
Chapter 6
On the �k Operator and Nonlinear

�k Operator Related to the Wave Equation

In this paper, we study the �k operator iterated k− times and is deined by

�k =


(

p∑
i=1

∂2

∂x2
i

)6

−
(

p+q∑
j=p+1

∂2

∂x2
j

)6



k

,

where p + q = n is the dimension of the Euclidean space R
n, u(x) is an unknown func-

tion for x = (x1, x2, . . . , xn) ∈ R
n, f(x) is the generalized function , k is a positive

integer. Firstly, we study the solution of the equation �ku(x) = f(x). It was found
that the solution u(x) depends on the condition of p and q and a solution is related
to the solution of the Laplace equation and the wave equation. Finally, we study the
solution of the nonlinear equation �ku(x) = f(x, �k−1Lk �k u(x). It was found that the
existence of the solution u(x) of such an equation depends on the condition of f and
�k−1Lk �k u(x). Moreover a solution u(x) related the inhomogeneous equation depends
on the condition of p, q and k.

6.1 Main Results

Theorem 6.1.1. Given the equation

�ku(x) = 0, (6.1.1)

where �k is the operator iterated k−times defined by (1.0.38), u(x) is an unknown
function. Then we obtain,

u(x) =
(
(−1)5kRe

10k(x) ∗ RH
8k(x)

)∗ (RH
2(k−1)(V ))(m) ∗ (

C∗k(x)
)∗−1 (

S∗k(x)
)∗−1

(6.1.2)

is a solution of (6.1.1) where S(x) and C(x) defined by (2.3.24), (2.3.28) respectively,
Re

10k(x) defined by (1.0.22) with α = 10k, RH
8k(x) defined by (1.0.19) with α = 8k. The

function
(
RH

2(k−1)(V )
)(m)

is defined by (1.0.19) with m derivative, α = 2(k − 1) and V

is defined by (2.2.5).

Proof. Consider the homogeneous equation

�ku(x) = 0.

The above equation can be written

�kLk
1�k = 0

where �k, Lk
1 and �k defined by (1.0.6), (2.3.26) and (1.0.29) respectively.

By Lemma 2.3.6, we obtain

Lk
1 �k u(x) =

(
RH

2(k−1)(V )
)(m)

. (6.1.3)
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By Lemma 2.3.10 and Lemma 2.3.9, we have K(x) and H(x) are the elementary solution
of the Lk

1 operator and the �k operator respectively. That is

Lk
1K(x) = δ(x) and �k H(x) = δ(x). (6.1.4)

Convolving both sides of (6.1.3) by K(x) ∗ H(x), we obtain

K(x) ∗ H(x) ∗ (
Lk

1 �k u(x)
)

= K(x) ∗ H(x) ∗ (
RH

2(k−1)(V )
)(m)

.

By properties of convolution

Lk
1K(x) ∗ �kH(x) ∗ u(x) = K(x) ∗ H(x) ∗ (

RH
2(k−1)(V )

)(m)
.

By (6.1.4), we obtain

δ(x) ∗ δ(x) ∗ u(x) = K(x) ∗ H(x) ∗ (
RH

2(k−1)(V )
)(m)

.

Thus

u(x) = K(x) ∗ H(x) ∗ (
RH

2(k−1)(V )
)(m)

(6.1.5)

Putting (2.3.27) and (2.3.23) in (6.1.5), we obtain

u(x) =
((

RH
4k(x) ∗ (−1)2kRe

4k(x)
) ∗ (

C∗k(x)
)∗−1

)
∗

((
RH

4k(x) ∗ (−1)3kRe
6k(x)

) ∗ (
S∗k(x)

)∗−1
)
∗ (

RH
2(k−1)(V )

)(m)
.

By Lemma 2.2.6, we obtain

u(x) =
(
RH

8k(x) ∗ (−1)5kRe
10k(x)

) ∗ (
RH

2(k−1)(V )
)(m) ∗ (

C∗k(x)
)∗−1 ∗ (

S∗k(x)
)∗−1

.

is a solution of (6.1.1). �

Theorem 6.1.2. Given the equation

�ku(x) = f(x), (6.1.6)

where �k is the operator iterated k− times defined by (??), f(x) is a generalized func-
tion, u(x) is an unknown function and x = (x1, x2, . . . , xn) ∈ R

n, and n is even, then
we obtain

u(x) =
(
RH

8k(x) ∗ (−1)5kRe
10k

) ∗ (
RH

2(k−1)(V )
)(m) ∗ (

C∗k(x)
)∗−1 ∗ (

S∗k(x)
)∗−1

+(
RH

10k(x) ∗ (−1)5kRe
10k(x)

) ∗ (
C∗k(x)

)∗−1 ∗ (
S∗k(x)

)∗−1 ∗ f(x). (6.1.7)

or

u(x) =
(
(RH

2(k−1)(V ))(m) + RH
2k(x) ∗ f(x)

)
∗ (

RH
8k(x) ∗ (−1)5kRe

10k(x)
) ∗ (

C∗k(x)
)∗−1 ∗ (

S∗k(x)
)∗−1

. (6.1.8)

is a solution of (6.1.6). Where (RH
2(k−1)(x))(m) is a function with m-derivatives defined

by (1.0.19) and α = 2(k − 1). If we put q = 0, we obtain the solution of Laplacian
equation and if we put p = 1 and x1 = t where t1 is time then we obtain the solution
of wave equation.
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Proof. From(6.1.6), we have
�ku(x) = f(x).

The above equation can be written

⊗k �k u(x) = f(x).

By Lemma 2.3.8 and Lemma 2.3.22, we have G(x) and H(x) are the elementary solution
of the ⊗k operator and the �k operator respectively. That is

⊗kG(x) = δ(x) , �k H(x) = δ(x). (6.1.9)

Convolving both sides of (6.1.6)the above equation by G(x) ∗ H(x), we obtain,

(G(x) ∗ H(x)) ∗ ⊗k �k u(x) = G(x) ∗ H(x) ∗ f(x)

By properties of convolution, we obtain

⊗kG(x) ∗ �kH(x) ∗ u(x) = G(x) ∗ H(x) ∗ f(x).

By (6.1.9), we obtain

δ(x) ∗ δ(x) ∗ u(x) = G(x) ∗ H(x) ∗ f(x)

or

u(x) = G(x) ∗ H(x) ∗ f(x). (6.1.10)

We put (??) and (??) in (6.1.10). Thus u(x) becomes

u(x) =
((

RH
6k(x) ∗ (−1)2kRe

4k(x)
) ∗ (

C∗k(x)
)∗−1

)
∗

((
RH

4k(x) ∗ (−1)3kRe
6k(x)

) ∗ (
S∗k(x)

)∗−1
)
∗ f(x).

By Lemma 2.2.6, we obtain

u(x) =
(
RH

10k(x) ∗ (−1)5kRe
10k(x)

) ∗ (
C∗k(x)

)∗−1 ∗ (
S∗k(x)

)∗−1 ∗ f(x). (6.1.11)

Next, consider homogeneous equation

�ku(x) = 0.

By Theorem 6.1.1, we have a solution of homogeneous equation

u(x) =
(
RH

8k(x) ∗ (−1)5kRe
10k(x)

) ∗ (RH
2(k−1)(V ))(m) ∗ (

C∗k(x)
)∗−1 (

S∗k(x)
)∗−1

Thus the general solution of (6.1.6) is

u(x) =
(
RH

8k(x) ∗ (−1)5kRe
10k(x)

) ∗ (RH
2(k−1)(V ))(m) ∗ (

C∗k(x)
)∗−1 ∗ (

S∗k(x)
)∗−1

+
(
RH

10k(x) ∗ (−1)5kRe
10k(x)

) ∗ (
C∗k(x)

)∗−1 ∗ (
S∗k(x)

