
Chapter 2

Preliminaries

In this chapter, we will briefly review some concepts and some results of Semigroup

Theory and Universal Algebra, without any proofs and which are basis for this thesis.

For more details see [1], [2], [5], [6], [7], [14], [16], [17], [18], [20], and [26].

2.1 Semigroups

2.1.1 Elementary Concepts of Semigroups

An element e in a semigroup S is called idempotent if e2 = e, and we set E(S)

to be the set of all idempotent elements in S. An idempotent semigroup or band is a

semigroup in which every element is idempotent. A semilattice is a commutative band.

An element a in a semigroup S is called regular if a = aba for some b in S. A

semigroup S is regular if every element in S is regular.

An element a in a semigroup S is called left zero (right zero) if ab = a (ba = a) for

every b in S. An element a in S is called zero if it is both left zero and right zero. A

left zero (right zero) semigroup is a semigroup in which every element is left zero (right

zero).

Let S be a semigroup and ∅ �= A ⊆ S. A is called a left ideal (right ideal) of S if

SA ⊆ A (AS ⊆ A). A is an (two-sided) ideal of S if it is both a left and a right ideal

of S.

A semigroup S is called a left simple semigroup (right simple semigroup, simple

semigroup) if S is the only left ideal (right ideal, ideal) of S.

From the definition, we see that every left simple semigroup and every right simple

semigroup are simple semigroups.

A monoid is a semigroup with an identity 1.

The subsemigroup < a > of a semigroup S generated by a consists of all positive

integral powers of a: < a >:= {a, a2, . . . }. If S =< a > for some a ∈ S, then S is
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called a cyclic semigroup. In general case, we call < a > the cyclic subsemigroup of S

generated by a. The order of a is defined to be the order of < a >.

2.1.2 Green’s Relations

Let S be a semigroup and 1 /∈ S. We extend the binary operation from S to S∪{1}
by define x1 = 1x = x for all x ∈ S∪{1}. Then S∪{1} is a semigroup with an identity

1.

Let S be a semigroup. Then we define,

S1 =




S if S has an identity,

S ∪ {1} otherwise.

Let S be a semigroup and ∅ �= A ⊆ S. We now set

(A)l = ∩{L|L is a left ideal of S containing A},
(A)r = ∩{R|R is a right ideal of S containing A},
(A)i = ∩{I|I is an ideal of S containing A}.

Then (A)l,(A)r and (A)i are left ideal, right ideal and ideal of S, respectively. We

call (A)l ((A)r, (A)i) the left ideal (right ideal, ideal) of S generated by A.

It is easy to see that

(A)l = S1A = SA ∪ A,

(A)r = AS1 = A ∪ SA,

(A)i = S1AS1 = SAS ∪ SA ∪ AS ∪ A.

For a1, a2, . . . , an ∈ S, we write (a1, a2, . . . , an)l instead of ({a1, a2, . . . , an})l and call

it the left ideal of S generated by a1, a2, . . . , an. Similarly, we can define (a1, a2, . . . , an)r

and (a1, a2, . . . , an)i. If A is a left ideal of S and A = (a)l for some a ∈ S, we then

call A the principal left ideal generated by a. We can define principal right ideal and

principal ideal in the same manner.
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Let S be a semigroup. We define the relations L,R,H,D and J on S as follows:

aLb ⇔ (a)l = (b)l,

aRb ⇔ (a)r = (b)r,

H = L ∩R,

D = L ◦ R,

aJ b ⇔ (a)i = (b)i.

Then we have, for all a, b ∈ S

aLb ⇔ Sa ∪ {a} = Sb ∪ {b}
⇔ S1a = S1b

⇔ a = xb and b = ya for some x, y ∈ S1,

aRb ⇔ aS ∪ {a} = bS ∪ {b}
⇔ aS1 = bS1

⇔ a = bx and b = ay for some x, y ∈ S1,

aHb ⇔ aLb and aRb,

aDb ⇔ (a, c) ∈ L and (c, b) ∈ R for some c ∈ S,

aJ b ⇔ SaS ∪ Sa ∪ aS ∪ {a} = SbS ∪ Sb ∪ bS ∪ {b}
⇔ S1aS1 = S1bS1

⇔ a = xby and b = zau for some x, y, z, u ∈ S1.

