Chapter 2
Preliminaries

In this chapter, we will briefly review some concepts and some results of Semigroup
Theory and Universal Algebra, without any proofs and which are basis for this thesis.

For more details see [1], [2], [5], [6], [7], [14], [16], [17], [18], [20], and [26].

2.1 Semigroups

2.1.1 Elementary Concepts of Semigroups

An element e in a semigroup S is called idempotent if e = e, and we set F(S)
to be the set of all idempotent elements in S. An idempotent semigroup or band is a
semigroup in which every element is idempotent. A semilattice is a commutative band.

An element a in a semigroup S is called regular if a = aba for some b in S. A
semigroup S is reqular if every element in S is regular.

An element a in a semigroup S is called left zero (right zero) if ab = a (ba = a) for
every b in S. An element a in S is called zero if it is both left zero and right zero. A
left zero (right zero) semigroup is a semigroup in which every element is left zero (right
Z€r0).

Let S be a semigroup and ) # A C S. A is called a left ideal (right ideal) of S if
SAC A (AS C A). Ais an (two-sided) ideal of S if it is both a left and a right ideal
of S.

A semigroup S is called a left simple semigroup (right simple semigroup, simple
semigroup) if S is the only left ideal (right ideal, ideal) of S.

From the definition, we see that every left simple semigroup and every right simple
semigroup are simple semigroups.

A monoid is a semigroup with an identity 1.

The subsemigroup < a > of a semigroup S generated by a consists of all positive

integral powers of a: < a >:= {a,a? ...}. If S =< a > for some a € S, then S is



called a cyclic semigroup. In general case, we call < a > the cyclic subsemigroup of S

generated by a. The order of a is defined to be the order of < a >.

2.1.2 Green’s Relations

Let S be a semigroup and 1 ¢ S. We extend the binary operation from S to SU{1}
by define 1 = 1o = x for all x € SU{1}. Then SU{1} is a semigroup with an identity
1.

Let S be a semigroup. Then we define,

g1 S if S has an identity,
SU{l} otherwise.

Let S be a semigroup and f # A C S. We now set

(A, = N{L|L is a left ideal of S containing A},
(A), = N{R|R is a right ideal of S containing A},

(A); = N{I|] is an ideal of S containing A}.

Then (A);,(A), and (A); are left ideal, right ideal and ideal of S, respectively. We
call (A); ((A), (A);) the left ideal (right ideal, ideal) of S generated by A.

It is easy to see that

(4), = S'A=SAUA,
(A), = AS'=AUSA,
(4);, = S'AS'=SASUSAUASU A.

For ay,aq, ..., a, € S, we write (a1, as, ..., a,); instead of ({a,as, ...,a,}); and call
it the left ideal of S generated by ay, as, . .., a,. Similarly, we can define (a1, as, ..., a,),
and (ay,ag,...,a,);. If Ais a left ideal of S and A = (a); for some a € S, we then
call A the principal left ideal generated by a. We can define principal right ideal and

principal ideal in the same manner.



Let S be a semigroup. We define the relations £, R, H,D and J on S as follows:

alb &
aRb < (a), = (b),,

H = LNR,
D = LoR,
aJb < (a); = (b);

Then we have, for all a,b € S

alb < SaU{a}=5bU{b}
& S'a= 8%
& a=axband b= ya for some z,y € S,
aRb < aSU{a} =0bSU{b}
& aS' =0bS!
& a=bz and b = ay for some z,y € S*,
aHb < alb and aRb,
aDb < (a,c) € L and (¢,b) € R for some ¢ € S,
aJb & SaSUSaUaSU{a} =SbSUSbUbLS U {b}
& Stas' = S'hs?
& a=xby and b = zau for some z,y, z,u € S*.

Remark 2.1.1. Let S be a semigroup. Then the following statements hold.
(i) L,R,H,D and J are equivalence relations.
i) HSCLCDCJandHCRCDCJ. u

We call the relations £, R, H,D and J the Green’s relations on S. For each a € S,
we denote L-class, R-class, H-class, D-class and J-class containing a by L., R,, H,, D,

and J,, respectively.



2.2 Universal Algebra

2.2.1 Algebras

Let A be a non-empty set and n € N, where N = {1,2,...,}. We define A" =
{(ay,...,a,) | ai,...,a, € A}. A function f4: A" — A is called an n-ary operation
defined on A, and is said to have arity n.

Let (f:)ier be a sequence of operation symbols, where I is an indexed set. To each
fi; we assign an integer n; > 1 as its arity. A type 7 is the sequence of arity of f; for all
i € I. We always write 7 := (n;)e;-

Let 7 := (n;);er be a type with the sequence of operation symbols (f;)ic;. An
algebra of type T is an ordered pair A := (A; (f{)icr), where A is a non-empty set and
(f#)ier is a sequence of operations on A indexed by a non-empty indexed set I such
that to each ng-ary operation symbol f; there is a corresponding ns-ary operation f/
on A.

The set A is called the universe of A and the sequence (f{);c; is called the sequence
of fundamental operations of A. An algebra is called a trivial algebra if its universe is
a singleton set. We denoted by Alg(7T) the class of all algebras of type 7.

Let A := (A; (f)ics) and B := (B; (fP)ic1) be algebras of type 7. Then an algebra

B is called a subalgebra of A, written as B C A, if the following conditions are satisfied:
(i) B C A,
(ii) for every i€ I, f# |p= fE.

A relation < on a non-empty set P is called a partial ordering on P if (1) a < a,
(2) a <band b <aimply a =5, and (3) a < band b < cimply a < c. If < is a partial
ordering on P, the ordered pair (P, <) is called a partially ordered set. A partially
ordered set (P, <) is called a lattice if for every x,y € P both sup{z,y} (supremum
of x and y) and inf{x,y} (infimum of z and y) exist in P. Let L be a non-empty
subset of P. Then L := (L, <) is called a sublattice of P := (P, <) if z,y € L implies
sup{z,y} € L and inf{x,y} € L. A partially ordered set (P, <) is called a complete
lattice if for every non-empty subset L of P both supL and infL exist in L.

Let S be a semigroup and E(S) # (). Define e < f (e, f in E(9)) iff ef = fe =e.
Then < is a partial ordering on E(S). If e < f, we say that e is under f and that f



is over e. Then < is a partial ordering on E(S). We shall call < the natural partial
ordering on E(S). An idempotent element e # 0 in a semigroup S is called primitive
if f <eimplies f =e for all f in E(S).

Note that the lattice (P, <) can be considered as an algebra of type 7 = (2,2).
Indeed, we define two binary operations, denoted by V and A, then so-called join
and meet, respectively, by a V b := sup{a,b} and a A b := inf{a,b} for all a,b € P.
This algebra satisfies a list of axioms containing the associative laws, the commutative
laws, the idempotency laws for both operations and the absorption laws, i.e. Va,b €
PaV(aANb)=a=aA (aVD).

Let A = (A; (f1)icr) and B = (B; (f2)icr) be algebras of the same type 7 = (n;)ic;.

A function h : A — B is called a homomorphism from A to B if for all ¢ € I,

h(fiA(ala S 7ani)) = fiB(h(al)’ R h(anz))v

for all ay,...,a, € A. If the function A is onto, then the homomorphism h : A — B
is called an epimorphism. If the function h is one-to-one, then the homomorphism
h: A — B is called an embedding, and is called an isomorphism if h is bijective. We
call A isomorphic to B denoted by A = B if there is an isomorphism A from A to
B. A homomorphism h : A — A is called an endomorphism of A, and is called an
automorphism if h is an isomorphism from A onto A.

Let A be a non-empty set, § C A x A an equivalence relation on A and f an n-ary
operation on A. Then f is said to be compatible with 0, if for all a4, ..., a,,b1,...,b, €
A

(a1,b1) €0,... (an,by) € 0= (f(a1,...,a,), f(b1,...,b,)) € 0.

Let A = (A; (f1)ier) be an algebra of type 7 = (n;);e;. An equivalence relation 6 on
A is called a congruence relation on A if all fundamental operations f;! are compatible
with §. We denote by Con(.A) the set of all congruence relations on the algebra A.

Let 6 be a congruence relation on an algebra A. For each i € I, we define an n;-ary
operation fZA/ % on the quotient set A/6, the set of all equivalence classes on A with

respect to 6,

;M7 (Ao — A0

defined by

(lasos - lano) = " (([alos - [anJo)) = [f(ars - an)o.



The algebra A/0 = (A/6: (f?)ic;) is called the quotient algebra or factor algebra
of A by 6.

Let @ be a congruence relation on an algebra A and .4/60 be the quotient algebra of
A by 6. Then the mapping h : A — A/6 defined by a — [alg is a homomorphism from
the algebra A onto the quotient algebra A/0. We call this homomorphism the natural
homomorphism induced by 6 on A, and it is usually denoted by nat(#). The kernel of
a homomorphism h : A — B, denoted by ker(h), is a binary relation which is defined
by:

ker(h) == {(a,b) € A* | h(a) = h(b)}.

Theorem 2.2.1. (General Homomorphism Theorem) Let h: A — B and g : A — C be
homomorphisms and let g be surjective. Then there exists a homomorphism f:C — B
which satisfies f o g = h if and only if ker(g) C ker(h). If this f exists, it has the

following properties:
(i) The homomorphism f is unique.
(i) f is injective if and only if ker(g) = ker(h).
(iii) f is surjective if and only if h is surjective. n

Theorem 2.2.2. (Homomorphic Image Theorem) Let h : A — B be a surjective homo-
morphism. Then there exists a unique homomorphism f from A/ker(h) onto B with

f onat(ker(h)) = h. ]

A congruence relation 6 on an algebra A of type 7 is called fully invariant if when-
ever (x,y) € 6 we also have (¢(x),¢(y)) € 6 , for every endomorphism ¢ of A.
Let {A; | j € J} be a class of algebras of type 7. The direct product [[.A; of the

JEJ

Aj; is defined as an algebra
P = (P; (] ier);
where P := [[A; is the cartesian product of A;,j € J and for each i € I,
Jej

FPag)jers s (ang)ies) = (£ (@, ang))jer



2.2.2 Closure Operators and Galois Connections

Let A be a non-empty set and P(A) be the power set of A. A mapping v: P(A) —
P(A) is called a closure operator on A if for any X, Y € P(A), the following conditions
hold:

(i) X CH(X) (extensively),
(i) X CY = v(X) CH(Y) (monotonicity),
(iii) (v(X)) = v(X) (idempotency).

A subset X of A is called a closed set with respect to the closure operator v if
7(X) = X. Let H, denote the set of all closed sets with respect to the closure operator

7. In fact, ‘H, forms a complete lattice.

Proposition 2.2.3. Let v : P(A) — P(A) be a closure operator on A. Then H., is a
complete lattice with respect to the set inclusion. For any set {H; € H, | i € I}, the
meet and the join operators are defined by

MH; €M, i€ Iy = O H,

V{H, e H,|iel}=N{HeH,|HD ingi} = fy(iLGJ]Hi). ]

The concepts of a closure operator is closely connected to the next concept of a
Galois connection.

A Galois connection between sets A and B is a pair (u,¢) of mappings p: P(A) —
P(B) and ¢ : P(B) — P(A) such that for any X, X’ € P(A) and Y,Y’ € P(B) the

following conditions hold:
) XCX'=puX)DuX)and Y CY' = (YY) 2 (YY),
(ii) X Cou(X) and Y C u(Y).