)∗−1 ∗ f(x) (6.1.12)



47

or

u(x) =
(
(RH

2(k−1)(V ))(m) + RH
2k(x) ∗ f(x)

)
∗ (

RH
8k(x) ∗ (−1)5kRe

10k(x)
) ∗ (

C∗k(x)
)∗−1 ∗ (

S∗k(x)
)∗−1

. (6.1.13)

In particular, if q = 0 the equation (6.1.6) becomes the Laplace equation

�6ku(x) = f(x) (6.1.14)

where x = (x1, x2, . . . , xp) ∈ Rp and p is even. Now, from (6.1.1) for q = 0 we have

�6ku(x) = 0 or �k(�5ku(x)) = 0.

By Lemma 2.3.7, we obtain

�5ku(x) = (−1)k−1(Re
2(k−1)(x))(m). (6.1.15)

Since (−1)kRe
2k(x) is an elementary solution of the operator �k that is

�k(−1)kRe
2k(x) = δ(x).

Convolving both sides of (6.1.15) by (−1)5kRe
10k(x), we obtain

u(x) = (−1)5kRe
10k(x) ∗ (−1)k−1(Re

2(k−1)(x))(m)

= (−1)6k−1(Re
12k−2(x))(m) for x = (x1, x2, . . . , xp) ∈ Rp. (6.1.16)

is a solution homogeneous equation of (6.1.14). Next, we convolve both sides of (6.1.14)
by (−1)6kRe

12k(x), we obtain

(−1)6kRe
12k(x) ∗ �6ku(x) = (−1)6kRe

12k(x) ∗ f(x)

�6k(−1)6kRe
12k(x) ∗ u(x) = (−1)6kRe

12k(x) ∗ f(x).

By Lemma 2.3.3, we obtain

δ(x) ∗ u(x) = u(x) = (−1)6kRe
12k(x) ∗ f(x). (6.1.17)

By (6.1.16) and (6.1.17) we obtain the general solution of equation (6.1.14) is

u(x) = (−1)6k−1(Re
12k−2(x))(m) + (−1)6kRe

12k(x) ∗ f(x) (6.1.18)

for x = (x1, x2, . . . , xp) ∈ Rp and p is even.
It follows that (6.1.18) is the general solution of the Laplace equation

�6ku(x) = f(x),

where �6k is the Laplace operator iterated 6k-times defined by (1.0.22) for
x = (x1, x2, . . . , xp) ∈ Rp and p is even and if we put k = 1, then the equation
(6.1.18) becomes

u(x) = (−1)5(Re
10(x))(m) + (−1)6Re

12(x) ∗ f(x) (6.1.19)
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is the general solution of the Laplace equation �6u(x) = f(x).
Now, consider the case for the wave equation. Given the equation

�kT (x) = f(x), (6.1.20)

where �k is defined by (1.0.18). T (x) is an unknown function and f(x) is a generalized
function. By definition 2.2.4 and (2.2.8), we obtain

T (x) = RH
2k(x) ∗ f(x) (6.1.21)

is a solution of (6.1.20) where RH
2k(x) is defined by (??) with β = 2k.

Now, from (6.1.11) we have

u(x) =
(
RH

10k(x) ∗ (−1)5kRe
10k(x)

) ∗ (
C∗k(x)

)∗−1 ∗ (
S∗k(x)

)∗−1 ∗ f(x)

is a solution of �ku(x) = f(x).
Convolving both sides of the above equation by (−1)kRH

−8k(x)∗Re
−10k(x)∗(

C∗k(x)
)∗(

S∗k(x)
)
. We obtain

(−1)kRH
−8k(x) ∗ R−10k(x) ∗ (

C∗k(x)
) ∗ (

S∗k(x)
) ∗ u(x)

= (−1)6k(RH
−8k(x) ∗ RH

8k(x)) ∗ (Re
−10k(x) ∗ (Re

10k(x)) ∗ RH
2k(x) ∗ f(x).

