x, t) ∗ f(x, t, w(x, t))

for (x, t) ∈ Ω0 × (0, T ] and E(x, t) is defined by (3.1.2).
Now, define ‖u(x, t)‖ = sup

x∈Ω0
0<t≤T

|u(x, t)|.

Now,

|u(x, t) − w(x, t)| = |E(x, t) ∗ f(x, t, u(x, t)) − E(x, t) ∗ f(x, t, w(x, t))|
≤

∫ ∞

−∞

∫
Rn

|E(r, s)| · |f(x − r, t − s, u(x − r, t − s))

−f(x − r, t − s, w(x − r, t − s))|drds

≤ A|E(r, s)|
∫ ∞

−∞

∫
Rn

|u(x − r, t − s) − w(x − r, t − s)|drds

by (2.3.8) and the condition (2) of the theorem. Now, for (x, t) ∈ Ω0 × (0, T ] we have

|u − w| ≤ A|E(r, s)|‖u − w‖
∫ T

0

ds

∫
Ω0

dr

= A|E(r, s)|TV (Ω0)‖u − w‖ (3.1.6)

where V (Ω0) is the volume of the surface on Ω0.

Choose A|E(r, s)|TV (Ω0) ≤ 1 or A ≤ 1

|E(r, s)|TV (Ω0)
.

Thus from (3.1.6),

‖u − w‖ ≤ α‖u − w‖ where α = A|E(r, s)|TV (Ω0) ≤ 1.

It follows that ‖u − w‖ = 0, thus u = w.
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That is the solution u of (3.1.4) is unique.

In particular, if we put k = 1 and p = 0 in (3.1.4), then (3.1.4) reduces to the
nonlinear heat equation

∂

∂t
u(x, t) − c2�3u(x, t) = f(x, t, u(x, t))

which has solution

u(x, t) = E(x, t) ∗ f(x, t, u(x, t))

where E(x, t) is defined by (3.1.2) with k = 1 and p = 0. �


