
Chapter 4
The Generalized ⊗k operator related to

Triharmonic Wave Equation

In this chapter, we study the generalized wave equation of the form

∂2

∂t2
u(x, t) + c2(⊗)ku(x, t) = 0

with the initial conditions

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x)

where u(x, t) ∈ R
n×(0,∞), R

n is the n-dimensional Euclidean space, ⊗k is the operator
iterated k−times defined by

⊗k =

(
p∑

i=1

∂2

∂x2
i

)3

−
(

p+q∑
j=p+1

∂2

∂x2
j

)3
k

c is a positive constant, k is a nonnegative integer, f and g are continuous and absolutely
integrable functions. We obtain u(x, t) as a solution for such equation. Moreover,
by ε-approximation we also obtain the asymptotic solution u(x, t) = O(ε−n/3k). In
particularly, if we put k = 1 and p = 0, the u(x, t) reduces to the solution of the wave
equation

∂2

∂t2
u(x, t) − c2(�)3u(x, t) = 0.

which is related to the triharmonic wave equation.

4.1 Main Results

Theorem 4.1.1. Given the equation

∂2

∂t2
u(x, t) + c2 (⊗)k u(x, t) = 0 (4.1.1)

with initial conditions

u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x) (4.1.2)

where u(x, t) ∈ R
n×(0,∞), ⊗k is the diamond operator iterated k−times, c is a positive

constant, k is a nonnegative integer, f and g are continuous functions and absolutely
integrable for x ∈ R

n. Then (4.1.1) has a unique solution

u(x, t) = f(x) ∗ Ψt(x) + g(x) ∗ Φt(x) (4.1.3)
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and satisfy the condition (4.1.2) where Φt is an inverse Fourier transform of

Φ̂t(ξ) =
sin c

(√
s6 − r6

)k
t

c
(√

s6 − r6
)k

and Ψt is an inverse Fourier transform of

Ψ̂t(ξ) = cos c
(√

s6 − r6
)k

t =
∂

∂t
Φ̂(ξ)

where r2 = ξ2
1 + ξ2

2 + · · · + ξ2
p and s2 = ξ2

p+1 + ξ2
p+2 + · · · + ξ2

p+q .

Proof. By applying the Fourier transform defined by (2.2.16) to (4.1.1) and obtain

∂2

∂t2
û(ξ, t) + c2

−
(

p∑
i=1

ξ2
i

)3

+

(
p+q∑

j=p+1

ξ2
j

)3
k

û(ξ, t) = 0

and let s > r. Thus becomes

∂2

∂t2
û(ξ, t) + c2

(
s6 − r6

)k
û(ξ, t) = 0

û(ξ, t) = A(ξ) cos c
(√

s6 − r6
)k

t + B(ξ) sin c
(√

s6 − r6
)k

t.

By (4.1.2), û(ξ, 0) = A(ξ) = f̂(ξ)

∂û(ξ, t)

∂t
= −c

(√
s6 − r6

)k

A(ξ) sin c
(√

s6 − r6
)k

t+c
(√

s6 − r6
)k

B(ξ) cos c
(√

s6 − r6
)k

t.

∂û(ξ, 0)

∂t
= 0 + c

(√
s6 − r6

)k

B(ξ) = ĝ(ξ)

B(ξ) =
ĝ(ξ)

c
(√

s6 − r6
)k

û(ξ, t) = f̂(ξ) cos c
(√

s6 − r6
)k

t +
ĝ(ξ)

c
(√

s6 − r6
)k

sin c
(√

s6 − r6
)k

t (4.1.4)

By applying the inverse Fourier transform (4.1.4), we obtain the solution u(x, t) in
the convolution form of (4.1.1). Now we need to show the existence of Φt(x) and Ψt(x).

Let us consider the Fourier transform

Φ̂t(x) =
sin c

(√
s6 − r6

)k
t

c
(√

s6 − r6
)k

and Ψt(x) = cos c
(√

s6 − r6
)k

t.

They are all tempered distributions but they are not L1(R
n) the space of integrable

function. So we cannot compute the inverse Fourier transform Φt(x) and Ψt(x) directly.
Thus we compute the inverse Φt(x) and Ψt(x) by using the method of ε−approximation.

