CHAPTER 3
MAIN RESULTS

In this chapter, we endow T'(X,Y") with the natural order < and determine
when two elements of T'(X,Y') are related under this order, then find out elements
of T(X,Y) which are compatible with < on T(X,Y). Also, the maximal and
minimal elements and the covering elements are described.

Recall that for any semigroup S, we define < on S as follow:

a < bif and only if @ = 2b = by, va = a for some z,y € S*.

3.1 Characterization

In this section, we investigate the condition under which o < /3 for two elements

a,feT(X,Y).

Lemma 3.1.1 Let a, § € T(X,Y), then the following statements are equivalent:
(1) Xa CYp;

(2) (xa)B~NY #£0 for allx € X;

(3) there exists v € T(X,Y) such that o = ~f3.

Proof. (1) implies (2). Assume that Xa C Y. Let x € X. Since za € Xa C Y f,
we have xa =y for some y € Y. Therefore y € (za)5~ 1 NY £ 0.
(2) implies (3). Suppose that (za)37 1 NY # @ for all x € X. Then for
each x € X, there exists d, € (za)37*NY. We define v by 2y = d, for all v € X.
So Xv CVY and 2y = d,f = za for all x € X. Therefore o = 4.
(3) implies (1). Assume that a = v for some v € T(X,Y). Let za € Xav.
Since ra = xyp € Y 3, therefore Xa C Yf.
|
To prove the next theorem, we need the following characterization of the

natural partial order on any semigroups which is taken from H. Mitsch [3].



Lemma 3.1.2 For any semigroups S and its natural partial order, the following
conditions are equivalent:

(1) a <b;

(2) a = sb=10bt, at = a for some s,t € S';

(3) a = ub=bv, ua = av = a for some u,v € S'.

Theorem 3.1.3 Let o, 5 € T(X,Y) such that « # 5. Then a < B if and only if
the following statements hold:

(1) Xa CYp;

(2) 15 C Ta;

(3) if 6 € Xa, then xa = xf5.

Proof. Suppose that a < 3, then there exist v, u € T(X,Y)! such that a =73 =
Bu and o = ap by Lemma 3.1.2. Since a # 3, we get v # 1 # u, thus by Lemma
3.1.1 and Lemma 2.4.1, we have Xao C Y3 and m3 C m,. If 28 € Xa, then
xf = ya for some y € X and therefore za = zfu = yau = ya = x.
Conversely, assume that the assumptions hold. Since Xa C Y3 and 73 C
Ta, by Lemma 3.1.1 and Lemma 2.4.1 there exist v, u € T(X,Y) such that o =
7B = Bu. For each x € X, xav = 2y = yf for some y € Y since v € T(X,Y) , so
yB € Xa. By (3), we have ya = y5 and thus za = yf = ya = yBu = xapu, hence
a = apu. By Lemma 3.1.2, it is concluded that o < .
|

Example 3.1.4 (1) Let X = {1,2,3,4,5,6},Y = {2,4,6}. We define o, €
T(X,Y) by

1 23 456 123 456
a= B =
2 2 2 2 6 6 2 2 4 46 6
Then there are v, u € T(X,Y) such that
1 23 456 1 23 456

[\
[\
[\
[\
o)}
(o)}

22 2 26 6



and o = v = Bu, a = apu which follows that o < 5. In addition, we can check
this by Theorem 3.1.3. Consider:

(i) Xa=4{2,6} C{2,4,6} =Yp;

(i) mg = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6), (1,2),(2,1), (3,4), (4, 3),
(5,6),(6,5)}, and
mo = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6), (1,2),(2,1),(1,3), (3,1), (1,4), (4, 1),
(2,3),(3,2),(2,4),(4,2),(3,4),(4,3),(5,6), (6,5) }, thus 75 C 74;

(iii) 18,28,58,68 € Xa, and la = 18,20 = 28,5a = 58, 6a = 63. Thus
a < f.

(2) Let X be the set of all natural numbers, N, and Y the set of all positive
odd integers. Let n € N. Then by division algorithm there exist unique ¢,,r, € Z
such that

n=4q, +r,;0 <r, < 4.
Thus we define « as follow:

n—r,+1 ifr, #0
n—3 if r, = 0.

noa =

Similarly, for each n € N there exist unique t,, s, € N such that
n =2, + s,;0<s, <2

Thus we define 5 as follow:

n if s, =1

n—1 ifs, =0.

np =

So «a, 5 € T(X,Y). We check that o < 8 by Theorem 3.1.3. By computation, we

get
123456 789 10 11 12
o= ;
111155559 9 9 9
5 123456 789 10 11 12
113355779 9 11 11



We see that Xo = {1,5,9,13,17,..} €{1,3,5,7,9,11, ...} =Y. Let (m,n) € ms.
Then mp =np. Iif s, =1 = s, 0r 5, = 0= s,, then m = mp =nf = n or
m—1=mp =npf =n—1, respectively. Thus m = n which follows that ma = na.
If s,, =1and s, =0, then m = mp =nf =n—1. Since s, = 0, we have r, = 0 or
2. Ifr, =0,thenr,, =3sincem=n—1. Weget ma=m—-—r,,+1=m—-3+1=
m—2=(n—1)—2=n—-3=na. Ifr, =2, then r,, = 1 since m = n—1. We have
ma=m—r,m,+1l=m—-1+1=m=n—1=n—-2+1=n—r,+1 = na. Therefore
g C mo. Let nf € Xa. If v, = 0, then s, = 0 which implies that nf = n — 1.
Since r, = 0 we get n = 4k for some integer kK > 1. Then nf =n—1=4k -1
which follows that ng = 3,7,11,15,... ¢ X« which is a contradiction. If r, = 3,
then n = 4k + 3 for some integer k > 0. We have n = 2(2k + 1) + 1 which implies
that s, = 1. Then nf8 = n = 4k + 3. Thus nf8 = 3,7,11,15,... ¢ Xa which
is also a contradiction. So, it is concluded that r, = 1 or 2. If r, = 1, then
n = 4k + 1 for some integer £ > 0. We have n = 2(2k) 4+ 1 which implies that
Sp=1. Thenna=n—r,+1=n—-1+1=n=np. lf r, =2, then n =4k + 2
for some integer k > 0. We have n = 2(2k + 1) which follows that s,, = 0. Then
ne=n—r,+1=n—24+1=n—1=np and hence na = nB. Therefore a < .

We consider the case when X =Y which implies that T(X,Y) = T(X).
By Theorem 3.1.3, we get the following result.

Corollary 3.1.5 Let o, 5 € T(X) such that o # 3. Then o < 8 if and only if the
following statements hold:

(1) Xa C Xf;

(2) 75 C o

(3) if xf € Xa, then xa = xf3.

To prove the following corollary, we recall that FF = {a € T(X,Y) : Xa C
Ya}={aeT(X,Y): Xa=Ya}.



10

Corollary 3.1.6 Let o € F,5 € T(X,Y) such that o # B and let K(«,3) = {x €
X 1 xza # xB}. If the following properties hold:
(1) za € Y and 23 ¢ Xa for all v € K(o, B);

(2) xB # ypB for all v,y € K(a, B) with x # y,
then a < 3.

Proof. Since a # 3, we have K(«, ) is nonempty. For each aax € Xa, if a €
K(a, 8) then ac € Y by (1). If a ¢ K(a, ), then aa = af3. Since o € F, we
have ac € Xaw C Yo which implies that aa = ba for some b € Y. If b € K(a, ),
then aa = ba € Y5 by (1). If b ¢ K(«, (), then ba = b5 which implies that
ac = ba = bf € Y 3. Therefore Xa C Y. Now, let (p,q) € m5. So pf = ¢B8. If
p € K(a,f)and q ¢ K(a, 8), then pf = ¢8 = qa € Xa. By (1), we have pff ¢ X«
which is a contradiction. If p,q € K(«, ) and p # ¢, then pS # ¢f by (2) and this
contradicts pf = ¢f. It is concluded that p,q ¢ K(«, 5). So pa = pf = qf = qu
which follows that (p,q) € 1, and therefore 73 C m,. Finally, if wf € Xa then
we have w ¢ K(«, ) by (1) which implies that wa = wf. Therefore o < 5 by
Theorem 3.1.3.

Lemma 3.1.7 If o, 8 € T(X,Y) such that « < 3 and o # B3, then a € F.

Proof. Let o, 5 € T(X,Y) with o < 8 and o # 5. Then by Theorem 3.1.3 we
have Xa C Y5 and 23 € X« implies xa = 3. Suppose that o ¢ F, then there
is z € X \ 'Y such that za ¢ Ya. Since Xa C Y3, we have za = yf for some
y € Y, thus y8 = xa € Xa implies ya = yfB. Hence ra = ya € Ya which is a

contradiction. Therefore, o € F'.

3.2 Compatibility

Recall that an element v € T(X,Y) is said to be left compatible with < if yao < vf3
for all o, 8 € T(X,Y) such that a < (. Right compatibility with < is defined
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dually. In this section, we will find out elements of T'(X,Y") which are compatible
with < on T(X,Y).

We note that if |Y'| = 1, then |T(X,Y)| = 1 which implies that an element
in T(X,Y) is left and right compatible. So we assume that |Y| > 1.

Theorem 3.2.1 Let~y € T(X,Y). Then v is left compatible with < on T(X,Y) if

and only if Y =Y~.

Proof. We prove the only if part of the theorem by contrapositive. Assume that
Y # Y, then there exists y € Y \ Y~. Since |Y| > 1, there is z € Y such that
z#1y. We define o, 5 € T(X,Y) by za = y for all x € X and

y ife=y
z ifx#uy.

