Chapter 6
On the X* Operator and Nonlinear
X* Operator Related to the Wave Equation

In this paper, we study the X* operator iterated k— times and is deined by
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where p 4+ ¢ = n is the dimension of the Euclidean space R", u(z) is an unknown func-
tion for x = (x1,x9,...,x,) € R™ f(x) is the generalized function , k is a positive
integer. Firstly, we study the solution of the equation X*u(z) = f(x). It was found
that the solution u(z) depends on the condition of p and ¢ and a solution is related
to the solution of the Laplace equation and the wave equation. Finally, we study the
solution of the nonlinear equation X¥u(z) = f(z, I* ' L* ®*u(x). It was found that the
existence of the solution wu(z) of such an equation depends on the condition of f and
CF1 L* ®* u(z). Moreover a solution u(x) related the inhomogeneous equation depends
on the condition of p,q and k.

6.1 Main Results

Theorem 6.1.1. Given the equation
XFu(x) = 0, (6.1.1)

where X* is the operator iterated k—times defined by (1.0.38), u(z) is an unknown
function. Then we obtain,

x—1

ulw) = (=1 Rigy(2) * RE()) * (RE (V)™ + (C™(2)) ™ (5™() ™" (6.1.2)

is a solution of (6.1.1) where S(z) and C(x) defined by (2.3.24), (2.3.28) respectively,
RSy () defined by (1.0.22) with a = 10k, RZ (x) defined by (1.0.19) with a = 8k. The

: (m), : :
function <R§€k71)(V)> is defined by (1.0.19) with m derivative, « = 2(k — 1) and V/
is defined by (2.2.5).

Proof. Consider the homogeneous equation
XFu(x) = 0.
The above equation can be written
O i@ =0

where (0%, L} and ®" defined by (1.0.6), (2.3.26) and (1.0.29) respectively.
By Lemma 2.3.6, we obtain

Lk @* u(z) = (Rl (V)™ (6.1.3)
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By Lemma 2.3.10 and Lemma 2.3.9, we have K (x) and H(x) are the elementary solution
of the L¥ operator and the ®* operator respectively. That is

LYK () = 0(x) and & H(x) = §(z). (6.1.4)
Convolving both sides of (6.1.3) by K(x) % H(z), we obtain
K(z) x H(z) » (L} ®* u(w)) = K (x) % H(z)* (R, _,,(V)"™.
By properties of convolution
LYK (z) * ®"H(2) x u(z) = K(z) * H(x) * (Rﬁk,l)(\/))(m)
By (6.1.4), we obtain
d(z) *xd(z)*u(z) = K(x) * H(z) * (Ré{k_l)(‘/))(m)
Thus
u(z) = K (x) x H(z) * (Ri (V)™ (6.1.5)

Putting (2.3.27) and (2.3.23) in (6.1.5), we obtain

u(w) = ((Ri(@) * ()™ Ry(@) « (C*@)")
o ((RE@)* (1) Bgyl)) « (57(@) 7" + (Rl (V)™
By Lemma 2.2.6, we obtain
u(w) = (RE(2) * (1) Ry (2)) * (RE ) (V)™ s (CF()" ™ 5 (5 () "
is a solution of (6.1.1). O

Theorem 6.1.2. Given the equation

Xru(z) = f(z), (6.1.6)
where X is the operator iterated k— times defined by (??), f(z) is a generalized func-
tion, u(z) is an unknown function and & = (z,29,...,2,) € R", and n is even, then
we obtain

(@) = (Ré (@) % (1) Rig) # (Rb oy (V) ™ 5 (C™(@) ™ % (578 @) +
(RE (@) % (—1)P*Rig(2))  (C*(2)) " 5 (5% (2)) " # f(2). (6.1.7)

or

u(x) = ((RE_y (V)™ + RE(2) * f(x))
x (RE(2) (1) Rsgp(2)) % (C*(2)) " % (5™ (x))

(6.1.8)
is a solution of (6.1.6). Where (Rikfl)(a:))(m) is a function with m-derivatives defined
by (1.0.19) and a = 2(k — 1). If we put ¢ = 0, we obtain the solution of Laplacian
equation and if we put p = 1 and x; = t where t; is time then we obtain the solution
of wave equation.
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Proof. From(6.1.6), we have

The above equation can be written
F @ u(z) = f(x).