By Lemma 2.2.7,

(−1)kRH
−8k(x) ∗ Re

−10k(x) ∗ (
S∗k(x)

) ∗ (
C∗k(x)

) ∗ u(x) = RH
0 (x) ∗ Re

0(x) ∗ RH
2k(x) ∗ f(x)

= δ ∗ δ ∗ RH
2k(x) ∗ f(x)

= RH
2k(x) ∗ f(x).

Thus it follows that

T (x) = (−1)kRe
−10k(x) ∗ RH

−8k(x) ∗ (
C∗k(x)

) ∗ (
S∗k(x)

) ∗ u(x). (6.1.22)

In particular, put k = 1 in (6.1.21), we have T (x) = RH
2 (x) ∗ f(x) is a solution of

the equation

�T (x) = f(x). (6.1.23)

If we put p = 1 and x1 = t(where t is time), then � = Bt −
∑n

i=2 Bxi
is the wave

operator. Thus (6.1.23) becomes wave equation(
∂2

∂t2
−

n∑
i=2

∂2

∂x2
i

)
T (x) = f(x). (6.1.24)

Thus T (x) = M2(x) ∗ f(x) is a solution of (6.1.24) and the general solution of (6.1.24)
is

T (x) = δ(m)(V ) + M2(x) ∗ f(x)

where δ(m)(V ) is a solution for f(x) = 0 and M2(x) is defined by (1.0.21) with α = 2.
Now, put k = 1 in (6.1.6) and (6.1.7), we obtain

�u(x) = f(x)
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and

u(x) =
(
RH

8 (x) ∗ (−1)5Re
10(x)

) ∗ (RH
0 (V ))(m) ∗ (

C∗1(x)
)∗−1 ∗ (

S∗1(x)
)∗−1

+
(
RH

10(x) ∗ (−1)5Re
10(x)

) ∗ (
C∗k(x)

)∗−1 ∗ (
S∗k(x)

)∗−1 ∗ f(x)) (6.1.25)

or

u(x) =
(
δ(m)(V ) + RH

2 (x) ∗ f(x)
)

∗ (
RH

8 (x) ∗ (−1)5Re
10(x)

) ∗ (
C∗1(x)

)∗−1 ∗ (
S∗1(x)

)∗−1
(6.1.26)

is a solution of �u(x) = f(x) and by (6.1.22) with k = 1, we obtain

T (x) = (−1)Re
−10(x) ∗ R−8(x) ∗ (

C∗1(x)
) ∗ (

S∗1(x)
) ∗ u(x)

is a solution of (6.1.23) where u(x) is defined by (6.1.26). We put u(x) where defined
by (6.1.26) in T (x), we obtain

T (x) = RH
−8(x) ∗ (−1)Re

−10(x) ∗ (
C∗1(x)

) ∗ (
S∗1(x)

) ∗(
δ(m)(V ) + RH

2 (x) ∗ f(x)
)∗(

RH
8 (x) ∗ (−1)5Re

10(x)
)∗(

C∗k(x)
)∗−1 ∗(

S∗k(x)
)∗−1

.

or

T (x) = (Re
−10(x) ∗ Re

10(x)) ∗ (RH
−8(x) ∗ RH

8 (x)) ∗ (
δ(m)(V ) + RH

2 (x) ∗ f(x)
)
.

By Lemma 2.2.7

T (x) = Re
0(x) ∗ RH

0 (x) ∗ (
δ(m)(V ) + RH

2 (x) ∗ f(x)
)

= δ(x) ∗ δ(x) ∗ (
δ(m)(V ) + ∗RH

2 (x) ∗ f(x)
)

= δ(m)(V ) + RH
2 (x) ∗ f(x), (6.1.27)

where V = x2
1 + x2

2 + ... + x2
p − x2

p+1 − x2
p+2 − ... − x2

p+q, p + q = n. Now, if we

put p = 1 and x1 = t then (6.1.27) becomes T (x) = δ(m)(V ) + M2(x) ∗ f(x) for
V = t2 − x2