Remark 2.1.1. Let S be a semigroup. Then the following statements hold.

(i) L,R,H,D and J are equivalence relations.

(ii) H ⊆ L ⊆ D ⊆ J and H ⊆ R ⊆ D ⊆ J .

We call the relations L,R,H,D and J the Green’s relations on S. For each a ∈ S,

we denote L-class, R-class, H-class, D-class and J -class containing a by La, Ra, Ha, Da

and Ja, respectively.
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2.2 Universal Algebra

2.2.1 Algebras

Let A be a non-empty set and n ∈ N, where N = {1, 2, . . . , }. We define An =

{(a1, . . . , an) | a1, . . . , an ∈ A}. A function fA : An → A is called an n-ary operation

defined on A, and is said to have arity n.

Let (fi)i∈I be a sequence of operation symbols, where I is an indexed set. To each

fi we assign an integer ni ≥ 1 as its arity. A type τ is the sequence of arity of fi for all

i ∈ I. We always write τ := (ni)i∈I .

Let τ := (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . An

algebra of type τ is an ordered pair A := (A; (fA
i )i∈I), where A is a non-empty set and

(fA
i )i∈I is a sequence of operations on A indexed by a non-empty indexed set I such

that to each ni-ary operation symbol fi there is a corresponding ni-ary operation fA
i

on A.

The set A is called the universe of A and the sequence (fA
i )i∈I is called the sequence

of fundamental operations of A. An algebra is called a trivial algebra if its universe is

a singleton set. We denoted by Alg(τ) the class of all algebras of type τ .

Let A := (A; (fA
i )i∈I) and B := (B; (fB

i )i∈I) be algebras of type τ . Then an algebra

B is called a subalgebra of A, written as B ⊆ A, if the following conditions are satisfied:

(i) B ⊆ A,

(ii) for every i ∈ I, fA
i |B= fB

i .

A relation ≤ on a non-empty set P is called a partial ordering on P if (1) a ≤ a,

(2) a ≤ b and b ≤ a imply a = b, and (3) a ≤ b and b ≤ c imply a ≤ c. If ≤ is a partial

ordering on P , the ordered pair (P,≤) is called a partially ordered set. A partially

ordered set (P,≤) is called a lattice if for every x, y ∈ P both sup{x, y} (supremum

of x and y) and inf{x, y} (infimum of x and y) exist in P . Let L be a non-empty

subset of P . Then L := (L,≤) is called a sublattice of P := (P,≤) if x, y ∈ L implies

sup{x, y} ∈ L and inf{x, y} ∈ L. A partially ordered set (P,≤) is called a complete

lattice if for every non-empty subset L of P both supL and infL exist in L.

Let S be a semigroup and E(S) �= ∅. Define e ≤ f (e, f in E(S)) iff ef = fe = e.

Then ≤ is a partial ordering on E(S). If e ≤ f , we say that e is under f and that f
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is over e. Then ≤ is a partial ordering on E(S). We shall call ≤ the natural partial

ordering on E(S). An idempotent element e �= 0 in a semigroup S is called primitive

if f ≤ e implies f = e for all f in E(S).

Note that the lattice (P,≤) can be considered as an algebra of type τ = (2, 2).

Indeed, we define two binary operations, denoted by ∨ and ∧, then so-called join

and meet, respectively, by a ∨ b := sup{a, b} and a ∧ b := inf{a, b} for all a, b ∈ P .

This algebra satisfies a list of axioms containing the associative laws, the commutative

laws, the idempotency laws for both operations and the absorption laws, i.e. ∀a, b ∈
P, a ∨ (a ∧ b) = a = a ∧ (a ∨ b).

Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be algebras of the same type τ = (ni)i∈I .