PP

We have Xa ={y} C{y, 2} =Y, 13 C X x X =m, and if 5 € X = {y}, then
zf3 =y = xa. Therefore a < § by Theorem 3.1.3. Since Xya = {y} € {z} = Y+f
which implies that ya £ /3, we have v is not left compatible with < on T(X,Y’).
Conversely, assume that Y = Y. Let o, 8 € T(X,Y) such that a < S.
We have Xva € Xa C Y3 = Yy8. Let (z,y) € mys, then av8 = yyB8. So
(z7y,y7) € s C mq, then zya = yya. Thus (x,y) € T4, and that w5 C 7. Let
xyB € Xya. Then avyf € Xa. So xya = zyf5. Hence ya < v/ by Theorem 3.1.3,
therefore ~ is left compatible with < on T(X,Y).
|

Example 3.2.2 Let X = {1,2,3,4,5,6},Y = {1,2,3,4}. We define o« € T(X,Y)
by

1 23456
4 21 3 2 4

We see that Ya = {1,2,3,4} =Y. Thus « is left compatible with < on T'(X,Y)
by Theorem 3.2.1.
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Lemma 3.2.3 If |Y| = 2, then v is right compatible with < on T(X,Y) for all
v e T(X,Y).

Proof. Assume that |Y| = 2 and o, 8 € T(X,Y) with a < 3. We first prove
that « = f or |Xa| = 1. Suppose that | Xa| > 2. So 2 < |Xa| < |Y] = 2,
then Xa =Y. Foreach z € X, z € X CY = Xa and hence xrao = z3 by
Theorem 3.1.3. Thus a = 3. Now, let v be any element in T(X,Y). If o = f,
then ay = Bv. If | Xa|] = 1, then « is a constant map, this implies that av is
also a constant map and that m,, = X x X, so m3, C m,,. Since o < 3, we have
Xa C Y and thus Xay C YSy. If vy € Xavy, then x5y = zay since ay is a

constant map. Hence ay < (7.

In the proof of the following theorem, we shall use the notation

to mean that o € T(X,Y’) and take as understood that the subscript i belongs to
some (unmentioned) index set I, the abbreviation {a;} denotes {a; :i € I} C Y,

and that Xa = {a;} and a;a™! = X;.

Theorem 3.2.4 Let |Y| > 2 and v € T(X,Y). v is right compatible with < on
T(X,Y) if and only if |Y~| =1 or |y is injective.

Proof. Let a,8 € T(X,Y) be such that a < . If |Yv| = 1, then for each
x € X we have ray = (za)y € Yy and x4y = ()7 € Y~ which implies that
xay = xfv since |Yv| = 1 and that ay = fBv. Next, we prove that if |y is
injective, then ay < (v. Since a < (3, we get Xa C Y which follows that
Xay CYpy. Let (z,y) € mgy. Then x5y = yfy. Since 7]y is injective, we have
xzff = yf which implies that (z,y) € 73 C 7, S0 za = ya, then zay = yay
which implies that (z,y) € ma,. Therefore mg, C 7m4,. Let 28y € Xay. Then
xfy = yary for some y € X. Since |y is injective, we have 28 = ya € Xa. By
Theorem 3.1.3, za = xf. Thus xay = xfvy. Therefore ay < (v by Theorem
3.1.3.
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Conversely, we prove by contrapositive. Assume that |Yy| > 1 and 7|y
is not injective. Since 7|y is not injective, there exist b,c € Y such that b # ¢
and by = ¢y = y for some y € Y. Since |Yy| > 1 and |Y| > 2, so there exists
a € Y,b=# a # ¢ such that ay = x for some x € Y and z # y . We write

A Ay X
Y= )
T Yy Y

where a € Ay and b, ¢ € Ay. We define o, f € T(X,Y) by

{a,0} X\ {a,b} 5 a b X\{a,b}

a c a b c

Next, we show that « < 3. We see that Xa = {a,c} = Ya which follows that
a € F. Then we can prove by Corollary 3.1.6. We see that K(a, ) = {z €
X twa # xf} = {b}. Let v € K(o,8) = {b}. Then 2z = b8 = b ¢ Xa and

xa=ba=a=af €Y. Thus o < 5 and we can see that

{a, 0} X\ {a, b} gy | ° X\ {a}
gl

Z Y € )

We see that by = y € Xay but bary = x # y = bfB~. Therefore ay £ fy which
implies that + is not right compatible with < on T(X,Y).
|

Example 3.2.5 Let X be the set of all intergers, Y a set of all nonnegative integers.

(1) We define a € T(X,Y) by naw = |n|. Then

-6 -5 -4 -3 -2 -1 012 3 456
6 5 4 3 2 10123456

We see that aly is injective. Thus « is right compatible with < on T(X,Y) by
Theorem 3.2.4.
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(2) Let 8 € T(X,Y) which is defined by

1 ifn>0

n otherwise.

Then

-6 -5 -4 -3 -2 -1 0123456
-6 -5 -4 -3 -2 -1 1111111

Then Y5 = {1} which follows that |Y 3| = 1. Thus § is right compatible with <
on T(X,Y) by Theorem 3.2.4.
|

Now, let X =Y. We get the following corollaries which are from Lemma
3.2.3, Theorem 3.2.1 and Theorem 3.2.4. The second corollary below first appeared
in [2].
Corollary 3.2.6 If | X| = 2, then the following statements hold:

(1) v is left compatible with < on T(X) if and only if v is surjcetive;
(2) v is right compatible with < on T(X) for all v € T(X).