Let us defined

φ̂ε
t(ξ) = e−εc(

√
s6−r6)

k

φ̂t(ξ) = e−εc(
√

s6−r6)
k sin c

(√
s6 − r6

)k
t

c
(√

s6 − r6
)k

for ε > 0. (4.1.5)
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We see that φε
t(x) ∈ L1(R

n) and φ̂ε
t(x) → φ̂t(x) uniformly as ε → 0. So that φt(x)

will be limit in the topology of tempered distribution of φε
t(x). Now

Φε
t(x) =

1

(2π)n/2

∫
Rn

ei(ξ,x)Φ̂ε
t(ξ)dξ

=
1

(2π)n/2

∫
Rn

ei(ξ,x)e−εc(
√

s6−r6)
k sin c

(√
s6 − r6

)k
t

c
(√

s6 − r6
)k

dξ

|Φε
t(x)| ≤ 1

(2π)n/2

∫
Rn

e−εc(
√

s6−r6)
k

c
(√

s6 − r6
)k

dξ (4.1.6)

By changing to bipolar coordinates. Now, put

ξ1 = rw1, ξ2 = rw2, . . . , ξp = rwp

and ξp+1 = swp+1, ξp+2 = swp+2, . . . , ξp = swp+q, p + q = n

where w2
1 + w2

2 + · · · + w2
p = 1 and w2

p+1 + w2
p+2 + · · · + w2

p+q = 1,

|Φε
t(x)| ≤ 1

(2π)n/2

∫
Rn

e−εc(
√

s6−r6)
k

c
(√

s6 − r6
)k

rp−1sq−1drdsdΩpdΩq,

where dξ = rp−1sq−1drdsdΩpdΩq, dΩp and dΩq are the elements of surface area of the

unit sphere in R
p and R

q respectively, where Ωp =
(2π)p/2

Γ(p/2)
, Ωq =

(2π)q/2

Γ(q/2)
,

|Φε
t(x)| ≤ ΩpΩq

(2π)n/2

∫ ∞

0

∫ s

0

e−εc(
√

s6−r6)
k

c
(√

s6 − r6
)k

rp−1sq−1drds,

put r3 = s3 sin θ, 3r2dr = s3 cos θdθ and 0 ≤ θ ≤ π
2
.

|Φε
t(x)| ≤ ΩpΩq

3(2π)n/2

∫ ∞

0

∫ π/2

0

e
−εc

(√
s6−s6 sin2 θ

)k

c
(√

s6 − s6 sin2 θ
)k

(sin θ)
p−3
3 sp+q−1 cos θdθds,

=
ΩpΩq

3c(2π)n/2

∫ ∞

0

∫ π/2

0

e−εc(s3 cos θ)
k

(s3 cos θ)k
sp+q−1(sin θ)

p−3
3 cos θdθds.
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Put y = εc (s3 cos θ)
k

= εcs3k cosk θ, s3k =
y

cε cosk θ
, ds = sdy

3ky
, thus

|Φε
t(x)| ≤ ΩpΩq

9c(2π)n/2

∫ π/2

0

∫ ∞

0

e−ysn−1

y/(εc)
(sin θ)

p−3
3 cos θ

s

ky
dydθ

=
ΩpΩq

9(2π)n/2

∫ π/2

0

∫ ∞

0

e−yε

ky2

( y

cε cosk θ

)n/3k

(sin θ)
p−3
3 cos θdydθ

=
ΩpΩq

9(2π)n/2

∫ π/2

0

∫ ∞

0

e−yyn/3k−2

cn/3kkεn/3k−1
(sin θ)

p−3
3 (cos θ)

3−n
3 dydθ

=
ΩpΩq

9(2π)n/2

Γ
(

n
3k

− 1
)

kε
n
3k

−1cn/3k

∫ π/2

0

(sin θ)
p−3
3 (cos θ)

3−n
3 dθ

=
ΩpΩq

18cn/3k(2π)n/2kεn/3k−1
Γ

( n

3k
− 1

)
β

(
p

6
,
6 − n

6

)
|Φε

t(x)| ≤ ΩpΩq

18cn/3k(2π)n/2kεn/3k−1

Γ
(

n
3k

− 1
)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) .

Similarly, we defined Ψ̂ε
t(ξ) = e−εc(

√
s6−r6)

k

cos c
(√

s6 − r6
)k

t and

Ψε
t(x) =

1

(2π)n/2

∫
Rn

ei(ξ,x)Ψ̂ε
t(ξ)dξ

=
1

(2π)n/2

∫
Rn

ei(ξ,x)e−εc(
√

s6−r6)
k

cos c
(√

s6 − r6
)k

tdξ

|Ψε
t(x)| ≤ 1

(2π)n/2

∫
Rn

e−εc(
√

s6−r6)
k

dξ

=
1

(2π)n/2

∫ ∞

0

∫ s

0

e−εc(
√

s6−r6)
k

rp−1sq−1drds,

put r3 = s3 sin θ, 3r2dr = s3 cos θdθ and 0 ≤ θ ≤ π

2

|Ψε
t(x)| ≤ ΩpΩq

3(2π)n/2

∫ ∞

0

∫ π/2

0

e−εc(s3 cos θ)
k

(sin θ)
p−3
3 sp+q−1 cos θdθds

=
ΩpΩq

3(2π)n/2

∫ ∞

0

∫ π/2

0

e−εc(s3 cos θ)
k

sp+q−1(sin θ)
p−3
3 cos θdθds,

put y = εc(s3 cos θ)k, ds = s
dy

3ky
,

|Ψε
t(x)| ≤ ΩpΩq

9k(2π)n/2

∫ π/2

0

∫ ∞

0

e−y

y

( y

cε cosk θ

)n/3k

(sin θ)
p−3
3 cos θdydθ

=
ΩpΩq

9k(2π)n/2

∫ π/2

0

∫ ∞

0

e−yyn/3k−1

cn/3kεn/3k
(sin θ)

p−3
3 (cos θ)

3−n
3 dydθ

=
ΩpΩq

9(2π)n/2kcn/3kεn/3k
Γ

( n

3k

) ∫ π/2

0

(sin θ)
p−3
3 (cos θ)

3−n
3 dθ

|Ψε
t(x)| ≤ ΩpΩq

18(2π)n/2kcn/3kεn/3k

Γ
(

n
3k

)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) .
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Set

uε(x, t) = f(x) ∗ Ψε
t(x) + g(x) ∗ Φε

t(x) (4.1.7)

which ε−approximation of u(x, t) in (4.1.7) for ε → 0, uε(x, t) → u(x, t) uniformly. Now

uε(x, t) =

∫
Rn

f(r)Ψε
t(x − r)dr +

∫
Rn

g(r)Φε
t(x − r)dr

Thus

|uε(x, t)| ≤ |Ψε
t(x − r)|

∫
Rn

|f(r)|dr + |Φε
t(x − r)|

∫
Rn

|g(r)|dr

≤ ΩpΩq

18(2π)n/2kcn/3kεn/3k

Γ
(

n
3k

)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) M +

ΩpΩq

18(2π)n/2kcn/3kεn/3k−1

Γ
(

n
3k

− 1
)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) N

εn/3k|uε(x, t)| ≤ ΩpΩq

18(2π)n/2kcn/3k

Γ
(

n
3k

)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) M +

ΩpΩqε

18(2π)n/2kcn/3k

Γ
(

n
3k

− 1
)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) N

where M =
∫

Rn |f(r)|dr and N =
∫

Rn |g(r)|dr, since f and g are absolutely integrable.

lim
ε→0

εn/3k|uε(x, t)| ≤ ΩpΩq

18(2π)n/2kcn/3k

Γ
(

n
3k

)
Γ

(
p
6

)
Γ

(
6−n

6

)
Γ

(
6−q
6

) = K.

It follows that u(x, t) = O
(
ε−n/3k

)
for n 	= k as ε → 0.

In particular, if we put k = 1 and p = 0 then (4.1.1) reduces to the solution of the
equation,

∂2

∂t2
u(x, t) + c2�3u(x, t) = 0.

u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x)

where f and g are continuous and absolutely integrable for x ∈ R
n.

Which is related Triharmonic wave equation. And, if we put k = 1, n = 1 and p = 0
then (4.1.1) reduces to the solution of the one dimensional equation,

∂2

∂t2
u(x, t) − c2(

∂2

∂x2
)3u(x, t) = 0.

Thus we obtain u(x, t) = O(ε−1/3) which is a solution of such one dimensional Trihar-
monic wave equation.