By Lemma 2.3.8 and Lemma 2.3.22, we have G(x) and H(x) are the elementary solution
of the ®* operator and the ®* operator respectively. That is

@ GQ(z) = 0(x) , @ H(x)=d(z). (6.1.9)

Convolving both sides of (6.1.6)the above equation by G(x) x H(x), we obtain,
(G(a) * H(z))* ®" ®° u(z) = G(z) * H(w) * f(x)
By properties of convolution, we obtain
®FG(z) * ® H(z) * u(z) = G(z) * H(z) * f(z).
By (6.1.9), we obtain
5(z) * 8(z) * u(x) = G(z) = H(z) * f(x)
w(z) = Gx) * H(z) * f(z). (6.1.10)

We put (??) and (??) in (6.1.10). Thus u(z) becomes

ulw) = ((Ri(@) = (~1)* Ryy(@)) + (C*(@)"™")
+ ((RE @)« (1) Bge(@)) « (5(@)™") + f(@).

By Lemma 2.2.6, we obtain

u(z) = (Riby(z) * (=1)°*Rig, (@) * (C*k(a:))*_l * (S*k(a:))*fl * f(x). (6.1.11)
Next, consider homogeneous equation

XFu(x) = 0.

By Theorem 6.1.1, we have a solution of homogeneous equation

(@) = (RE(2) * (~1)™ Rige(2)) * (RE_yy (V)™ 5 (CH(2) ™ (7)™
Thus the general solution of (6.1.6) is

ul(w) = (R () * (=1 Rigy(0))  (Rfy_y (V)™ % (OF(@)) ™ # (57 (x)"

- (R%k(x) * (—1)5ka0k(x)) * (C’*k(x))*_l * (S*k(x))*_l x f(x) (6.1.12)
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or

u(z) = (Ry(p_py (V)™ + Rig(x) * f(2))

s (REL(2) % (1) RSou(x)) * (C7F (@)™ # (9%(x)) ™. (6.1.13)
In particular, if ¢ = 0 the equation (6.1.6) becomes the Laplace equation
A%u(z) = f(x) (6.1.14)
where z = (z1,29,...,2,) € R, and p is even. Now, from (6.1.1) for ¢ = 0 we have
A%u(z) =0 or AF(A*u(r)) =0.
By Lemma 2.3.7, we obtain
A*u(x) = (-1 (R ()7 (6.1.15)
Since (—1)* RS, (x) is an elementary solution of the operator A* that is
D (1) Ry () = 8(2).
Convolving both sides of (6.1.15) by (—1)** RS, (), we obtain
u(z) = (=1 Rigp () * (1) (R ()™
= (—=1)%*(RSy o)™ for x = (x1,79,...,7,) ER,. (6.1.16)

is a solution homogeneous equation of (6.1.14). Next, we convolve both sides of (6.1.14)
by (—=1)8*R¢,, (1), we obtain

(=1)** Rip(2) * A%u(z) = (=1)* Riy(2) * f(2)
A (1) Riyy (2) x u(z) = (1) Rig, (@) * f ().
By Lemma 2.3.3, we obtain
§(z) * u(z) = u(z) = (=1)%RS,, () * f(z). (6.1.17)
By (6.1.16) and (6.1.17) we obtain the general solution of equation (6.1.14) is
ul) = (=1 (Rigy 5(0)™ + (1) Bip(2) * f(2) (6.1.18)

for x = (21, 29,...,2,) € R, and p is even.
It follows that (6.1.18) is the general solution of the Laplace equation

A%u(x) = f(x),

where AS* is the Laplace operator iterated 6k-times defined by (1.0.22) for
r = (x1,%q,...,2,) € R, and p is even and if we put k& = 1, then the equation
(6.1.18) becomes

u(z) = (=1)°(R5y(2))™ + (~1)°Riy(x) * f(x) (6.1.19)
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is the general solution of the Laplace equation Abu(x) = f(z).
Now, consider the case for the wave equation. Given the equation

O (z) = f(w), (6.1.20)

where (0 is defined by (1.0.18). T'(z) is an unknown function and f(z) is a generalized
function. By definition 2.2.4 and (2.2.8), we obtain