Corollary 3.2.7 Let | X| > 3 and v € T(X). Then the following statements hold:
(1) 7 is left compatible with < on T(X) if and only if ~ is surjcetive;
(2) ~ is right compatible with < on T(X) if and only if v is injective or constant.

3.3 Maximal and Minimal Elements

In this section, we will study the maximal and minimal elements of the semigroup
T(X,Y) with the natural order. We also prove that every element in T'(X,Y)

must lie between maximal and minimal.

Lemma 3.3.1 Let o« € T(X,Y). If o ¢ I or « is surjective or « is injective, then

« 18 @ mazrimal element.
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Proof. Let § € T(X,Y) be such that a < 5. If « ¢ F, then @« = 8 by Lemma
3.1.7. If « is surjective, then we have 23 € Y = X« for all z € X, thus by
Theorem 3.1.3 xav = x5, hence o = 5. Now, consider the case « is injective. For
each r € X, we have ra € Xa C Y since a < . That is ra = yf for some
y € Y which implies that y8 € Xa. By Theorem 3.1.3, we have ya = y3. Thus
ra = ya. Since « is injective, we get x = y. It follows that xa = x3, and that

«a = 8. Therefore o is a maximal element.

Theorem 3.3.2 Let o« € T(X,Y). Then « is mazimal if and only if « ¢ F or «

18 surjective or o 1S 1njective.

Proof. Assume that o € F, Xa # Y and « is not injective. Since Xa # Y, we
have there exists a € Y such that a ¢ Xa.

Case I: o]y : Y — Y is injective. Then X # Y. We choose x € X'\ Y and
define f € T(X,Y) by

B za if 24
a if z=u.
Since xff = a ¢ Xa, it follows that o« # 5. We show that @ < 8 by Theorem
3.1.3. Since a € F, Xa=Ya=Yp. Let (m,n) € mg. Then mfB =np. f m==x
and n # x, we have na = nff = mf3 = a ¢ X« which is a contradiction. Tt is
concluded that m = x = n or m # x # n, thus ma = na. So (m,n) € m,. Let
yB € Xa. If y = x, then yf8 = a ¢ X« which is a contradiction. Thus y # z, then
yp = ya. Therefore o < .

Case IL: oy : Y — Y is not injective. Then there exist p, g € Y such that
pa = qa and p # q. We define € T(X,Y) by

zao if 2
o) 7D
a if z=0p.
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Since a € X but a ¢ Xa, we get @« # . We show that a < by Corollary
3.1.6. It is not hard to see that K(«, ) = {x € X : xa # z8} = {p}. Let
x € K(a,B) = {p}. Weget 28 =pp=a¢ Xaand za =pa = qu = gp € Yp.
Therefore o« < 3. It is concluded that « is not maximal.

The converse is Lemma 3.3.1.

Example 3.3.3 Let X be the set of all integers and Y the set of all even numbers.
(1) We define o € T(X,Y) by

n—1 if24n
no =
n otherwise.

We see that

-6 -5 -4 -3 -2 -1 0123456
-6 6 -4 -4 -2 -2 00 2 2 4 46

Then « is surjective. By Theorem 3.3.2; o is maximal.
(2) Consider f € T(X,Y) which is defined by nf = 4n for all integers n.
Then £ is injective. By Theorem 3.3.2, we have [ is maximal.

(3) Let v € T(X,Y) which is defined by

2 if2|n

0 otherwise.

Then

-6 -5 -4 -3 -2 -1 0123456
2 0 2 0 2 0 202020 2
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We see that Yy = {2} € {0,2} = X+. Then v ¢ F which follows that ~ is

maximal by Theorem 3.3.2.

Theorem 3.3.4 Let o € T(X,Y). « is minimal if and only if | Xo| = 1.

Proof. Suppose that o : X — {a} for some a € Y. Let 8 € T(X,Y) be
such that f < a. By Theorem 3.1.3, we have X3 C Ya. Let x € X. Then
zf € X CYa={a}. Hence z8 = a = xa, then a = f.

Conversely, we prove by contrapositive. Assume that | X«| > 1. We choose
y € Ya and define § € T(X,Y) by 28 = y for all z € X. Since |Xf| = {y}| =
1 < |Xal, it follows that 5 # «. We show that f < « by Theorem 3.1.3. We
can see that X3 = {y} C Yo, 71y, € X x X = m3. Let za € X = {y}. Then
ra =1y = xf. Thus f < a which follows that « is not minimal.

Example 3.3.5 Let X be the set of all real numbers, Y the set of all natural
numbers. Let n € N. We define o, € T(X,Y) by xa,, = n for all x € X. Thus
| X a,| = |[{n}| = 1 which follows that «,, is minimal by Theorem 3.3.4.

[

If X =Y, it follows that T(X) = F. Thus by Theorem 3.3.2 and Theorem
3.3.4 we have the following corollary which first appeared in [2].

Corollary 3.3.6 An element o € T(X) is mazimal with < on T(X) if and only if

a 18 surjective or injective; o is minimal if and only if a is a constant map.

Lemma 3.3.7 Let |Y| > 2 and o € T(X,Y), then there exists 5 € T(X,Y) such
that B £ «.

Proof. We consider « in two cases:



18

Case I: o is not injective. Then there exist z,y € X such that ra = ya = a
for some a € Y and = # y. Since |Y| > 2, there exists b € Y such that b # a. We
define g € T(X,Y) by

za ifz+4x
zp = 7

b ifz=u=x.

We see that za = ya = yf € X but xa = a # b= xf3. Therefore § £ .

Case II: « is injective. Since |Y| > 2, we choose p,q € Y such that p # q.
Then pa # qa. We define 5 € T(X,Y) by

if 2z =
2B = qo p
pa if 2 #£ p.

We see that pa € X8 but pf = qa # pa, then § £ a.

Remark 3.3.8 If |Y| > 2, then T(X,Y') has no mazimum element.

Proof. Suppose that o € T(X,Y) is a maximum element, then § < « for all
p € T(X,Y) which contradicts Lemma 3.3.7.
|

Lemma 3.3.9 Let |Y| > 2 and a € T(X,Y), then there exists § € T(X,Y) such
that o % .

Proof. If | X«| > 2, then there exist z,y € X and x # y such that xa # ya. We
define 8 € T(X,Y) by 28 = xa for all z € X, then ya € Xa but ya ¢ {xa} =Y p.
Therefore Xa ¢ Y 8 which follows that @ £ 5.

If | Xa| =1, then a : X — {a} for some a € Y. Since |Y| > 2, there exists
b € Y such that b # a. We define § € T(X,Y) by 28 = b for all z € X. Then
Xa = {a} € {b} = Y which implies that a £ 5.
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Remark 3.3.10 If |Y| > 2, then T(X,Y) has no minimum element.

Proof. Similarly to Remark 3.3.8.
[

Theorem 3.3.11 Let o € T(X,Y). Then there exists a mazimal element 5 €
T(X,Y) such that a < 3.

Proof. If o is a maximal element, then we let 5 = o and o < 5. Now, suppose
that a is not maximal. We have o« € F' and « is not surjective and injective by
Theorem 3.3.2. Let C(a) = {za™ : z € Y and |za~!| > 1}. Since « is not
injective, we have C'(«) is nonempty. Since o € F' and « is not surjective, we get
Ya=Xa VY, thus Y\ Xa # (). For each C € C(a), choose do € C NY, then
C\{dc} # 0. We consider in two cases.

Case It [Ucco(a)(C\{dc})| = [Y'\ Xal. Then there exists an injection
such that

v:Y\Xa— |J (€\{de}).

CeCl(a)
For each z € imv, |277!| = 1 since v is injective, so let zy™! = {g.}. We define

peT(XY) by

., if z €im
2B= g Y

zao otherwise.
Then K(«, ) = imy. Let x € K(«a, ). We have x5 = g, € Y \ Xa. Since
r € K(a, ), we get @ € C\ {dc} for some C' € C(«). Then za = dea =
def € Y3 since de ¢ imvy. For each p,q € K(«, ) = imy with p # ¢, we have
pB =g, €Y\ Xa, and pff = g, # g, = qf since v is a function. Therefore a < 3
by Corollary 3.1.6. Next, we show that ( is surjective by lettingy € Y. If y € Xa,
then y = za for some x € X. Forif z € imv, then y = za = do,a = d¢, B for some
Cy € C(a), but if x ¢ im~, then y = xa = xf. In the other hand, if y € Y\ Xa,
then yy € imvy and that (y7)8 = g, € (y7)7~ " = {y}, thus (y7)8 = y. Therefore
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B is surjective which implies that § is maximal by Theorem 3.3.2.

Case IT: | o) (C \ {dc})| <Y\ Xa|. Then there exists an injection

v such that
v: |J (©\{de}) = Y\ Xa.
CeC(a)
We define 5 € T(X,Y) by
zvy if z € domy
zp =

zo otherwise.

In this case we have K(«, 3) = dom~y. Let © € K(«a, 8). Then 28 =2y € Y\ X«
and xa = dea = deof € Y3 for some C € C(«). For each p,q € K(«,3) with
p # q we have |, pB = py # qy = ¢f since v is injective. Therefore o < ( by
Corollary 3.1.6. Next, we show that [ is injective. Let x5 = yB. If x € dom~,
then ys = x8 =y € Y\ Xa, so y € domy (if y ¢ dom~y, then yf = ya € Xa)
and thus v = x5 = yf = yv, hence x = y since v is injective. If x ¢ dom~, then
yB =8 = xa € Xa, thus y ¢ domy (if € dom~y, then y5 = yy ¢ X«) and hence
ra = xf = yf = ya. From z,y ¢ dom~y, we get x,y € {dc : C € C(a)} U{x :
|lva~t| = 1}, thus © = y. Therefore, 8 is injective and S is maximal by Theorem
3.3.2.

|

Example 3.3.12 Let X = {1,2,3,4,5,6}, Y = {1,3,5}. We define o € T(X,Y)
by

1 23 456
1 11155

We have Xa = {1,5} = Y« which follows that & € F. And we see that « is
not surjective and injective. By Theorem 3.3.2, « is not maximal. Then there is

p € T(X,Y) such that
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1 23 456
113355

We see that a < fand X5 = {1,3,5} = Y which follow that j is surjective. By

Theorem 3.3.2, § is maximal. Therefore « lies below some maximal elements.

Theorem 3.3.13 Let o € T(X,Y). Then there exists a minimal element 5 €
T(X,Y) such that 8 < «.

Proof. Since Yo # ), we choose a € Ya. Let 8 be the constant map with image
{a}. Then f is a minimal element by Theorem 3.3.4. We see that X3 = {a} C Y«
and m, € X x X = mg. Let za € X = {a}. Then va = a = zf. Therefore
B < a by Theorem 3.1.3.

|

Example 3.3.14 Let X be the set of all real numbers, Y the set of all nonnegative
real numbers. We define o € T(X,Y) by xa = |z| for all x € X. We see that
| Xa| > 1 which implies that « is not minimal by Theorem 3.3.4. Let ¢ be a
nonnegative real number. Consider 8. € T'(X,Y’) which is defined by z3. = ¢ for
all z € X. We see that 5. < a. Since | XS] = |[{c}| = 1, we get (. is minimal by
Theorem 3.3.4. Therefore « lies above some minimal elements.

By Theorem 3.3.11 and Theorem 3.3.13, we have the following result im-

mediately.

Corollary 3.3.15 Every element in T(X,Y') must lie below some mazimal and lie

above some minimal elements.

3.4 Covering Elements

Recall that an element 5 € T(X,Y) is called an upper cover for a € T(X,Y)
if & < 8 and there exists no v € T(X,Y) such that & < v < . Lower cover
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is defined dually. In this section, we describe the covering elements in T'(X,Y)

where Y| > 1. We first give the following remark.

Remark 3.4.1 Let o, B € T(X,Y). Then « is a lower cover for 8 if and only if B

s an upper cover for c.

Proof. Let « be a lower cover for 5. Then a < 8 and there exists no v € T(X,Y)
such that a < v < . Therefore § is an upper cover for o by the definition.

The converse is similar to the first part.

Lemma 3.4.2 Let o, € T(X,Y) and a < 8. If Xao = X3, then a = 5.

Proof. Let x € X. Since z € X3 = X«, we have xa = xf by Theorem 3.1.3.
Thus a = .
|

Lemma 3.4.3 Leto, f € T(X,Y). If B is an upper cover for a, then |Y 5\ Xa| =0

or 1.

Proof. Let 3 be an upper cover for «. It follows that o < 8 and that Xa C Y§.
Suppose that |Y 3\ Xa| > 2 which implies that there exist a,b € Y3\ Xa such
that a # b. We define v € T(X,Y’) by

za if z ¢ af™?

2y = .
a ifzeafh

Since a € Xv but a ¢ X«, we have o # . Since b € Y 3, we have b € X 3. Since
Xv C XaU{a}, we get b ¢ X~, then v # 3. Therefore o # v # 5. Next, we
show that a <y < .

Firstly, we prove that a < ~ by Theorem 3.1.3. Let za € Xa. Since
Xa CYS, we have za = yf for some y € Y which follows that y5 € Xa. Thus
ya = yB by Theorem 3.1.3. Since a ¢ X, we have y3 = xa # a. Then y ¢ af™!
which implies that xa = yf8 = ya = y7y. Therefore za € Y+ which implies that
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Xa C Y~. Let (z,y) € my, then vy = yy. If ¢ af~" and y € af~!, then
1y = za # a = yy which is a contradiction. That is z,y ¢ af™'; or 2,y € a8~
If 2,y ¢ af~!, then xa = v = yy = ya and (x,y) € 7,. If 2,y € af~!, then
zf =a=yB and (z,y) € 7 C 7. Thus 14 C 7. Let 2y € Xa. If x € a8,
then 2y = a ¢ Xa which is a contradiction, so # ¢ af8~! which implies that
xy = xa. Therefore o < 7.

Finally, we show that v < 8 by Theorem 3.1.3. Let 2y € X~. We have
Xy C XaU{a} CYpPU{a} =Y sincea € Y. Thus Xy C Y}. Let (x,y) € mg,
then 28 = yfB. Since 75 C 7,, we have za = ya. If v ¢ af~ and y € a8,
then y3 = a # x8 which is a contradiction. So x,y ¢ af™'; or x,y € af~'. If
z,y ¢ aft, then vy = va = ya = yy and that (v,y) € m,. If 2,y € af", then
ry = a = yy and that (v,y) € my. Therefore 73 C m,. Let 2 € X~. Then
2B € XaU{a}. If 28 = a, then x € af~! which implies that 2y = a = 8. If
8 € Xa, then 2 = za (since a < 8). Thus 28 = za = a7y (since x ¢ af™1).
Therefore v < .

It is concluded that o@ < v < 3. This contradicts the hypothesis that £ is
an upper cover for a. Therefore |Y 3\ Xa| =0 or 1.

|

Lemma 3.4.4 Let 3 be an upper cover for . If |Y B\ Xa| =1, then | X\ Xa| = 1.

