Chapter 3
A Non-Linear Heat Equation

In this chapter, we study the nonlinear equation of the form
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where ®* is the operator iterated k-times, defined by
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where p + ¢ = n is the dimension of the FEuclidean space R", u(x,t) is an unknown
for (z,t) = (x1,29,...,2,,t) € R" X (0,00), k is a positive integer and c¢ is a positive
constant, f is the given function in nonlinear form depending on x,¢ and w(z,t). On
suitable conditions for f, p, ¢, k and the spectrum, we obtain the unique solution u(z, t)
of such equation.Moreover,if we put p = 0,k = 1, we obtain the solution of non-linear
heat equation.

3.1 Main Results

Theorem 3.1.1. Let L be the operator defined by

0
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where ®* is the operator iterated k-times defined by

p 82 3 p+q 82 3 F
k __ . _ -
= ( 8:52) (Z 8:v2~> ’
i=1 t j=p+1 J

p+q = n is the dimension of R", (z1,z9,...,2,) € R™ t € (0,00), k is a positive integer
and c is the positive constant. Then we obtain
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Proof. Let LE(x,t) = §(z,t) where E(x,t) is the kernel or the elementary solution of
the operator L and ¢ is the Dirac-delta distribution. Thus
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take the Fourier transform defined by (??) to both sides of the equation
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Thus
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where H (t) is the Heaviside function. Since H(t) =1 for ¢t > 0,
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where (2 is the spectrum of E(z,t). Thus
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for t > 0. O

Theorem 3.1.2. (The properties of E(x,t))
The kernel E(x,t) defined by (3.1.2) have the following properties

(1) E(x,t) € C* - the space of continuous function for x € R™, t > 0 with infinitely

ditterentiable.
(2) (— — (- ®)k> E(z,t) =0 fort>0.
22—n M(t) ‘ : :
(3) |E(z,t)] < for t > 0 where M(t) is a function of t in the

=7 T(p/2)0(a/2)

spectrum and I denote the Gamma function. Thus E(x,t) is bounded for any
fixed t > 0.
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(4) limy B(a.t) = .

Proof. (1) From (?7?)
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Thus E(z,t) € C* for x € R™ t > 0.
(2) By computing directly, we obtain

(% < 02(_®)k) E(x,)=0.

(3) We have
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By changing to bipolar coordinates
§1 =rwy, § = 1wy ..., & = rwy and Epi1 = SWpy1,Epra = SWpiya, ., Eprg = SWpyg
where
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where d¢§ = rP~ st drdsdQ,dSY,, dS, and dQ, are the elements of surface area of the
unit sphere in R? and R? respectively. Since @ C R" is the spectrum of E(x,t) and
suppose 0 <r < Rand 0 < s < L where R and L are constants. Thus we obtain
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T n
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(3.1.3)
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R /L
where M (t) = / / exp [czt (r® — 56)’1 rP~1s%7drds is a function for ¢t > 0, 2, =
o Jo

2P/? 97a/2
T(p/2) and Q, = T(q/2) Thus for any fixed t > 0, E(z,t) is bounded.
(4) From (2.5),

lim E(x,t) = 1 / 660 ge — 1 / ¢ ge = §(x),
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for x € R", [8, p. 396, Eq. (10.2.19b)]. O

Theorem 3.1.3. Given the nonlinear equation

9 2 -
EU(I’ t) —C (—®)ku(l‘,t) 7 f({E,t, u(x, t)) (314)

for (z,t) € R" x (0,00), k is a positive number and with the following conditions on u
and f as follows

(1) u(z,t) € CE)(R™) for any ¢t > 0 where C'6%)(R™) is the space of continuous function
with 6k-derivative.

(2) f satisfies the Lipchitz condition,
F(@st,w) — )] < Alu— 1l
where A is constant with 0 < A < 1.
(3) /00 [f(z,t,u(x,t))| dedt < oo for @ = (x1,29,...,2,) € R", 0 < t < 00 and
1(2(1:, tﬂﬁnis continuous function on R™ x (0, 00).
Then obtain the convolution
u(z,t) = E(x,t) % f(z, t,u(z,t)) (3.1.5)

as a unique solution of (3.1.4) for z € € where  is a compact subset of R™ and
0 <t < T with T is a constant and E(x,t) is an elementary solution defined by (2.3.8)
and also u(z,t) is bounded for any fixed ¢t > 0. In particular, if we put k =1 and p =0
in (3.1.4), then (3.1.4) reduces to the nonlinear heat equation

%U(m, )+ AN, t) = f(x,t, ulz, 1))

which is related to the heat equation.

Proof. Convolving both sides of (3.1.4) with E(x,t), that is

E(x,t) * {%u(w,t) - 02(—®)ku(x,t)} = E(x,t) * f(x,t,u(z,t))

or

{%E(x,t) — A (—®)E(x, t)] xu(z,t) = E(x,t) x f(z,t,u(z,t)),
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Oz, t) *u(x,t) = E(x,t) * f(z,t,u(x,t)).
Thus

u(z,t) flz tu(z,t))

t)
/ / (ry8)f(z—r,t —s,u(x—r,t —s))drds

where E(r,s) is given by definition (2.2.16). We next show that u(x,t) is bounded on
R"™ x (0, 00). We have

a:t]</ B(r, )| f (& =7t = s,u(z — .t — 5))|drds
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< by condition (3) and (??
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where N = / |f(x —rt —s,u(z —r,t — s))|drds. Thus u(z,t) is bounded on
R

R™ x (0,00). To show that u(z,t) is unique. Now, We next to show that u(z,t) is
unique. Let w(z,t) be another solution of (3.1.4), then

w(z,t) = E(x,t) x f(x, t,w(x,t))

for (z,t) € Qo x (0,7] and E(x,t) is defined by (3.1.2).
Now, define ||u(z,t)|| = sup |u(x,t)|.

€N
0<t<T
Now,
lu(z,t) —w(z,t)| = |E(x,t)* f(z,t,u(z,t) — E(x,t) * f(z,t,w(z,t))]

IA

[ [ IBCs) e = nt= st =t - )
—flzx —r,t —s,w(x —r,t—s))|drds
< A|E(r,3)|/ lu(z =7t —s) —w(x —r,t —s)|drds
—oo JR”

by (2.3.8) and the condition (2) of the theorem. Now, for (z,t) € Qg x (0,T] we have

lu—w| < A|E7“s|||u—w||/ ds/ dr
Qo
= AlE(r,s)|TV(Q0)|lu — wl|| (3.1.6)

where V(€) is the volume of the surface on €.
Choose A|E(r,s)|TV () <1 or A<
Thus from (3.1.6),

1
|E(r, s)|TV (o)

|lu —w| < allu—w|| where a = A|E(r,s)|TV () <1

It follows that ||u — w| = 0, thus u = w.
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That is the solution w of (3.1.4) is unique.

In particular, if we put £k = 1 and p = 0 in (3.1.4), then (3.1.4) reduces to the
nonlinear heat equation

%uu, B — 0%u(z,t) = f(a, (1))

which has solution
u(z,t) = E(x,t) * f(r,t,u(z,t))

where E(z,t) is defined by (3.1.2) with £k = 1 and p = 0. O