T(z) = R(x)* f(2) (6.1.21)

is a solution of (6.1.20) where R () is defined by (??) with 3 = 2k.
Now, from (6.1.11) we have

w(@) = (Rioe(@) = (“1) ™ Ripp(@)) % (CF(2) "+ (S7(2) "+ f(@)

is a solution of KFu(z) = f(z).
Convolving both sides of the above equation by (—1)* Ry, (z)* R® o, (z)* (C**(z)) *
(S**(x)). We obtain

(=1 R () * R_yor(w) # (C*F(x)) * (S (x)) * u(x
= (_1)6k(R1—qSk(x) * Rgc@?)) * (R g1 (w) * (Rigp(w)) * Rgv(x) * f().
By Lemma 2.2.7,

(—1)FREg (@) * RS g () * (S™(2)) * (C** (@) *xu(w) = Ry'(x) * Ro(x) * Ry (x) = f(x)

A5 Ry 0
= Ry(x)* f(x)-
Thus it follows that
T(z) = (—1)* R g (2) * R (z) = (CF(x)) = (9 (z)) = u(x). (6.1.22)

In particular, put k£ = 1 in (6.1.21), we have T'(z) = R (z) » f(z) is a solution of
the equation

OT(z) = f(). (6.1.23)

If we put p = 1 and z; = ¢(where ¢ is time), then O = B, — Y, B,, is the wave
operator. Thus (6.1.23) becomes wave equation

0?0
(@ 2 8—%2) T(z) = f(x). (6.1.24)

Thus T'(z) = Ms(x) * f(z) is a solution of (6.1.24) and the general solution of (6.1.24)
is
T(x) = 6"(V) + Ma(w) + f(x)
where (™) (V) is a solution for f(x) =0 and Ms(z) is defined by (1.0.21) with o = 2.
Now, put £ =1 1in (6.1.6) and (6.1.7), we obtain
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and
u(z) = (RE (2) * (=1)° Ry (2)) * (RS (V)™ # (C(2)) + (5™ ()"
+ (RE(x) * (—1)°R5y(x)) * (O*k(:ﬁ))*_l * (S*k(:p))*_l « f(x)) (6.1.25)
u(z) = (6"(V) + RY (x) * f(x))
* (Rf(x) * (—1)5R'fo(x)) * (C’*l(:c))*_l * (S*l(x))*_l (6.1.26)
is a solution of Mu(z) = f(x) and by (6.1.22) with &k = 1, we obtain
T(x) = (—1)R® o(z) % R_g(x) * (C*!(2)) = (S (x)) *u(x)

is a solution of (6.1.23) where u(z) is defined by (6.1.26). We put u(x) where defined
by (6.1.26) in T'(x), we obtain

T(x)= Rflg(a:) * (—1)R () % (C*l(:c)) * (S*l(x)) *

(6U(V)) + RIE (2) * f()) % (RE () % (—1)5 Ry (2)) * (C™ ()™ # (57 (2))"

T(w) = (R.1(x) * R5y(x)) * (R7(x) % RE (2)) % (6" (V) + R (2)  f()) .
By Lemma 2.2.7

T(@) = Rg(x)x Ry'(z) + (5<m><V>+RH<> f(@))
= 0(@) % 0(x) x (3"(V) + s () * f(2)
)

= sM™V) 4 Rl () * f(x), (6.1.27)
where V. = ai + 25+ .. +a) —a),, — 20, — ... —xr,, P+ q = n Now, if we
put p = 1 and x; = t then (6.1.27) becomes T(x) = "™ (V) + My(z) * f(z) for
V=t*—a2—ai—. ... — 22 since R¥(x) becomes M1 (V) where M (z) is defined by

(??) with a = 2.
Thus T'(z) = 6")(V) + Ry(z) * f(z) is the general solution of the wave equation of
(6.1.24) and 6™ (V) is a solution of

D2 " 0?

— — — | T'(x) = 0. 1.2

o 22 gz ) T =0 (6.1,.28)
Now V =#* — 23 — a3 — ... — 22 Let r? =23+ 22+ ... + 22. Thus by [See 4, pp.

234-236] obtain
T(z,t) = 6™ (2 —r?)

is the solution of (6.1.28) with the initial condition 7'(x,0) = 0 and % = (=1)m2x™ ()
at t =0 and © = (z2, 23, ......,¥,) € R"7L. O
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Theorem 6.1.3. Consider the nonlinear equation
}ru(z) = f(z, DF 1LY @% u(x)) (6.1.29)

where [1*~1 is the Ultra-hyperbolic operator iterated k — 1 times defined by (1.0.18),
L% is the operator iterated k times defined by (2.3.26) and ®* is the operator iterated
k times defined by (1.0.29).