2 − x2
3 − .......− x2

n since RH
2 (x) becomes MH

2 (V ) where MH
2 (x) is defined by

(??) with α = 2.
Thus T (x) = δ(m)(V ) + R2(x) ∗ f(x) is the general solution of the wave equation of

(6.1.24) and δ(m)(V ) is a solution of(
∂2

∂t2
−

n∑
i=2

∂2

∂x2
i

)
T (x) = 0. (6.1.28)

Now V = t2 − x2
2 − x2

3 − ....... − x2
n. Let r2 = x2

2 + x2
3 + ...... + x2

n. Thus by [See 4, pp.
234-236] obtain

T (x, t) = δ(m)(t2 − r2)

is the solution of (6.1.28) with the initial condition T (x, 0) = 0 and ∂T (x,0)
∂t

= (−1)m2πm+1δ(x)
at t = 0 and x = (x2, x3, ......, xn) ∈ Rn−1. �
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Theorem 6.1.3. Consider the nonlinear equation

�ku(x) = f(x, �k−1Lk
1 �k

B u(x)) (6.1.29)

where �k−1 is the Ultra-hyperbolic operator iterated k − 1 times defined by (1.0.18),
Lk

1 is the operator iterated k times defined by (2.3.26) and �k is the operator iterated
k times defined by (1.0.29).

Let f be bounded function and have continuous first derivatives for all x ∈ Ω ∪ ∂Ω
is an open subset of Rn and ∂Ω denotes the boundary of Ω and n is even. That is

|f(x, �k−1 �Lk
1 �k u(x)| ≤ N, x ∈ Ω (6.1.30)

and the boundary condition

�k−1 �Lk
1 �k u(x) = 0 , x ∈ ∂Ω (6.1.31)

then, we obtain

u(x) = RH
2(k−1)(x)∗(

RH
8k(x) ∗ (−1)5kRe

10k(x)
)∗(C∗k(x))∗−1∗(S∗k(x))∗−1∗W (x) (6.1.32)

as a solution of (6.1.29) with the boundary condition

u(x) =
(
RH

8k(x) ∗ (−1)5kRe
10k(x)

)∗(C∗k(x))∗−1∗(S∗k(x))∗−1∗(R2(k−1)(V ))(m) (6.1.33)

for k = 2, 3, 4, 5, ..... and W (x) is a continuous function for x ∈ Ω ∪ ∂Ω, RH
8k(x) is

defined by (??) with β = 8k and Re
10k(x) is defined by (??) with α = 10k. The function

(R2(k−1)(V ))(m) is defined by (??) with m derivatives and β = 2(k − 1). C∗k(x) and
S∗k(x) denoted the convolution itself k− times where C(x) and S(x) is defined by (??)
and (??) respectively.

Moreover, for k = 1, we have

u(x) =
(
RH

8 (x) ∗ (−1)5Re
10(x)

) ∗ (C∗1(x))∗−1 ∗ (S∗1(x))∗−1 ∗ W (x)

as a solution of (6.1.29) with boundary condition

u(x) = δ(m)(x) ∗ (
RH

8 (x) ∗ (−1)5Re
8(x)

) ∗ (C∗1(x))∗−1 ∗ (S∗1(x))∗−1

for x ∈ ∂Ω. Where δ(m)(x) is the Dirac-delta distribution with m derivatives.
Also, if we put k = 1, p = 1 and q = n − 1, we obtain

u(x) =
(
M8(x) ∗ (−1)5Re

10(x)
) ∗ (C∗1

r (x))∗−1 ∗ (S∗1
r (x))∗−1 ∗ W (x)

as a solution of the inhomogeneous equation

L∗
1 �∗ u(x) = W (x)

with the boundary condition

L∗
1 �∗ u(x) = 0 for x ∈ ∂Ω

or for x ∈ ∂Ω,

u(x) = δ(m)(x) ∗ (
IH
8 (x) ∗ (−1)4Re

8(x)
) ∗ (C∗1

r (x))∗−1 ∗ (S∗1
r (x))∗−1.
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Where