A function h : A → B is called a homomorphism from A to B if for all i ∈ I,

h(fA
i (a1, . . . , ani

)) = fB
i (h(a1), . . . , h(ani

)),

for all a1, . . . , ani
∈ A. If the function h is onto, then the homomorphism h : A → B

is called an epimorphism. If the function h is one-to-one, then the homomorphism

h : A → B is called an embedding, and is called an isomorphism if h is bijective. We

call A isomorphic to B denoted by A ∼= B if there is an isomorphism h from A to

B. A homomorphism h : A → A is called an endomorphism of A, and is called an

automorphism if h is an isomorphism from A onto A.

Let A be a non-empty set, θ ⊆ A×A an equivalence relation on A and f an n-ary

operation on A. Then f is said to be compatible with θ, if for all a1, . . . , an, b1, . . . , bn ∈
A,

(a1, b1) ∈ θ, . . . , (an, bn) ∈ θ ⇒ (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

Let A = (A; (fA
i )i∈I) be an algebra of type τ = (ni)i∈I . An equivalence relation θ on

A is called a congruence relation on A if all fundamental operations fA
i are compatible

with θ. We denote by Con(A) the set of all congruence relations on the algebra A.

Let θ be a congruence relation on an algebra A. For each i ∈ I, we define an ni-ary

operation f
A/θ
i on the quotient set A/θ, the set of all equivalence classes on A with

respect to θ,

f
A/θ
i : (A/θ)ni −→ A/θ

defined by

([a1]θ, . . . , [ani
]θ) �→ f

A/θ
i (([a1]θ, . . . , [ani

]θ)) := [fA
i (a1, . . . , ani

)]θ.
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The algebra A/θ = (A/θ; (f
A/θ
i )i∈I) is called the quotient algebra or factor algebra

of A by θ.

Let θ be a congruence relation on an algebra A and A/θ be the quotient algebra of

A by θ. Then the mapping h : A → A/θ defined by a �→ [a]θ is a homomorphism from

the algebra A onto the quotient algebra A/θ. We call this homomorphism the natural

homomorphism induced by θ on A, and it is usually denoted by nat(θ). The kernel of

a homomorphism h : A → B , denoted by ker(h), is a binary relation which is defined

by:

ker(h) := {(a, b) ∈ A2 | h(a) = h(b)}.

Theorem 2.2.1. (General Homomorphism Theorem) Let h : A → B and g : A → C be

homomorphisms and let g be surjective. Then there exists a homomorphism f : C → B
which satisfies f ◦ g = h if and only if ker(g) ⊆ ker(h). If this f exists, it has the

following properties:

(i) The homomorphism f is unique.

(ii) f is injective if and only if ker(g) = ker(h).

(iii) f is surjective if and only if h is surjective.

Theorem 2.2.2. (Homomorphic Image Theorem) Let h : A → B be a surjective homo-

morphism. Then there exists a unique homomorphism f from A/ker(h) onto B with

f ◦ nat(ker(h)) = h.

A congruence relation θ on an algebra A of type τ is called fully invariant if when-

ever (x, y) ∈ θ we also have (ϕ(x), ϕ(y)) ∈ θ , for every endomorphism ϕ of A.

Let {Aj | j ∈ J} be a class of algebras of type τ . The direct product
∏
j∈j

Aj of the

Aj is defined as an algebra

P := (P ; (fP
i )i∈I),

where P :=
∏
j∈j

Aj is the cartesian product of Aj, j ∈ J and for each i ∈ I,

fP
i ((a1j)j∈J , . . . , (anij)j∈J) := (f

Aj

i (a1j, . . . , anij))j∈J .



9

2.2.2 Closure Operators and Galois Connections

Let A be a non-empty set and P(A) be the power set of A. A mapping γ : P(A) →
P(A) is called a closure operator on A if for any X, Y ∈ P(A), the following conditions

hold:

(i) X ⊆ γ(X) (extensively),

(ii) X ⊆ Y ⇒ γ(X) ⊆ γ(Y ) (monotonicity),

(iii) γ(γ(X)) = γ(X) (idempotency).