Let f be bounded function and have continuous first derivatives for all x € 2 U 0f)
is an open subset of R" and 0€) denotes the boundary of €2 and n is even. That is

|f(z, D" 'L @P u(z)| < N, 2€Q (6.1.30)
and the boundary condition
O 'h @f u(z) =0 , o€ a0 (6.1.31)
then, we obtain
(i) = Bl () (RE(2) 5 (= 1) R () +(C™ () #(S™ () WV (2) (6.1.32)
as a solution of (6.1.29) with the boundary condition
u(z) = (Rgi(x) * (=1)% Rigp () # (C*F(2)) (5™ (@)™ # (Rape—y (V)™ (6.1.33)

for k = 2,3,4,5, ..... and W (z) is a continuous function for z € QU 99Q, RE (z) is
defined by (??) with 8 = 8k and RS, (z) is defined by (??) with o = 10k. The function
(Rogr—1y(V))™ is defined by (??) with m derivatives and 8 = 2(k — 1). C**(z) and
S*k(2) denoted the convolution itself k— times where C(z) and S(z) is defined by (??)
and (?7) respectively.

Moreover, for k = 1, we have

u(@) = (R (#) * (=1)°Rig(x)) # (C™ ()" 7H (S (@) + W (2)
as a solution of (6.1.29) with boundary condition
u(z) =00 () * (R (x)  (~1)°Rg(x)) * (C*H(2))* " * (5™ (2))

for z € Q. Where 6™ (z) is the Dirac-delta distribution with m derivatives.
Also, if we put k=1,p=1 and ¢ =n — 1, we obtain

u(@) = (Ms(w) * (=1)°Rip(x)) * (CF ()" () (2)) 7+ W)
as a solution of the inhomogeneous equation
LT ® u(zx) = W(x)
with the boundary condition
Li® u(x) =0 for z e df
or for x € 012,

u(z) = 8" (@) * (I (x) * (1) By(2)) * (CrH (@)= (57 ()"

r
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Where 3 .
Ly =-A+4+ -0
e
and
D*—aQ_aQ_aZ_ _8_2 A—a_2+a_2_|_ _|_82
- 0z Ox3  Ox? dx2’ - 0z Oxk T 0a2
and
. 92\ * 2 o 2\’
o <o) ot 5y

where M (x) defined by (1.0.21) with 3 = 8, C,(x) reduces from C(x) where is defined
by (1.0.21), that is C,(x) = 2My(x)+ 1(—1)?R{(2). And S, (z) reduces from S(x) where
is defined by (?7), that is S,(z) = 2(—1)*R§(x) + $ M{'(z), where M{(z) defined by
(?7?) with o = 4.

Proof.

TFu(r) = @%@ u(w)
= OO0 LY @F u(z)
= flz, 0 LY @ u(2)).

Since u(z) has continuous derivatives up to order 12k for k = 1,2, 3, ... and we can
assume

O L @ u(z) = W(z) , Yz e (6.1.34)

Thus, (6.1.29) can be written in the form

}ru(z) = Ow(x) = f(z,w(r)) (6.1.35)
by (6.1.30)
|f(z, W) <N, Voeq (6.1.36)

and by (6.1.34), W(z) = 0 or OFLE @* u(x) = 0 for € Q. Thus by Lemma 2.12,
there exists a unique solution W (x) of (6.1.34) which satisfies (6.1.35).