L∗
1 =

3

4
� +

1

4
�∗

and

�∗ =
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

, � =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

and

�∗ =

(
∂2

∂x2
1

)3

−
(

∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)3

,

where MH
8 (x) defined by (1.0.21) with β = 8, Cr(x) reduces from C(x) where is defined

by (1.0.21), that is Cr(x) = 3
4
M4(x)+ 1

4
(−1)2Re

4(x). And Sr(x) reduces from S(x) where
is defined by (??), that is Sr(x) = 3

4
(−1)2Re

4(x) + 1
4
MH

4 (x), where MH
4 (x) defined by

(??) with α = 4.

Proof.

�ku(x) = ⊗k �k u(x)

= ��k−1Lk
1 �k u(x)

= f(x, �k−1Lk
1 �k u(x)).

Since u(x) has continuous derivatives up to order 12k for k = 1, 2, 3, ... and we can
assume

�k−1Lk
1 �k u(x) = W (x) , ∀x ∈ Ω (6.1.34)

Thus, (6.1.29) can be written in the form

�ku(x) = �w(x) = f(x,w(x)) (6.1.35)

by (6.1.30)

|f(x, W )| ≤ N , ∀x ∈ Ω (6.1.36)

and by (6.1.34), W (x) = 0 or �k−1Lk
1 �k u(x) = 0 for x ∈ ∂Ω. Thus by Lemma 2.12,

there exists a unique solution W (x) of (6.1.34) which satisfies (6.1.35).
Now consider the Eq.(3.34)). By Lemma 2.3.4, Lemma 2.3.9 and Lemma 2.3.10, we

have (−1)k−1RH
2(k−1)(x), H(x) and K(x) are the elementary solution of the operators

�k−1, �k and Lk
1 respectively. That is

�k−1RH
2(k−1)(x) = δ(x) , �k H(x) = δ(x) (6.1.37)

and

Lk
1K(x) = δ(x) (6.1.38)

where δ is the Dirac-delta function .
Convolving both sides of (6.1.34) by RH

2(k−1)(x) ∗ H(x) ∗ K(x). We obtain

RH
2(k−1)(x) ∗ H(x) ∗ K(x) ∗ �k−1 �k Lk

1u(x) = RH
2(k−1)(x) ∗ H(x) ∗ K(x) ∗ W (x)
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By the properties of convolution, we obtain

�k−1RH
2(k−1)(x) ∗ �kH(x) ∗ Lk

1K(x) ∗ u(x) = RH
2(k−1)(x) ∗ H(x) ∗ K(x) ∗ W (x)

By (6.1.37) and (6.1.38), we obtain

δ ∗ δ ∗ δ ∗ u(x) = u(x) = RH
2(k−1)(x) ∗ H(x) ∗ K(x) ∗ W (x). (6.1.39)

Put (2.3.23) and (2.3.27) in (6.1.39), we obtain

u(x) = RH
2(k−1)(x) ∗ ((

RH
4k(x) ∗ (−1)3kRe

6k

) ∗ (S∗k(x))∗−1
) ∗((

RH
4k(x) ∗ (−1)2kRe

4k

) ∗ (C∗k(x))∗−1
) ∗ W (x) (6.1.40)

By Lemma 2.3, (6.1.40) becomes

u(x) = RH
2(k−1)(x) ∗ (

RH
8k(x) ∗ (−1)5kRe

10k(x)
) ∗ (

C∗k(x))∗−1
) ∗ (

S∗k(x))∗−1
)

(6.1.41)

as required.
Next, consider the boundary condition

�k−1 �Lk
1 �k u(x) = 0 , x ∈ ∂Ω. (6.1.42)

By Lemma 2.3.6, we have

Lk
1 �k u(x) = (R2(k−2)(V ))(m).

