

Chapter 5

On the Green Function of the Operator $(\otimes + m^6)^k$ Related to the Diamond Operator

In this chapter, we study the Green function of the operator $(\otimes + m^6)^k$ which is iterated k -times and m is positive real number. At first we find the Green function of the operator $(\otimes + m^6)^k$ and after that we apply such a Green function to find the solution of the equation $(\otimes + m^6)^k G(x) = f(x)$ where f is a generalized function and $G(x)$ is an unknown for $x \in \mathbb{R}^n$.

5.1 Main Results

Theorem 5.1.1. *Given the equation*

$$(\otimes + m^6)^k G(x) = \delta(x) \quad (5.1.1)$$

then

$$G(x) = (W_{6k}^H(u, m) * W_{2k}^e(v, m) * H^{*k}(x)) * (S^{*k}(x))^{*-1} \quad (5.1.2)$$

is a Green function for the operator $(\otimes + m^6)^k$ iterated k -times where \otimes is defined by (1.0.28), m is a nonnegative real number and

$$S(x) = \frac{3}{4}\delta - \frac{3}{4}m^2 (W_4^H(u, m) * W_2^e(v, m) * (R_{-2}^e(v) + R_{-4}^H(u))) * H(x) + \frac{1}{4}W_2^e(v, m) * H(x)$$

$S^{*k}(x)$ denotes the convolution of S itself k -times, $(S^{*k}(x))^{*-1}$ denotes the inverse of $S^{*k}(x)$ in the convolution algebra. $H(x)$ is defined by (2.3.32) and for $k = 1$. Moreover $G(x)$ is a tempered distribution.

Proof. We have,

$$\begin{aligned}
 (\otimes + m^6)^k &= \left(\frac{3}{4} \diamond \triangle + \frac{1}{4} \square^3 + m^6 \right)^k \\
 &= \left(\frac{3}{4} (\diamond \triangle + m^6) + \frac{1}{4} (\square^3 + m^6) \right)^k \\
 &= \left(\frac{3}{4} ((\diamond + m^4) (\triangle + m^2) - m^4 \triangle - m^2 \diamond) + \frac{1}{4} (\square^3 + (m^2)^3) \right)^k \\
 &= \left(\frac{3}{4} ((\diamond + m^4) (\triangle + m^2) - m^4 \triangle - m^2 \diamond) + \frac{1}{4} (\square + m^2) (\square^2 - \square m + m^2) \right)^k \\
 &= \left(\frac{3}{4} (\diamond + m^4) (\triangle + m^2) - \frac{3}{4} m^2 (\triangle + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^k \quad (5.1.3)
 \end{aligned}$$

where $\square + m^2$ is the ultra-hyperbolic Klein-Gordon operator and $\Delta + m^2$ is the Helmholtz operator and are defined by

$$\square + m^2 = \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} + m^2 \quad (5.1.4)$$

and

$$\Delta + m^2 = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + m^2 \quad (5.1.5)$$

Thus

$$\begin{aligned} (\otimes + m^6)^k G(x) &= \left(\frac{3}{4} \diamond \Delta + \frac{1}{4} \square^3 + m^6 \right)^k G(x) = \delta(x) \\ &= \left(\frac{3}{4} \diamond \Delta + \frac{3}{4} m^6 + \frac{1}{4} \square^3 + \frac{1}{4} m^6 \right)^k G(x) = \delta(x) \end{aligned}$$

or we can write

$$\begin{aligned} &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^k G(x) = \delta(x). \\ &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right) \cdot \\ &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) = \delta(x) \end{aligned}$$

by Lemma 2.2.9 with $k = 1$.