Proposition 2.2.4. Let (u,t) with p: P(A) — P(B) and v : P(B) — P(A) be a Galois

connection between sets A and B. Then

(1) pep = p and vpe = ¢.

(i) ¢ and pe are closure operators on A and B, respectively.
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(iii) The closed sets under tu are exactly the sets of the form 1(Y') for someY C B and
the closed sets under uu are exactly the sets of the form uw(X) for some X C A.

(iv) w(UX;) = Nu(X;), where X; C A for alli € I.

el iel
(V) L('UI}/Z') = DIL(Y;), where Y; C B for alli € I. ]
1€ 1€

Note that any relation R C A x B between sets A and B induces a Galois connection
(iR, tr) between A and B as follows:
We can define the mappings ug : P(A) — P(B) and tp : P(B) — P(A) by
pr(X) = {y € B| ¥z € X((z,y) € B)},

tr(Y) ={z € A|VyeY((z,y) € R)}.

Conversely, for any Galois connection (i, t) between sets A and B, we define a
relation R, , by
R,, =U{X xpu(X)| X C A}

In fact, there is a one-to-one correspondence between Galois connections and relations

between sets A and B.

2.2.3 Terms and Term Operations

Let n € N and X,, := {z1,...,2,} be an n-elements set. The set X,, is called an
alphabet and its elements are called variables. Let 7 = (n;);cr be a type such that the
set of operation symbols {f; | ¢ € I} is disjoint with X,,. An n-ary term of type 7 is

defined inductively as follows:

(i) Every variable z; € X, is an n-ary term of type 7.

(ii) If t1,...,t,, are n-ary terms of type 7 and f; is an n;-ary operation symbol, then
fi(t1, ... tn,) is an n-ary term of type 7.
The set W, (X,,) of all n-ary terms of type 7 is the smallest set containing x1, ..., x,

that is closed under finite application of (ii). The set of all terms of type 7 over the
alphabet X := {x1, 2o, ...} is defined as W,(X) := olei/VT(Xn). For any t € W, (X),

the set of all variables occurring in the term ¢ is denoted by var(t).
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By using step (ii) in the definition of terms of type 7, the term algebra

Fr(X) = (We(X), (fi)ier)-

of type 7, the so-called absolutely free algebra, can be defined by

fi(tla X, 1 7tn,) = fi(tla J 7tnz)

for each operation symbol f; and t1, ..., ¢, € W.(X).

Note that for A € Alg(7), any mapping ¢ : X — A can be uniquely extend a
homomorphism ¢ : F,(X) — A. Up to isomorphism, the algebra F,(X) is uniquely
determined by the alphabet X.

The following concept will be used to define identities. Let 7 = (n;);c; be a type
with the sequence of operation symbols (f;);c;. Let t € W (X,,) for n € N and A =
(A4; (f)ier) be an algebra of type 7. The n-ary term operation t* : A® — A of type 7
is inductively defined by

(i) tYay,...,a,) = a; if t =2, € X,,.

(il) tA(ar,...,an) = fAt{ar, ..., an), ..., ti (a1, ..., a,)) if t is a compound term

filte, .. tn,).

We will denote by W, (X,,)* the set of all n-ary term operations of the algebra A,
and by W,(X)# the set of all (finitary) term operations on A. Make a remark that
the elements of W, (X,,)* are also called n-ary term operations induced by terms from

W, (X,).

2.2.4 Varieties and Identities

Let 7 = (n;)ier be a type. Let s,t be n-ary terms of type 7 and .4 be an algebra of
type 7. An equation of type T is a pair (s, t); such pair are commonly written as s ~ t.
The set of all equations of type 7 is denoted by E,(X).

An equation s =t is an identity of A, denoted by A |= s ~ t if s = tA.