Convolving both sides of the above equation by K(x) ∗ H(x). We obtain

K(x) ∗ H(x) ∗ Lk
1 �k u(x) = K(x) ∗ H(x) ∗ (R2(k−1)(V ))(m)

By the properties of convolution, we obtain

Lk
1K(x) ∗ �kH(x) ∗ u(x) = K(x) ∗ H(x) ∗ (R2(k−1)(V ))(m)

By (6.1.37) and (6.1.38), the above equation becomes

δ ∗ δ ∗ u(x) = u(x) = K(x) ∗ H(x) ∗ (RH
2(k−1)(V ))(m). (6.1.43)

Put (2.3.23) and (2.3.27) in (6.1.43), we obtain

u(x) =
(
RH

4k ∗ (−1)2kRe
4k(x)

) ∗ (
C∗k(x))∗−1

) ∗(
RH

4k(x) ∗ (−1)3kRe
6k(x)

) (
S∗k(x))∗−1

) ∗ (R2(k−1)(V ))(m) (6.1.44)

By Lemma 2.2.6, (6.1.44) becomes,

u(x) =
(
RH

8k ∗ (−1)5kRe
10k(x)

) ∗ (C∗k(x))∗−1 ∗ (S∗k(x))∗−1 ∗ (R2(k−1)(V ))(m) (6.1.45)

as required for x ∈ ∂Ω, and k = 2, 3, 4, 5, . . . .....
Now, for k = 1 in (6.1.41), we obtain

u(x) = δ(x) ∗ (
RH

8 (x) ∗ (−1)5Re
10(x)

) ∗ (C∗1(x))∗−1 ∗ (S∗1(x))∗−1 ∗ W (x) (6.1.46)
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Since RH
0 (x) = δ(x). Now consider the boundary condition for k = 1 in (6.1.42), we

obtain
L1 � u(x) = 0, for x ∈ ∂Ω.

By (1.0.2) the above equation can be written as

L1L2�u(x) = �L1L2u(x) = 0, for x ∈ ∂Ω.

Thus by Lemma 2.3.7, for k = 1, we have

L1L2u(x) = (Re
0(x))(m) = δ(m)(x).

By Lemma 2.3.10, Lemma 2.3.11, we obtain

u(x) = δ(m)(x) ∗ (
RH

4 (x) ∗ (−1)2Re
4(x)

) ∗ (C∗1(x))∗−1∗(
RH

4 (x) ∗ (−1)2Re
4(x)

) ∗ (S∗1(x))∗−1

or by Lemma 2.2.6,

u(x) = δ(m)(x) ∗ (
RH

8 (x) ∗ (−1)4Re
8(x)

) ∗ (C∗1(x))∗−1 ∗ (S∗1(x))∗−1. (6.1.47)

Now consider the case k = 1, p = 1 and q = n− 1, thus from (6.1.41), RH
8 (x) reduce to

MH
8 (x), where MH

8 (x) is defined by (1.0.21) with β = 8 and the operator � defined by
(1.0.29) reduces to the operator

�∗ =

(
∂2

∂x2
1

)3

−
(

∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)3

and the L1 operator defined by (2.3.26) reduced to the L∗
1 operator and L∗

1 defined by

L∗
1 =

3

4
� +

1

4
�∗,

where�∗ and � are defined by

�∗ =
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

, � =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . . +
∂2

∂x2
n

.

Thus the solution of (6.1.41) reduces to

u(x) =
(
MH

8 (x) ∗ (−1)5Re
10(x)

) ∗ (C∗1
r (x))∗−1 ∗ (S∗1

r (x))∗−1 ∗ W (x).

Which is the solution of the inhomogeneous equation

L∗ �∗ u(x) = W (x)

with the boundary condition for x ∈ ∂Ω

L∗ �∗ u(x) = 0

or for x ∈ ∂Ω

u(x) = δ(m)(x) ∗ (
M8(x) ∗ (−1)4Re

8(x)
) ∗ (C∗1

r (x))∗−1 ∗ (S∗1
r (x))∗−1.

as required. �


