CHAPTER 2
PRELIMINARIES

2.1 Semigroups

A semigroup S is a nonempty set S together with a binary operation - : S xS — S
which satisfies the associative property: (a-b)-c=a- (b-¢) for all a,b,c € S.

Let S be a semigroup. An element e of S is called a left identity if e-a = a
for all @ € S, and a right identity if a - e = a for all a € S. If e is both a left
identity and a right identity, then it is called a two-sided identity, or simply an
identity.

Every semigroup has at most one identity element. A semigroup with
identity is called a monoid. A semigroup without identity may be embedded into
a monoid simply by adjoining an element 1 ¢ S to S and defining 1-s = s-1 = s for
all s € SU{1}. The notation S* denotes a monoid obtained from S by adjoining

an identity if necessary (S* = S for a monoid).

2.2 Partially Orders

A partial order is a binary relation < over a nonempty set P which is reflexive,
antisymmetric, and transitive, i.e., for all a, b, ¢ in P, we have that:
(1) a < a (reflexivity);
(2) if a < b and b < a then a = b (antisymmetry);
(3) if a < b and b < ¢ then a < ¢ (transitivity).

A set with a partial order is called a partially ordered set.

An element m € P is a mazimal element of P if for all s € P, m < s
implies m = s. An element g € P is the greatest or mazimum element of P if
s < g, for all elements s € P. The definition for minimal elements and the least

or minimum elements are defined dually.



Let (P, <) be a partially ordered set. An element r € P is called an upper
cover for p € P if p < r and there exists no ¢ € P such that p < ¢ < r. Lower
cover is defined dually.

We note that the notation p < ¢ means p < g and p # q.

Let < be a partial order on a semigroup S. An element ¢ € S is said
to be left compatible with < if ca < ¢b for all a,b € S such that a < b. Right

compatibility with < is defined dually.

2.3 Cardinality

The cardinality of a set is a measure of the number of elements of the set. For ex-
ample, the set A = {2,4,6} contains 3 elements, and therefore A has a cardinality
of 3.

The cardinality of a set A is denoted |A|.

The formal definition of cardinality depends on the notion mappings be-

tween sets:

(1) Two sets A and B have the same cardinality if there exists a bijection,
that is, an injective and surjective function, from A to B. Symbolically, we write

Al = [BI.

(2) A has cardinality less than or equal to the cardinality of B if there

exists an injective function from A into B. Symbolically, we write |A| < |B].

(3) A has cardinality strictly less than the cardinality of B if there is an
injective function, but no bijective function, from A to B. Symbolically, we write

Al < [BI.



2.4 Semigroups of Transformations

Let X be a set, we denote the set of all mappings from X into X by T'(X) and it
is a semigroup under composition of mappings: if o, 5 € T(X), then o € T(X)
is defined by

z(aof) = (za)B, x € X.

For abbreviation, we always write a3 for azo 3.
It is well-known that T'(X) is a regular semigroup, that is for each o €
T(X) there exists 8 € T(X) such that o = afa.

Here, if Y is a nonempty subset of X, we define
T(X,Y)={aeT(X): Xa C Y}

Since a, 8 € T(X,Y), we have Xaa CY and X3 CY. Then Xaf C X5 CY, so
af € T(X,Y). Therefore T(X,Y) is a subsemigroup of T(X).

We note that for any o € T(X,Y), 1o = {(a,0) € X X X : aa = ba} is an
equivalence on X. The relation 7, is usually called the kernel of «.

J. Sanwong and W. Sommanee gave the following result.

Lemma 2.4.1 [5] Let o, € T(X,Y). Then ms C 7, if and only if « = B~y for
some v € T(X,Y).

In general, T(X,Y’) is not a regular semigroup, so they introduced a very

useful set F' C T(X,Y’) which is defined by
F={a€eT(X,Y): XaCYal

It is easy to see that F' = {a € T(X,Y) : (X \Y)a C Ya} = {a € T(X,Y) :
Xa = Ya}. They also proved that F' is a right ideal and the largest regular
subsemigroup of T(X,Y).