Let K be a class of algebras of type 7. The class K satisfies an equation s = t,

denoted by K | s ~ t, if for every A € K, A= s~ t.
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Let X be a set of equations of type 7. The class K is said to satisfy ¥, denoted by
KEY if KEsat, forevery st e X. Let

IdK :={s~te E.(X)| K s~ t},

Mod¥ :={Ae€ Alg(r) | A E £}.
Then Id is a function from the power set of Alg(7) to the power set of F, (X) and
Mod is a function from the power set of E.(X) to the power set of Alg(7). We obtain

Theorem 2.2.5. Let K, Ky, Ky C Alg(T) and ¥,%,%s C E,(X). Then
(i) K € ModldK and ¥ C IdModX:.
(ll) KnggideggldKl anlegEgﬁMonggModzl. |

Then we have the ordered pair (Id, Mod) is a Galois connection between Alg(7)
and E,(X).

By the properties of Galois connection, we obtain

Theorem 2.2.6. The following statements hold:
(i) Modld and IdMod are closure operators on Alg(t) and E.(X), respectively.

(ii) The closed sets under IdMod are exactly the sets of the form IdK, K C Alg(T),
and the closed sets under Modld are exactly the sets of the form ModX, > C
E.(X). n

Let V' be a non-empty subset of Alg(7). V is called a variety if V.= ModIdV. Let
Y be a non-empty subset of E.(X). ¥ is called an equational theory if ¥ = IdMod>..
We obtain

Theorem 2.2.7. A non-empty subset V' of Alg(T) is a variety if and only if V = Mod%
for some ¥ C E (X). ]

2.2.5 Hypersubstitutions

The concept of a hypersubstitution was introduced by K. Denecke, D. Lau, R.
Péschel and D. Schweigert in 1991 [11]. They used it as the tool to study hyperidentities
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and solid varieties. Let 7 = (n;);c; be a type with the sequence of operation symbols
(fi)ier-

A hypersubstitution of type T is a mapping o : {f;|i € I} — W,.(X) where o(f;) €
W.(X,,). Let Hyp(7) be the set of all hypersubstitutions of type .

For all 0 € Hyp(r) induces a mapping ¢ : W, (X) — W,(X) as follows, for any
t € W, (X), olt] is inductively defined by

(i) 6[t] :==tift € X.
(i) o[fi(ts,... tn,)] :=0a(fi)(0[t1],...,0[tn,]), if t is a compound term f;(t1,...,t,,).

Using the induced maps &, a binary operation oy, can be defined on the set Hyp(7).

For any hypersubstitutions oy, 09 € Hyp(T), 01 05 09 := &1 0 09 i.€.

Vi € I, (01 05 02)(fi) = G1[oa(fi)]-

Let 0,4 be the hypersubstitution which maps each n;-ary operation symbol f; to the
term fi(z1,...,2,,). It turns out that Hyp(r) = (Hyp(T);on, 0ia) is a monoid where
0iq 1s the identity element.

Let M be a submonoid of Hyp(1) = (Hyp(T); on, 04q) and V be a variety of type 7.

The variety V' is called M-solid variety if
Vst e IdV,Yo € M(c]s| =~ o[t] € IdV).
An identity s &= t € IdV is called M-hyperidentity if
Vo € M(V = als| = alt]).

If M = Hyp(7), then we speak of solid variety and hyperidentity, respectively.

2.2.6 Generalized Hypersubstitutions

In 2000, S. Leeratanavalee and K. Denecke [21] generalized the concept of a hyper-
substitution to a generalized hypersubstitution. We used it as a tool to study strong hy-
peridentities and used strong hyperidentities to classify varieties into collections called
strong hypervarieties. Varieties which are closed under arbitrary application of gener-

alized hypersubstitutions are called strongly solid.
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Let 7 = (n;)ier be a type with the sequence of operation symbols (f;);cr. A gen-
eralized hypersubstitution of type 7, for short, a generalized hypersubstitution is a
mapping o : {fili € I} — W,.(X) which maps each n;-ary operation symbol of type 7
to a term of this type which does not necessarily preserve the arity. We denoted the
set of all generalized hypersubstitutions of type 7 by Hypg(7). Firstly, we define in-
ductively the concept of generalized superposition of terms S™ : W (X)™™ — W, (X)
by the following steps:

(i) Ift =2;,1 <j <m, then S™(xj,t1,...,tn) =1,
(ii) Ift =x;,m < j € N, then S™(z;,t1,...,tn) == zj.

(111) Ift = fi<81, ey Sni); then
Sm<t,t17. .. ,tm) = fi(Sm(Sl,tl, ce ,tm), SN ,Sm(Sni,tl,. . 7tm)>

Example 2.2.8. Let 7 = (2,3) be a type, i.e. we have one binary operation symbol and

one ternary operation symbol, say f and g, respectively. Then we have

Sg(xlaan f($3,$5),x3) = T2,

S3(w9, To, f(23,75), 23) = f(13,75),
S3(xs, w9, f(x3,75), 13) =
S3(w7, xo, f(23,75), 23) = T7,
S%(g(y, f(x2,27), 23), 22, f (25, 75), 23)

9(5 ($1,I2, ($37$5),xs),S?’(f(@,x?)Jz,f($3,$5);x3)753(I37$2,f($3,I5)7$3)>
g(w2, f(S ($2>$2,f($3,$5)7$3)a53@7;@,f($37$5)7$3))a903)
(

g\ T2 ( (3737935) 337),353)- [ |

To define a binary operation on Hypg(7), we extend a generalized hypersubstitution

o to a mapping ¢ : W,(X) — W,(X) inductively defined as follows:
(i) 6[t] :=tift € X.
(i) o[t] .= S™(a(fi),o[t1],...,0[tn,]) if t is a compound term, f;(t1,...,t,,).

Example 2.2.9. Let 7 = (2, 3) be a type, i.e. we have one binary operation symbol and
one ternary operation symbol, say f and g, respectively. Let o : {f, g} — W23 (X)
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where o(f) = f(g(z1,x2,71),21) and 0(g) = f(x3,25). Then o is a generalized hyper-
substitution of type 7 = (2, 3) which is not a hypersubstitution of type 7 = (2, 3) since
o(g) ¢ W2,3(X3). Then we have

Glf (w1, g(wz, a3,27))] = S*(o(f),6[n1],6g(x2, w3, 27)])
= S%(flg(zr, 22, 21), 21), 21, 5°(0(g), 6[ws], 6[ws], (7))
= S*(f(g(ar, w2, 21),21), 21, 5°(f (3, 75), T2, 23, 27))
= S*(f(g(w1, 22, 21),21), 21, f (27, 25))

= f(g(:l:‘l,f(:c7,x5),x1),x1). u

Then we define a binary operation og on Hypg(7) by 01 og 09 := &1 0 09 where o
denotes the usual composition of mappings and 01,09 € Hypg(T).

We proved the following propositions.

Proposition 2.2.10. ([21]) For arbitrary terms t,ty,...,t, € W, (X) and for arbitrary

generalized hypersubstitutions o, oy, 0o we have
(i) S™(alt],olt1],...,0lts]) = a[S™(¢t,t1, ..., ta)].
(11) (5’100'2>A: 6’106'2. |

Proposition 2.2.11. ([21]) Hype(T) = (Hypa(T); 06, 0i4) is a monoid where o4 is the

identity element and the set of all hypersubstitutions of type 7 forms a submonoid of

Hype (7). u

Let M be a submonoid of Hypg(7) = (Hypa(7); 06, 0:4) and V' be a variety of type

7. The variety V is called M-strongly solid variety if
Vs~te ldV,Yo € M(cls| = a[t] € IdV).
An identity s &~ t € IdV is called M-strong hyperidentity if
Vo € M(V = ols| = alt]).

If M = Hyp(r), then we speak of strongly solid variety and strong hyperidentity,

respectively.



