

Chapter 4

The Generalized \otimes^k operator related to Triharmonic Wave Equation

In this chapter, we study the generalized wave equation of the form

$$\frac{\partial^2}{\partial t^2}u(x, t) + c^2(\otimes)^k u(x, t) = 0$$

with the initial conditions

$$u(x, 0) = f(x), \quad \frac{\partial}{\partial t}u(x, 0) = g(x)$$

where $u(x, t) \in \mathbb{R}^n \times (0, \infty)$, \mathbb{R}^n is the n -dimensional Euclidean space, \otimes^k is the operator iterated k -times defined by

$$\otimes^k = \left[\left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} \right)^3 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^3 \right]^k$$

c is a positive constant, k is a nonnegative integer, f and g are continuous and absolutely integrable functions. We obtain $u(x, t)$ as a solution for such equation. Moreover, by ϵ -approximation we also obtain the asymptotic solution $u(x, t) = O(\epsilon^{-n/3k})$. In particular, if we put $k = 1$ and $p = 0$, the $u(x, t)$ reduces to the solution of the wave equation

$$\frac{\partial^2}{\partial t^2}u(x, t) - c^2(\Delta)^3 u(x, t) = 0.$$

which is related to the triharmonic wave equation.

4.1 Main Results

Theorem 4.1.1. Given the equation

$$\frac{\partial^2}{\partial t^2}u(x, t) + c^2(\otimes)^k u(x, t) = 0 \quad (4.1.1)$$

with initial conditions

$$u(x, 0) = f(x) \quad \text{and} \quad \frac{\partial}{\partial t}u(x, 0) = g(x) \quad (4.1.2)$$

where $u(x, t) \in \mathbb{R}^n \times (0, \infty)$, \otimes^k is the diamond operator iterated k -times, c is a positive constant, k is a nonnegative integer, f and g are continuous functions and absolutely integrable for $x \in \mathbb{R}^n$. Then (4.1.1) has a unique solution

$$u(x, t) = f(x) * \Psi_t(x) + g(x) * \Phi_t(x) \quad (4.1.3)$$

and satisfy the condition (4.1.2) where Φ_t is an inverse Fourier transform of

$$\widehat{\Phi}_t(\xi) = \frac{\sin c(\sqrt{s^6 - r^6})^k t}{c(\sqrt{s^6 - r^6})^k}$$

and Ψ_t is an inverse Fourier transform of

$$\widehat{\Psi}_t(\xi) = \cos c(\sqrt{s^6 - r^6})^k t = \frac{\partial}{\partial t} \widehat{\Phi}(\xi)$$

where $r^2 = \xi_1^2 + \xi_2^2 + \cdots + \xi_p^2$ and $s^2 = \xi_{p+1}^2 + \xi_{p+2}^2 + \cdots + \xi_{p+q}^2$.

Proof. By applying the Fourier transform defined by (2.2.16) to (4.1.1) and obtain

$$\frac{\partial^2}{\partial t^2} \widehat{u}(\xi, t) + c^2 \left(- \left(\sum_{i=1}^p \xi_i^2 \right)^3 + \left(\sum_{j=p+1}^{p+q} \xi_j^2 \right)^3 \right)^k \widehat{u}(\xi, t) = 0$$

and let $s > r$. Thus becomes

$$\begin{aligned} \frac{\partial^2}{\partial t^2} \widehat{u}(\xi, t) + c^2 (s^6 - r^6)^k \widehat{u}(\xi, t) &= 0 \\ \widehat{u}(\xi, t) &= A(\xi) \cos c(\sqrt{s^6 - r^6})^k t + B(\xi) \sin c(\sqrt{s^6 - r^6})^k t. \end{aligned}$$

By (4.1.2), $\widehat{u}(\xi, 0) = A(\xi) = \widehat{f}(\xi)$

$$\frac{\partial \widehat{u}(\xi, t)}{\partial t} = -c(\sqrt{s^6 - r^6})^k A(\xi) \sin c(\sqrt{s^6 - r^6})^k t + c(\sqrt{s^6 - r^6})^k B(\xi) \cos c(\sqrt{s^6 - r^6})^k t.$$

$$\frac{\partial \widehat{u}(\xi, 0)}{\partial t} = 0 + c(\sqrt{s^6 - r^6})^k B(\xi) = \widehat{g}(\xi)$$

$$B(\xi) = \frac{\widehat{g}(\xi)}{c(\sqrt{s^6 - r^6})^k}$$

$$\widehat{u}(\xi, t) = \widehat{f}(\xi) \cos c(\sqrt{s^6 - r^6})^k t + \frac{\widehat{g}(\xi)}{c(\sqrt{s^6 - r^6})^k} \sin c(\sqrt{s^6 - r^6})^k t \quad (4.1.4)$$

By applying the inverse Fourier transform (4.1.4), we obtain the solution $u(x, t)$ in the convolution form of (4.1.1). Now we need to show the existence of $\Phi_t(x)$ and $\Psi_t(x)$. Let us consider the Fourier transform

$$\widehat{\Phi}_t(x) = \frac{\sin c(\sqrt{s^6 - r^6})^k t}{c(\sqrt{s^6 - r^6})^k} \quad \text{and} \quad \Psi_t(x) = \cos c(\sqrt{s^6 - r^6})^k t.$$

They are all tempered distributions but they are not $L_1(\mathbb{R}^n)$ the space of integrable function. So we cannot compute the inverse Fourier transform $\Phi_t(x)$ and $\Psi_t(x)$ directly. Thus we compute the inverse $\Phi_t(x)$ and $\Psi_t(x)$ by using the method of ϵ -approximation.

Let us defined

$$\widehat{\phi}_t^\epsilon(\xi) = e^{-\epsilon c(\sqrt{s^6 - r^6})^k} \widehat{\phi}_t(\xi) = e^{-\epsilon c(\sqrt{s^6 - r^6})^k} \frac{\sin c(\sqrt{s^6 - r^6})^k t}{c(\sqrt{s^6 - r^6})^k} \quad \text{for } \epsilon > 0. \quad (4.1.5)$$

We see that $\phi_t^\epsilon(x) \in L_1(\mathbb{R}^n)$ and $\widehat{\phi}_t^\epsilon(x) \rightarrow \widehat{\phi}_t(x)$ uniformly as $\epsilon \rightarrow 0$. So that $\phi_t(x)$ will be limit in the topology of tempered distribution of $\phi_t^\epsilon(x)$. Now

$$\begin{aligned}\Phi_t^\epsilon(x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{\Phi}_t^\epsilon(\xi) d\xi \\ &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} e^{-\epsilon c(\sqrt{s^6 - r^6})^k} \frac{\sin c(\sqrt{s^6 - r^6})^k t}{c(\sqrt{s^6 - r^6})^k} d\xi \\ |\Phi_t^\epsilon(x)| &\leq \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \frac{e^{-\epsilon c(\sqrt{s^6 - r^6})^k}}{c(\sqrt{s^6 - r^6})^k} d\xi\end{aligned}\tag{4.1.6}$$

By changing to bipolar coordinates. Now, put

$$\xi_1 = rw_1, \xi_2 = rw_2, \dots, \xi_p = rw_p$$

and $\xi_{p+1} = sw_{p+1}, \xi_{p+2} = sw_{p+2}, \dots, \xi_p = sw_{p+q}, p+q = n$

where $w_1^2 + w_2^2 + \dots + w_p^2 = 1$ and $w_{p+1}^2 + w_{p+2}^2 + \dots + w_{p+q}^2 = 1$,

$$|\Phi_t^\epsilon(x)| \leq \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \frac{e^{-\epsilon c(\sqrt{s^6 - r^6})^k}}{c(\sqrt{s^6 - r^6})^k} r^{p-1} s^{q-1} dr ds d\Omega_p d\Omega_q,$$

where $d\xi = r^{p-1} s^{q-1} dr ds d\Omega_p d\Omega_q$, $d\Omega_p$ and $d\Omega_q$ are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q respectively, where $\Omega_p = \frac{(2\pi)^{p/2}}{\Gamma(p/2)}$, $\Omega_q = \frac{(2\pi)^{q/2}}{\Gamma(q/2)}$,

$$|\Phi_t^\epsilon(x)| \leq \frac{\Omega_p \Omega_q}{(2\pi)^{n/2}} \int_0^\infty \int_0^s \frac{e^{-\epsilon c(\sqrt{s^6 - r^6})^k}}{c(\sqrt{s^6 - r^6})^k} r^{p-1} s^{q-1} dr ds,$$

put $r^3 = s^3 \sin \theta$, $3r^2 dr = s^3 \cos \theta d\theta$ and $0 \leq \theta \leq \frac{\pi}{2}$.

$$\begin{aligned}|\Phi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{3(2\pi)^{n/2}} \int_0^\infty \int_0^{\pi/2} \frac{e^{-\epsilon c(\sqrt{s^6 - s^6 \sin^2 \theta})^k}}{c(\sqrt{s^6 - s^6 \sin^2 \theta})^k} (\sin \theta)^{\frac{p-3}{3}} s^{p+q-1} \cos \theta d\theta ds, \\ &= \frac{\Omega_p \Omega_q}{3c(2\pi)^{n/2}} \int_0^\infty \int_0^{\pi/2} \frac{e^{-\epsilon c(s^3 \cos \theta)^k}}{(s^3 \cos \theta)^k} s^{p+q-1} (\sin \theta)^{\frac{p-3}{3}} \cos \theta d\theta ds.\end{aligned}$$

Put $y = \epsilon c (s^3 \cos \theta)^k = \epsilon c s^{3k} \cos^k \theta$, $s^{3k} = \frac{y}{c \epsilon \cos^k \theta}$, $ds = \frac{dy}{3ky}$, thus

$$\begin{aligned}
 |\Phi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{9c(2\pi)^{n/2}} \int_0^{\pi/2} \int_0^\infty \frac{e^{-y} s^{n-1}}{y/(\epsilon c)} (\sin \theta)^{\frac{p-3}{3}} \cos \theta \frac{s}{ky} dy d\theta \\
 &= \frac{\Omega_p \Omega_q}{9(2\pi)^{n/2}} \int_0^{\pi/2} \int_0^\infty \frac{e^{-y} \epsilon}{ky^2} \left(\frac{y}{c \epsilon \cos^k \theta} \right)^{n/3k} (\sin \theta)^{\frac{p-3}{3}} \cos \theta dy d\theta \\
 &= \frac{\Omega_p \Omega_q}{9(2\pi)^{n/2}} \int_0^{\pi/2} \int_0^\infty \frac{e^{-y} y^{n/3k-2}}{c^{n/3k} k \epsilon^{n/3k-1}} (\sin \theta)^{\frac{p-3}{3}} (\cos \theta)^{\frac{3-n}{3}} dy d\theta \\
 &= \frac{\Omega_p \Omega_q}{9(2\pi)^{n/2}} \frac{\Gamma(\frac{n}{3k} - 1)}{k \epsilon^{\frac{n}{3k}-1} c^{n/3k}} \int_0^{\pi/2} (\sin \theta)^{\frac{p-3}{3}} (\cos \theta)^{\frac{3-n}{3}} d\theta \\
 &= \frac{\Omega_p \Omega_q}{18c^{n/3k} (2\pi)^{n/2} k \epsilon^{n/3k-1}} \Gamma\left(\frac{n}{3k} - 1\right) \beta\left(\frac{p}{6}, \frac{6-n}{6}\right) \\
 |\Phi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{18c^{n/3k} (2\pi)^{n/2} k \epsilon^{n/3k-1}} \frac{\Gamma(\frac{n}{3k} - 1) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})}.
 \end{aligned}$$

Similarly, we defined $\widehat{\Psi}_t^\epsilon(\xi) = e^{-\epsilon c (\sqrt{s^6 - r^6})^k} \cos c (\sqrt{s^6 - r^6})^k t$ and

$$\begin{aligned}
 \Psi_t^\epsilon(x) &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} \widehat{\Psi}_t^\epsilon(\xi) d\xi \\
 &= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi, x)} e^{-\epsilon c (\sqrt{s^6 - r^6})^k} \cos c (\sqrt{s^6 - r^6})^k t d\xi \\
 |\Psi_t^\epsilon(x)| &\leq \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-\epsilon c (\sqrt{s^6 - r^6})^k} d\xi \\
 &= \frac{1}{(2\pi)^{n/2}} \int_0^\infty \int_0^s e^{-\epsilon c (\sqrt{s^6 - r^6})^k} r^{p-1} s^{q-1} dr ds,
 \end{aligned}$$

put $r^3 = s^3 \sin \theta$, $3r^2 dr = s^3 \cos \theta d\theta$ and $0 \leq \theta \leq \frac{\pi}{2}$

$$\begin{aligned}
 |\Psi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{3(2\pi)^{n/2}} \int_0^\infty \int_0^{\pi/2} e^{-\epsilon c (s^3 \cos \theta)^k} (\sin \theta)^{\frac{p-3}{3}} s^{p+q-1} \cos \theta d\theta ds \\
 &= \frac{\Omega_p \Omega_q}{3(2\pi)^{n/2}} \int_0^\infty \int_0^{\pi/2} e^{-\epsilon c (s^3 \cos \theta)^k} s^{p+q-1} (\sin \theta)^{\frac{p-3}{3}} \cos \theta d\theta ds,
 \end{aligned}$$

