Chapter 4
The Generalized ®"* operator related to
Triharmonic Wave Equation

In this chapter, we study the generalized wave equation of the form

2

@u(x, t) 4+ (@) u(z,t) =0

with the initial conditions

0
u(r.0) = f(2), u(z,0) = gfa)
where u(z,t) € R" x (0, 00), R" is the n-dimensional Euclidean space, ®" is the operator
iterated k—times defined by
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c is a positive constant, k is a nonnegative integer, f and g are continuous and absolutely
integrable functions. We obtain u(z,t) as a solution for such equation. Moreover,
by e-approximation we also obtain the asymptotic solution u(z,t) = O(e™™/3F). In
particularly, if we put £ = 1 and p = 0, the u(z,t) reduces to the solution of the wave
equation ,

ot?
which is related to the triharmonic wave equation.

u(z,t) — A(A)u(z,t) = 0.

4.1 Main Results

Theorem 4.1.1. Given the equation
0 P
@u(x,t) +c(®) u(z,t) =0 (4.1.1)

with initial conditions

u(z,0) = f(z) and %u(m,()) = g(z) (4.1.2)

where u(z,t) € R"x (0, 00), ®" is the diamond operator iterated k—times, c is a positive
constant, k is a nonnegative integer, f and g are continuous functions and absolutely
integrable for x € R™. Then (4.1.1) has a unique solution

w(z,t) = fx) * U (z) + g(x) * Py(x) (4.1.3)
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and satisfy the condition (4.1.2) where ®, is an inverse Fourier transform of
c/IS ©) sinc (v/s% — TG)kt
t =
¢ (Vs — 7“6)k

and W, is an inverse Fourier transform of

T, (€) = cose ( 56 — r6>kt = %C/ﬁ(f)

where 1> = 6§ + &+ -+ & and * =&+ & H+ -+,
Proof. By applying the Fourier transform defined by (2.2.16) to (4.1.1) and obtain
ag 3 p+q F
e (= (3e) + (zg) e =
=p+1

and let s > r. Thus becomes
2

(e 1) + A (8 =) e 1) =

u(é,t) = A(¢) cosc( s6 — r6>kt+ B(¢)sinc (\/W)kt.

k

(&, 1) =—c ( s6 — T6>k A(§)sine (\/ﬂ)kt—kc (\/ﬂ)k B(&) cosc ( s6 — 7“6> t.

aagt, D 0 te(vsT=m)" BO)=56¢)
3le)

c( 36—7‘6)k

B(¢) =

u(é,t) = A(f)cosc(Vm)kt—i—&ksinc(m)kt (4.1.4)

(Ve =7)

By applying the inverse Fourier transform (4.1.4), we obtain the solution u(z,t) in
the convolution form of (4.1.1). Now we need to show the existence of ®,(z) and V().
Let us consider the Fourier transform

&)\( ) Sil’lC(\/SG—’/‘G)kt
t\r) =
c (\/ 56 — 7“6) "
They are all tempered distributions but they are not L;(R™) the space of integrable
function. So we cannot compute the inverse Fourier transform ®,(z) and W,(x) directly.

Thus we compute the inverse ®;(z) and W, (x) by using the method of e—approximation.
Let us defined

k
and VU, (z) = cosc <\/ 56 — r6> t.

Te _ —ecmk/\ . _ecmksinc(\/sﬁ—rﬁ)kt
Pi(§) =e ( >¢t(§)—€ ( ) o 36—r6)k for €>0. (4.1.5)
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We see that ¢§(z) € L1(R") and qz?g(x) — gzﬁ\t(x) uniformly as € — 0. So that ¢;(z)
will be limit in the topology of tempered distribution of ¢$(z). Now

B() = s | ST

— 1 / ez’(;x)e—ec(m)k sin ¢ (m)k "
n v (m)k

dg

| D5 ()] =dg (4.1.6)

By changing to bipolar coordinates. Now, put
51 = rw1,£2 == TU)Q,...,fp :rwp

and ép—i—l =2 5wp+17 £p+2 T Swp+27 SR 7£ = 8wp+q7 p + qg=mn

where w? 4+ w3 + - - +w —1andwp+1—i—w+2+ —i—wpﬂ 1,

P19 drdsd§,dS,,

6 1 6%c(\/m)’“
’@“”S@Wﬂ/c<§_wf

where d¢ = rP71s1 drdsdQ,dQ),, dQ, and dS, are the elements of surface area of the