Now consider the Eq.(3.34)). By Lemma 2.3.4, Lemma 2.3.9 and Lemma 2.3.10, we
have (—1)’“*1R§k71)(m), H(z) and K(z) are the elementary solution of the operators

(0F=1 ®* and L} respectively. That is

Dk’lRﬁk_l)(w) =d(z) , ®"H(x)=46) (6.1.37)
and

LYK (z) = 6() (6.1.38)

where ¢ is the Dirac-delta function .
Convolving both sides of (6.1.34) by Rik_l)(x) « H(x) % K(x). We obtain

Rg(k_l)(x) x H(z) * K(z)« 0Ft @F Liu(x) = Rg{k_l)(x) « H(x)* K(x)* W(x)
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By the properties of convolution, we obtain
O Ryl (x) % @ H (2) % LYK (x) x u(z) = Ry, () * H(z) * K(z) « W(x)
By (6.1.37) and (6.1.38), we obtain
% 0% 0 u(x) =u(r) = Ryjy_y(x)* H(x)* K(z) W(z). (6.1.39)
Put (2.3.23) and (2.3.27) in (6.1.39), we obtain
u(@) = Rfyoy(x) * ((RE(@) * ()™ RG) * (5™ (@))7") *
((Rik(@) * (1% Rs;) % (C™(2))™") * W (z) (6.1.40)
By Lemma 2.3, (6.1.40) becomes
u(z) = Ry yy(x) % (RE(x) % (=1)"" R, (2)) # (C* () ") x (S**(2))*7") (6.1.41)

as required.
Next, consider the boundary condition

Oy @F u(r) =0 , 2 € 0. (6.1.42)
By Lemma 2.3.6, we have
Ly ® u(z) = (Rage-) (V)™
Convolving both sides of the above equation by K (x) * H(x). We obtain
K(z)* H(z) * L} ®F w(x) = K(z) « H(z) * (Rage_1)(V))™
By the properties of convolution, we obtain
LYK (z) * ®" H(x) x u(z) = K(z) * H(z) * (Rage—1) (V)™
By (6.1.37) and (6.1.38), the above equation becomes
dx0xu(r) =u(r)=Kx)x H(x) * (Rﬁk,l)(V))(m). (6.1.43)
Put (2.3.23) and (2.3.27) in (6.1.43), we obtain
u(w) = (Rij * (=1)* Ry (w)) * (C*(x))") =
(Rik(@) * (=1)* Rg(2)) (S™(@))"7") * (Reeny (V)™ (6.1.44)
By Lemma 2.2.6, (6.1.44) becomes,
u(r) = (Rgg * (—1)" Rigy(2)) % (C*(2))* " 5 (S (2)) ™" # (Rape—y (V)™ (6.1.45)

as required for x € 992, and kK =2,3,4,5,........
Now, for £k =1 in (6.1.41), we obtain

u(z) = o(x) * (Rg(x) * (—1)5R‘fo(:€)) # (CH () (8% (2))* 1« W(x) (6.1.46)
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Since R{(x) = §(x). Now consider the boundary condition for k = 1 in (6.1.42), we
obtain
Liy®u(x) =0, for xe oS

By (1.0.2) the above equation can be written as
LiLoAu(z) = AL Lou(z) =0,  for x € 0N.
Thus by Lemma 2.3.7, for £ =1, we have
Ly Lou(w) = (Rg ()™ = 6 ().

By Lemma 2.3.10, Lemma 2.3.11, we obtain

u(z) = 8 (@) * (R{ (x) * (=1)*Ri(x)) = (C*'(2))" '+

(R (@) = (=1)*Ri(x)) = (8" (z))~

or by Lemma 2.2.6,

u(z) = 6 (z) * (R (x) * (—1)*Rg(x)) * (C* ()" * (S (a)) . (6.1.47)

Now consider the case k = 1,p = 1 and ¢ = n — 1, thus from (6.1.41), R (z) reduce to
M (x), where M (x) is defined by (1.0.21) with 3 = 8 and the operator ® defined by
(1.0.29) reduces to the operator

o — o2 3_ 02_82_ _82 3
-~ \ 022 dxi  0x3 2

n

and the L; operator defined by (2.3.26) reduced to the L} operator and L} defined by

3 1
Li=-A+-I7
1 4 + 4 )

where[1* and A are defined by

o2 92 52 92 H2 o2 02
_ _ ~ - oA=L Ly 2
072 a2 0al 022’ o2 o T T o

n

D*

Thus the solution of (6.1.41) reduces to
u(w) = (Mg’ () * (=1 Riy(2)) * (C7H(2))" ™" (S ()" + W(a).

Which is the solution of the inhomogeneous equation

L* & u(x) = W(x)
with the boundary condition for x € 9f)

L*® u(x) =0
or for z € 05}
u(z) = 8" () * (Ms(x) * (—1)'Ri(2)) * (CrH(2))"F = (871 ()

as required. O