put $y = \epsilon c (s^3 \cos \theta)^k$, $ds = s \frac{dy}{3ky}$,

$$\begin{aligned}
 |\Psi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{9k(2\pi)^{n/2}} \int_0^{\pi/2} \int_0^\infty \frac{e^{-y}}{y} \left(\frac{y}{c \epsilon \cos^k \theta} \right)^{n/3k} (\sin \theta)^{\frac{p-3}{3}} \cos \theta dy d\theta \\
 &= \frac{\Omega_p \Omega_q}{9k(2\pi)^{n/2}} \int_0^{\pi/2} \int_0^\infty \frac{e^{-y} y^{n/3k-1}}{c^{n/3k} \epsilon^{n/3k}} (\sin \theta)^{\frac{p-3}{3}} (\cos \theta)^{\frac{3-n}{3}} dy d\theta \\
 &= \frac{\Omega_p \Omega_q}{9(2\pi)^{n/2} k c^{n/3k} \epsilon^{n/3k}} \Gamma\left(\frac{n}{3k}\right) \int_0^{\pi/2} (\sin \theta)^{\frac{p-3}{3}} (\cos \theta)^{\frac{3-n}{3}} d\theta \\
 |\Psi_t^\epsilon(x)| &\leq \frac{\Omega_p \Omega_q}{18(2\pi)^{n/2} k c^{n/3k} \epsilon^{n/3k}} \frac{\Gamma(\frac{n}{3k}) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})}.
 \end{aligned}$$

Set

$$u^\epsilon(x, t) = f(x) * \Psi_t^\epsilon(x) + g(x) * \Phi_t^\epsilon(x) \quad (4.1.7)$$

which ϵ -approximation of $u(x, t)$ in (4.1.7) for $\epsilon \rightarrow 0$, $u^\epsilon(x, t) \rightarrow u(x, t)$ uniformly. Now

$$u^\epsilon(x, t) = \int_{\mathbb{R}^n} f(r) \Psi_t^\epsilon(x - r) dr + \int_{\mathbb{R}^n} g(r) \Phi_t^\epsilon(x - r) dr$$

Thus

$$\begin{aligned} |u^\epsilon(x, t)| &\leq |\Psi_t^\epsilon(x - r)| \int_{\mathbb{R}^n} |f(r)| dr + |\Phi_t^\epsilon(x - r)| \int_{\mathbb{R}^n} |g(r)| dr \\ &\leq \frac{\Omega_p \Omega_q}{18(2\pi)^{n/2} k c^{n/3k} \epsilon^{n/3k}} \frac{\Gamma(\frac{n}{3k}) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})} M + \\ &\quad \frac{\Omega_p \Omega_q}{18(2\pi)^{n/2} k c^{n/3k} \epsilon^{n/3k-1}} \frac{\Gamma(\frac{n}{3k} - 1) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})} N \\ \epsilon^{n/3k} |u^\epsilon(x, t)| &\leq \frac{\Omega_p \Omega_q}{18(2\pi)^{n/2} k c^{n/3k}} \frac{\Gamma(\frac{n}{3k}) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})} M + \\ &\quad \frac{\Omega_p \Omega_q \epsilon}{18(2\pi)^{n/2} k c^{n/3k}} \frac{\Gamma(\frac{n}{3k} - 1) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})} N \end{aligned}$$

where $M = \int_{\mathbb{R}^n} |f(r)| dr$ and $N = \int_{\mathbb{R}^n} |g(r)| dr$, since f and g are absolutely integrable.

$$\lim_{\epsilon \rightarrow 0} \epsilon^{n/3k} |u^\epsilon(x, t)| \leq \frac{\Omega_p \Omega_q}{18(2\pi)^{n/2} k c^{n/3k}} \frac{\Gamma(\frac{n}{3k}) \Gamma(\frac{p}{6}) \Gamma(\frac{6-n}{6})}{\Gamma(\frac{6-q}{6})} = K.$$

It follows that $u(x, t) = O(\epsilon^{-n/3k})$ for $n \neq k$ as $\epsilon \rightarrow 0$.

In particular, if we put $k = 1$ and $p = 0$ then (4.1.1) reduces to the solution of the equation,

$$\frac{\partial^2}{\partial t^2} u(x, t) + c^2 \Delta^3 u(x, t) = 0.$$

$$u(x, 0) = f(x) \quad \text{and} \quad \frac{\partial}{\partial t} u(x, 0) = g(x)$$

where f and g are continuous and absolutely integrable for $x \in \mathbb{R}^n$.

Which is related Triharmonic wave equation. And, if we put $k = 1, n = 1$ and $p = 0$ then (4.1.1) reduces to the solution of the one dimensional equation,

$$\frac{\partial^2}{\partial t^2} u(x, t) - c^2 \left(\frac{\partial^2}{\partial x^2} \right)^3 u(x, t) = 0.$$

Thus we obtain $u(x, t) = O(\epsilon^{-1/3})$ which is a solution of such one dimensional Triharmonic wave equation.