Proof. Suppose that |V \ Xa| = 1 and |XB\ Xa| # 1. If | X8\ Xa| = 0,
then X3 C Xa. Since a < B, we have Xa C Y3 C X3, thus X = Xa. By
Lemma 3.4.2, we have v = 8 which is a contradiction, then | X3\ Xa| > 2. Let
yB €Y\ Xa for some y € Y. We define v € T(X,Y) by

yp if 28 =yp

za otherwise.

2y =

Since yf5 ¢ Xa but yB8 = yy € X, we have o # 7. Since | X5\ Xa| > 2 and
yB € Y\ Xa C XB\ Xa, there exists 3 € X\ Xa such that =5 # yf and
x¢Y (ifz eV, then 28 € Y\ X and 28 = yf since |[Y B\ Xa| = 1). We have
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xy = xa € Xa since x5 # yf but 28 ¢ X, we have vy # x which implies that
v # (. Next, we show that a <~ < by Theorem 3.1.3.

Firstly, we prove that @ < 7. Let pa € Xa. Since Xa C Y3, we have
pa = gqf for some g € Y. Since ¢ = pa € Xa and « < 3, we have ¢ = qa. If
4B = yp, then pa = qff = qy € Y. If ¢f # yf, then pa = ¢f = qa = ¢y € V.
Therefore Xa C Y. Let (u,v) € m,. Then uy = vy. Suppose that v = yf and
vB # yfB, then uy = yB and vy = va. Since uy = yf ¢ Xa and vy = va € Xa,
we have uy # vy which is a contradiction. Thus this case is impossible. So
uf = yB = vB or uf # yp # vB. If up = yp = vp, then (u,v) € 13 C m,. If
uf # ypB # vf, then ua = uy = vy = va which implies that (u, v) € 7,. Therefore
my C m,. Let wy € Xa. We have wf # yf (if wB = yf, then yf = wy € Xa),
then wvy = wa.

Finally, we show that v < . Let py € X~. If pf = yf, then py = yf €
Y. If pB # yB, then py = pa € Xa C Y. Therefore Xy C Y 3. Let (u,v) € ms.
Then uf = vp. If up = yB = vf, then uwy = uf = v = vy which follows that
(u,v) € my. I uf # yf # vp, then uy = ua and vy = va. Since (u,v) € 15 C 7y,
we have uy = ua = va = vy which implies that (u,v) € m,. Therefore 75 C ..
Let wf € X7v. Since Xy € Xa U {yB}, we have wf € Xa or wf = yB. If
wh € Xa, then wf # yf since yf ¢ Xa. Thus wy = wa. Since wf € Xa and
a < B, we have wa = wf. Then wy = wp. If wp = yB, then wy = ys = wp.

It is concluded that o < v < B which contradicts the hypothesis that [ is
an upper cover for a. Therefore | X3\ Xa| = 1.

[

Theorem 3.4.5 Let o, 5 € T(X,Y). Then ( is an upper cover for « if and only
iof the following statements hold:

(1) o < B;

(2) [YB\ Xa| =0 or | X5\ Xa| = 1.

Proof. Firstly, assume that (1) and (2) hold. Let v € T(X,Y) be such that
a<y< B IYB\ Xal=0,then Y3 C Xa. Since a < 3, we have Xa C Y3,
thus Y3 = Xa. We have Xa C Y~y C Xy C Y = Xa, thus Xa = X~ and that
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a = 7. Now, we consider the case | X[\ Xa| = 1. Since a < v < 3, we have
XaCYyC Xy CYpSCX}g. Since [ X\ Xa| =1, it follows that Xa = X~ or
X~y = Xp. Thus a = v or v = 8 by Remark 3.4.2.

To prove the converse, assume that 3 is an upper cover for . Then o < 3
and |Y 5\ Xa|] = 0 or 1 by Lemma 3.4.3. Suppose that |Y 5\ Xa| # 0, then
Y8\ Xa| =1. By Lemma 3.4.4, we have | X3\ Xa| = 1.

|

Theorem 3.4.6 Let o, € T(X,Y). Then « is a lower cover for ( if and only if

the following statements hold:
(1) a < p;
(2) [YB\ Xa| =0 or | Xp\ Xa|=1.

Proof. If a is a lower cover for 3, then @ < . By Remark 3.4.1, 8 is an upper
cover for «, and by Theorem 3.4.5 we get |[Y 5\ Xa|=0or | X5\ Xa| = 1.
If (1) and (2) hold, then by Theorem 3.4.5 we have 3 is an upper cover for

« and Remark 3.4.1 gives « is a lower cover for f3.

Example 3.4.7 Let X = {1,2,3,4}, Y ={1,2,3}. We define o € T(X,Y) by

1 2 3 4
1121

Consider 8,7 € T(X,Y) which are defined by

1 2 3 4 1 2 3 4
Y
112 3 31 2 3

We can see that o <  and o < . Since Y5 = {1,2} = Xa, we get |Y 5\ Xa| =0
which follows that /3 is an upper cover for a by Theorem 3.4.5. Since X~ = {1, 2, 3}
and Xa = {1,2}, then | Xv\ Xa| = |[{3}| = 1 which follows that  is also an upper

cover for av by Theorem 3.4.5.
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Conversely, we can see that « is a lower cover for § and ~ by Theorem

3.4.6.