Convolving both sides of the above equation by $W_6^H(u, m) * W_2^e(v, m)$,

$$\begin{aligned} &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) (W_6^H(u, m) * W_2^e(v, m)) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) \cdot \right. \\ &\quad \left. (W_6^H(u, m) * W_2^e(v, m)) + \frac{1}{4} (\square + m^2)^3 (W_6^H(u, m) * W_2^e(v, m)) \right) \cdot \\ &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) \\ &= \delta(x) * W_6^H(u, m) * W_2^e(v, m) \\ &\frac{3}{4} (\diamond + m^4) W_6^H(u, m) * (\Delta + m^2) W_2^e(v, m) - \frac{3}{4} m^2 \left(\Delta W_4^H(u, m) * W_2^e(v, m) \right. \\ &\quad \left. + \square W_4^H(u, m) * W_2^e(v, m) \right) * (\square + m^2) W_2^H(u, m) \\ &+ \frac{1}{4} \left((\square + m^2) W_2^H(u, m) * (\square + m^2) W_2^H(u, m) * (\square + m^2) W_2^H(u, m) \right) * W_2^e(v, m) \\ &\left(\frac{3}{4} (\diamond + m^4) (\Delta + m^2) - \frac{3}{4} m^2 (\Delta + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) \\ &= W_6^H(u, m) * W_2^e(v, m) \quad (5.1.6) \end{aligned}$$

Since by (2.3.9) we have $(\square + m^2) W_2^H(u, m) = \delta$ and by (2.3.10), $(\triangle + m^2) W_2^e(v, m) = \delta$ for $k = 1$.

Now, by (2.2.14)

$$W_4^H(u, m) = \sum_{r=0}^{\infty} \frac{(-1)^r \Gamma(1+r)}{r! \Gamma(1)} (m^2)^r R_{4+2r}^H(u).$$

Thus,

$$\square W_4^H(u, m) = \sum_{r=0}^{\infty} \frac{(-1)^r \Gamma(1+r)}{r! \Gamma(1)} (m^2)^r \square R_{4+2r}^H(u).$$

By Trione (1988) and Telles (1995) we have

$$\square R_{4+2r}^H(u) = R_{4+2r-4}^H(u) = R_{4+2r}^H(u) * R_{-4}^H(u)$$

Similarly, by (2.3.11),

$$\triangle W_2^e(v, m) = \sum_{r=0}^{\infty} \frac{(-1)^r \Gamma(1+r)}{r! \Gamma(1)} (m^2)^r 2(-1)^{k+r} \triangle R_{2+2r}^e(v)$$

we have

$$\triangle R_{2+2r}^e(v) = R_{2+2r-2}^e(v) = R_{2+2r}^e(v) * R_{-2}^e(v).$$

So equation (5.1.6) becomes

$$\begin{aligned} & \left(\frac{3}{4} (\diamond + m^4) * \delta(x) - \frac{3}{4} m^2 \left(W_4^H(u, m) * W_2^e(v, m) * \left(R_{-2}^e(v) + R_{-4}^e(v) \right) * \delta(x) \right. \right. \\ & \left. \left. + \frac{1}{4} * \delta(x) * \delta(x) * \delta(x) * W_2^e(v, m) \right) \left(\frac{3}{4} (\diamond + m^4) (\triangle + m^2) - \frac{3}{4} m^2 (\triangle + \square) (\square + m^2) \right. \\ & \left. \left. + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) = W_6^H(u, m) * W_2^e(v, m) \right) \\ & \left(\frac{3}{4} (\diamond + m^4) - \frac{3}{4} m^2 \left(W_4^H(u, m) * W_2^e(v, m) * \left(R_{-2}^e(v) + R_{-4}^e(v) \right) \right. \right. \\ & \left. \left. + \frac{1}{4} W_2^e(v, m) \right) \left(\frac{3}{4} (\diamond + m^4) (\triangle + m^2) - \frac{3}{4} m^2 (\triangle + \square) (\square + m^2) \right. \\ & \left. \left. + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) = W_6^H(u, m) * W_2^e(v, m) \right) \end{aligned} \quad (5.1.7)$$

Convolving both sides of (5.1.7) by $H(x)$ for $k = 1$ where $H(x)$ is defined by (2.3.32)

$$\begin{aligned} & \left(\frac{3}{4} (\diamond + m^4) H(x) * -\frac{3}{4} m^2 \left(W_4^H(u, m) * W_2^e(v, m) * \left(R_{-2}^e(v) + R_{-4}^e(v) \right) * \right. \right. \\ & \left. \left. W_2^e(v, m) * H(x) + \frac{1}{4} W_2^e(v, m) * H(x) \right) \left(\frac{3}{4} (\diamond + m^4) (\triangle + m^2) - \frac{3}{4} m^2 (\triangle + \square) \cdot \right. \right. \\ & \left. \left. (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) = W_6^H(u, m) * W_2^e(v, m) * H(x). \right) \end{aligned} \quad (5.1.8)$$

By Lemma 2.3.12 and by (5.1.8) we write,

$$S(x) * \left(\frac{3}{4} (\diamondsuit + m^4) (\triangle + m^2) - \frac{3}{4} m^2 (\triangle + \square) (\square + m^2) + \frac{1}{4} (\square + m^2)^3 \right)^{k-1} G(x) = W_6^H(u, m) * W_2^e(v, m) * H(x).$$

Keeping on convolving both sides of the above equation by $W_6^H(u, m) * W_2^e(v, m) * H(x)$ up to $k-1$ times, we obtain

$$S^{*k}(x) * G(x) = (W_6^H(u, m) * W_2^e(v, m) * H(x))^{*k}, \quad (5.1.9)$$

the symbol $*k$ denotes the convolution of itself k -times.

By Telles (1995-1996), we have

$$(W_6^H(u, m) * W_2^e(v, m))^{*k} = W_{6k}^H(u, m) * W_{2k}^e(v, m).$$

Thus,

$$S^{*k}(x) * G(x) = W_{6k}^H(u, m) * W_{2k}^e(v, m) * H^{*k}(x).$$

Now, consider the function $S^{*k}(x)$, since $W_6^H(u, m) * W_2^e(v, m)$ by Lemma ?? and also $\delta(x)$ is a tempered distribution. By Kananthai (1997), Lemma 2.3.12 $R_{-2}^e(v) + R_{-4}^H(u)$ is a tempered distribution with compact support. Thus $S(x)$ defined by (5.1.2) is a tempered distribution and by Lemma ?? again, we obtain $S^{*k}(x)$ is a tempered distribution.

Now, $W_{6k}^H(u, m) * W_{2k}^e(v, m) \in \mathcal{S}'$, the space of tempered distribution. Choose $\mathcal{S}' \subset \mathcal{D}'_{\mathcal{R}}$ where $\mathcal{D}'_{\mathcal{R}}$ is the right-side distribution which is a subspace of \mathcal{D}' of distribution.

Thus $W_{6k}^H(u, m) * W_{2k}^e(v, m) \in \mathcal{D}'_{\mathcal{R}}$. It follows that $W_{6k}^H(u, m) * W_{2k}^e(v, m)$ is an element of convolution algebra, since $\mathcal{D}'_{\mathcal{R}}$ is a convolution algebra. Hence, by Zemanian (1965, pp.150-151), the equation (5.1.8) has a unique solution

$$G(x) = (W_{6k}^H(u, m) * W_{2k}^e(v, m) * H^{*k}(x)) * (S^{*k}(x))^{*-1}$$

where $(S^{*k}(x))^{*-1}$ is an inverse of S^{*k} in the convolution algebra, $G(x)$ is called the Green function of the operator $(\otimes + m^6)^k$.

Since $W_{6k}^H(u, m) * W_{2k}^e(v, m) * H^{*k}(x)$ and $(S^{*k}(x))^{*-1}$ are tempered distribution, then by Donoghue [see 5, p.152] $(W_{6k}^H(u, m) * W_{2k}^e(v, m) * H^{*k}(x)) * (S^{*k}(x))^{*-1}$ is tempered distribution, It follows that $G(x)$ is a tempered distribution.

Theorem 5.1.2. (*An application of Green function*)

Given the equation

$$(\otimes + m^6)^k K(x) = f(x) \quad (5.1.10)$$

where $f(x)$ is a generalized function, $K(x)$ is an unknown function and $x \in \mathbb{R}^n$. Then

$$K(x) = G(x) * f(x)$$

is a unique solution of the equation (5.1.10) where $G(x)$ is a Green function for $(\otimes + m^6)^k$.