! \ ) (27)P/? (2m)9/?
unit sphere in R?” and RY respectively, where (2, = , = ,
"oT(p/2)) " T(e/2)
—ec \/56—r6
| D¢ ( /2 / / Tp_lsq_ldrds,
)" 0 c — r6

put r® = s°sin 6, 3r’dr = s®cos0df and 0 < 0 < 5.

k
—ec 56— 6 sin? 0)

|03 (2)] < 3(2n n/2/ / = 29),9(81110) 5 sPH1L cos OdAds,
Vs6 — s6sin20

/2 *ec s CosG
= PHa=1(sin 6dfd
3o2n n/2/ / (cosd) —5 (sinf)"s T cos S.
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k Y
Put y = ec(s?cos )" = ecs®* cost 0, s3F = —— ds = ;Zy, thus
ce cosk 0 Y

¢ < : s
[@i(z)] < 9c(2r n/2/ / y/ (<) sm@) 5 cost dydb
s’ e y€ n/3k
- n/2/ / cecoske) (sin0)"% cos Odydo

/2 n/3k 2
Z 9(2m "/2/ / c”/3kken/3k 1<Sm9) (COSQ) E dydo

0,9, L(£-1)

/2
- 9<27T)n/2 ket~ 1cn/3k/0 (Sln@) (COSQ) Rl

2,8 n p 6—n
= T (_ . 1) L
186n/3k(27r)n/2k6n/3k—1 3k B (6 6 )
@5(z)| < 242, L (g~ 105
RN T LT R =

ey A" k
Similarly, we defined U§(§) = e (V") " cos e < s6 — 7’6) t and

€ 1 1(£,2)\Tre
Vi(z) = (272 /Rne(5 g (&) d
1 , k k
T (2 /2/ (€)7o VoT=rT) cosc( sﬁ—rﬁ) tde¢
)% Jrn
€ 1 fec 367r
W (z)] < Gy .. Cde

1 = 766 \/s6—r6 -1 g—1
N 27r)n/2/0 / )rp s drds,

put r® = s%sin 6, 3r2dr = s3cosfdf and 0 <6 < g

|\I’§<I)| S 3 2 /2/ / —ec s cose) (sm@) 3 Sp—i—q 1C089d9d$
/n‘ n
4 32 n/Q/ / eee(s ? cos0)" sPHa L (sin 0) 5 cos&d&ds
dy
ty= 3cosf)F, ds =
put y = ec(s® cos)*, 83k 7

ey n/3k
i <
|\I/t<m)| — 9/{3 27T n/z/ / CECOSk9> (Sln@) 3 COSdede
™/2 yyyn/3k—1 B
- 9k( 27T "/2/ / Cn/3k6n/3k Sme) 5 (COSQ) e dydf

— 0,8, n T2, o
N 9(27T)n/2kcn/3k6n/3kr <3_k:)/0 (sin@)™ s (cos) = db

e 2,9, TG ()T (5%
|\I/t(l’)| < 18(2W)n/2/€c”/3ke”/3k F(%) .




38

Set
W (w,1) = F(@) % UE(@) + g(2) % D (a) (4.1.7)

which e—approximation of u(z,t) in (4.1.7) for € — 0, u(x,t) — u(z,t) uniformly. Now

u(z,t) = . f(r)¥s(x —r)dr +/ g(r)®5(z — r)dr

n

Thus

[z, l" <. [hile~ 7°>!/R |F()ldr +1®(x = r)\/R lg(r)|dr
Yy D(E) ()T

18(27T)n/2kcn/3k€n/3k T (%q)

0,8) r (??_k — 1) r
18(27‘-)11/2]{6”/3":6”/3]’9*1 I (6

L 90, TE)T
= 18(2m)n/2kcn/3k I (%9)

¢  T(H-DTET (5
18(2m)n/2kcn/3k I (%9)

€2 u(a, t)|

| 00 T (5)P(8) L%
n/3k|, € pTq 35 6 E
ll_r)%ﬁ lu(z,t)] < 18<2ﬂ.>n/2kcn/3k I (%)

It follows that u(z,t) = O (¢ "/**) for n # k as € — 0.
In particular, if we put £ = 1 and p = 0 then (4.1.1) reduces to the solution of the

equation,
2

@u(m, t) + AENu(z,t) = 0.

u(z,0) = f(z) and %u(m,O) = g(x)

where f and g are continuous and absolutely integrable for z € R™.
Which is related Triharmonic wave equation. And, if we put k = 1,n =1 and p =10
then (4.1.1) reduces to the solution of the one dimensional equation,

0? 0?
—u(z,t) — 02(@

% Yu(x,t) = 0.

Thus we obtain u(z,t) = O(e~/?) which is a solution of such one dimensional Trihar-
monic wave equation.