Theorem 3.4.8 Every nonmazimal element in T(X,Y") has an upper cover.

Proof. Let o be a nonmaximal element in 7(X,Y’). By Theorem 3.3.2, « € F

is not injective and surjective. Then there exist u,v € X such that u # v and

uc = va. Since Xa # Y, there exists w € Y\ Xa. We define 5 € T(X,Y) by

if
B za if z £

w if z=u=x.

Then w € X3 but w ¢ Xa, thus a # . We prove that o < 8 by Corollary 3.1.6.
We see that K(a, ) = {x € X : za # 28} = {u}. Let a € K(«a, f) = {u}. We
have aff = uf = w ¢ Xa and ac = ua = va = v € Y 3. Therefore a < f.

Next, we show that |Y5\ Xa| = 0or | XS\ Xa| =1 by considering u € Y
oru¢Y.

If w € Y, we show that | X\ Xa| = 1. By the definition of 3, we get
w € X\ Xa. To prove the uniqueness, assume that there is b € X5\ Xa, then
b = ¢f for some ¢ € X. If ¢ # u, then ¢ = ca. Thus b = caw € X« which is a
contradiction. Hence ¢ = u, then b = ¢f5 = ufs = w. Therefore | X5\ Xa| = 1.

If u¢ Y. We prove that |Y5\ Xa| = 0. Let y5 € Y3 for some y € Y.
Since u ¢ Y, we have y # u which follows that y8 = ya € Xa. Then Y3 C Xa.
Since a < 3, we have Xa C Y3 by Theorem 3.1.3. Therefore Y5 = Xa which
implies that |Y 3\ Xa| = 0.

By Theorem 3.4.5, 3 is an upper cover for a.

Theorem 3.4.9 FEvery nonminimal element in T(X,Y) has a lower cover.

Proof. Let o be any nonminimal element in 7'(X,Y"). By Theorem 3.3.4, | Xa| > 1.
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Case I: « € F. Since |Xa| > 1, there exist z,y € X« such that © # y.
We define g € T(X,Y) by

za if z ¢ wa™!

zfB =
y if z € za”t

We show that 8 < « by Theorem 3.1.3. It is obvious that X5 C Xa = Y« (since
a € F). Let (a,b) € mq. Then aa = ba. If a,b € xa™!, then a8 = y = bB3. If
a,b & xa™! then a8 = aa = ba = bf. Therefore 1, C 75. Let aa € XB. If
a € za~!, then aa = x ¢ X[ which is a contradiction. Thus a ¢ za~! which
implies that ac = af8. Therefore f < . Next, we show that |[Xa \ X5| = 1. We
know that z € Xa\ X 3. Assume that there is u € X\ X, then u = va for some
veX. Ifvéxat then v3 = va. Thus u = v € X8 which is a contradiction.
Hence v € za~! which follows that u = va = . Therefore | Xa '\ X| = 1. Since
x € Xa '\ X, we have a # (.

By Theorem 3.4.6, 3 is a lower cover for a.

Case II: « ¢ F. Then Ya € Xa. We choose y € Ya and define § €
T(X,Y) by

za ifza€Ya

y if za ¢ Ya.

z2fp =

We show that 5 < a by Theorem 3.1.3. By the definition of 3, we have X3 C Ya.
Let (a,b) € my. Then aa = ba. If acv = ba € Ya, then aff = ace = ba = bf which
implies that (a,b) € ms. If aa = ba ¢ Y, then aff = y = b which follows that
(a,b) € mg. Hence m, C ms. Let aaw € XB. Since X3 C Ya, we have ax € Ya
which implies that aa = af3. Therefore 5 < «. Next, we show that |Ya\ X5| = 0.
Let aa € Y. By the definition of 3, we get aa = a5 € X 3. Hence Yoo C X3, and
that [Ya\ X3| = 0. Since a ¢ F', we have Ya # X«. Then thereis p € Xa'\ Ya.
Since f < «, we get X3 C Yo and p ¢ Ya implies p ¢ X 3. Thus a # f.
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Therefore 3 is a lower cover for a by Theorem 3.4.6.

Example 3.4.10 Let X = {1,2,3,4} and Y = {1,2,3}. The notation abcd for a
map « € T(X,Y) means that la = a,2a = b,3a = ¢, 4a = d. We have:

(1) the set of all maximal elements in T'(X,Y") is {1231, 1232,1233, 1321,
1322, 1323, 2131, 2132, 2133, 2311, 2312, 2313, 3121, 3122, 3123, 3211, 3212, 3213,
1213, 1223, 1312, 1332, 2113, 2123, 2321, 2331, 3112, 3132, 3221, 3231, 1123, 1132,
9213,2231, 3312, 3321, 2221, 3331, 1112, 3332, 1113, 2223}

(2) the set of all minimal elements in T(X,Y) is {1111, 2222, 3333};

(3) the following diagrams show upper and lower covers for some nonmax-

imal and nonminimal elements:1121,3113 and 2122.

3121 3123 1321 1323 1123
1121
1111 2222
3123 3213 3112
3113

1111 3333
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3122 3123 2132 2133 2123

2122

1111 2222