Proof. By convolving both sides of (5.1.10) by $G(x)$ where $G(x)$ is a Green function for $(\otimes + m^6)^k$ in theorem 3.1, we have

$$G(x) * (\otimes + m^6)^k K(x) = G(x) * f(x)$$

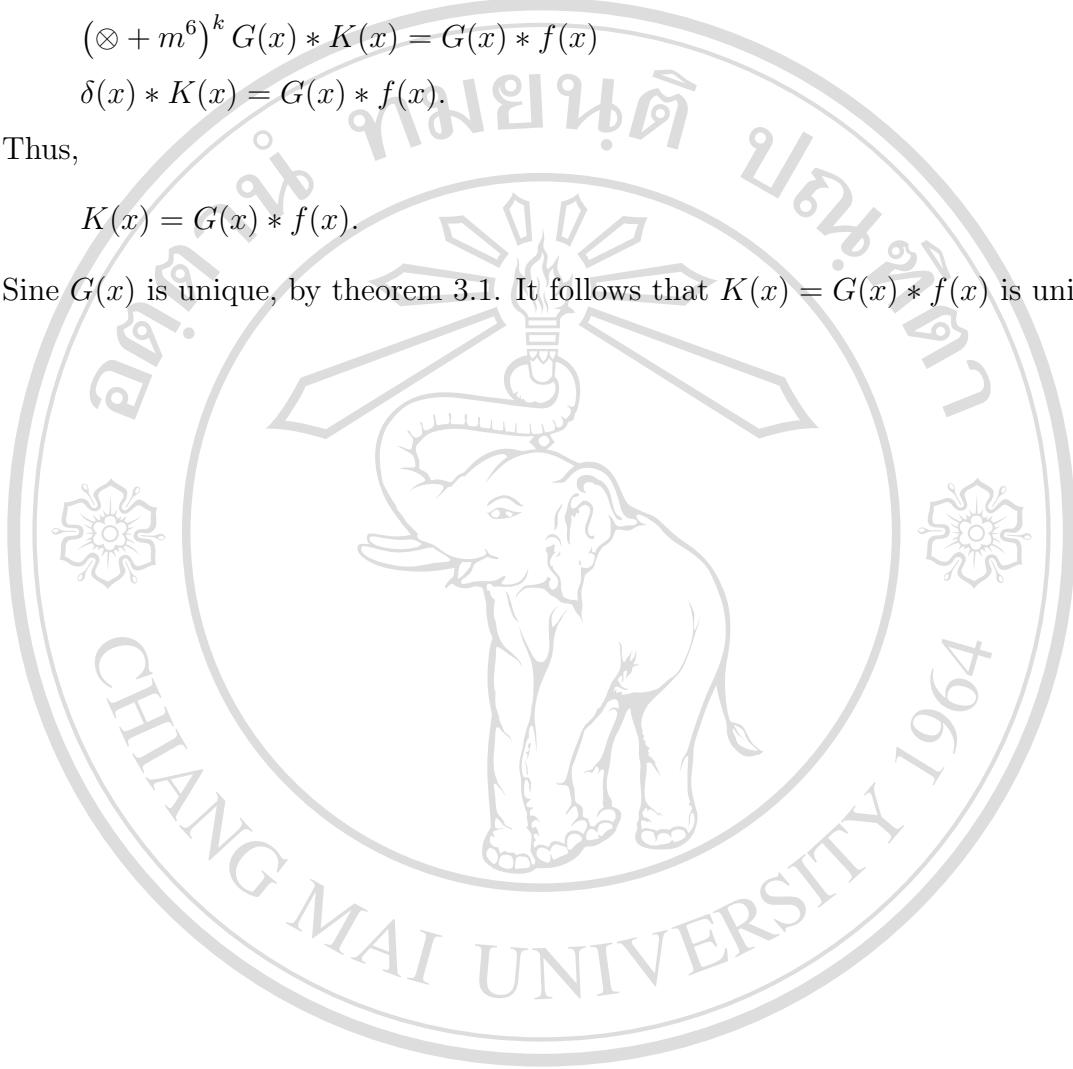
$$(\otimes + m^6)^k G(x) * K(x) = G(x) * f(x)$$

$$\delta(x) * K(x) = G(x) * f(x).$$

Thus,

$$K(x) = G(x) * f(x).$$

Since $G(x)$ is unique, by theorem 3.1. It follows that $K(x) = G(x) * f(x)$ is unique.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University

All rights reserved