A subset X of A is called a closed set with respect to the closure operator γ if

γ(X) = X. Let Hγ denote the set of all closed sets with respect to the closure operator

γ. In fact, Hγ forms a complete lattice.

Proposition 2.2.3. Let γ : P(A) → P(A) be a closure operator on A. Then Hγ is a

complete lattice with respect to the set inclusion. For any set {Hi ∈ Hγ | i ∈ I}, the

meet and the join operators are defined by

∧{Hi ∈ Hγ | i ∈ I} := ∩
i∈I

Hi,

∨{Hi ∈ Hγ | i ∈ I} := ∩{H ∈ Hγ | H ⊇ ∪
i∈I

Hi} = γ( ∪
i∈I

Hi).

The concepts of a closure operator is closely connected to the next concept of a

Galois connection.

A Galois connection between sets A and B is a pair (µ, ι) of mappings µ : P(A) →
P(B) and ι : P(B) → P(A) such that for any X, X ′ ∈ P(A) and Y, Y ′ ∈ P(B) the

following conditions hold:

(i) X ⊆ X ′ ⇒ µ(X) ⊇ µ(X ′) and Y ⊆ Y ′ ⇒ ι(Y ) ⊇ ι(Y ′),

(ii) X ⊆ ιµ(X) and Y ⊆ µι(Y ).

Proposition 2.2.4. Let (µ, ι) with µ : P(A) → P(B) and ι : P(B) → P(A) be a Galois

connection between sets A and B. Then

(i) µιµ = µ and ιµι = ι.

(ii) ιµ and µι are closure operators on A and B, respectively.
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(iii) The closed sets under ιµ are exactly the sets of the form ι(Y ) for some Y ⊆ B and

the closed sets under µι are exactly the sets of the form µ(X) for some X ⊆ A.

(iv) µ( ∪
i∈I

Xi) = ∩
i∈I

µ(Xi), where Xi ⊆ A for all i ∈ I.

(v) ι( ∪
i∈I

Yi) = ∩
i∈I

ι(Yi), where Yi ⊆ B for all i ∈ I.

Note that any relation R ⊆ A×B between sets A and B induces a Galois connection

(µR, ιR) between A and B as follows:

We can define the mappings µR : P(A) → P(B) and ιR : P(B) → P(A) by

µR(X) := {y ∈ B | ∀x ∈ X((x, y) ∈ R)},

ιR(Y ) := {x ∈ A | ∀y ∈ Y ((x, y) ∈ R)}.

Conversely, for any Galois connection (µ, ι) between sets A and B, we define a

relation Rµ,ι by

Rµ,ι := ∪{X × µ(X) | X ⊆ A}.

In fact, there is a one-to-one correspondence between Galois connections and relations

between sets A and B.

2.2.3 Terms and Term Operations

Let n ∈ N and Xn := {x1, . . . , xn} be an n-elements set. The set Xn is called an

alphabet and its elements are called variables. Let τ = (ni)i∈I be a type such that the

set of operation symbols {fi | i ∈ I} is disjoint with Xn. An n-ary term of type τ is

defined inductively as follows:

(i) Every variable xi ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol, then

fi(t1, . . . , tni
) is an n-ary term of type τ .

The set Wτ (Xn) of all n-ary terms of type τ is the smallest set containing x1, . . . , xn

that is closed under finite application of (ii). The set of all terms of type τ over the

alphabet X := {x1, x2, . . . } is defined as Wτ (X) :=
∞∪

n=1
Wτ (Xn). For any t ∈ Wτ (X),

the set of all variables occurring in the term t is denoted by var(t).
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By using step (ii) in the definition of terms of type τ , the term algebra

Fτ (X) := (Wτ (X), (f̄i)i∈I).

of type τ , the so-called absolutely free algebra, can be defined by

f̄i(t1, . . . , tni
) := fi(t1, . . . , tni

)

for each operation symbol fi and t1, . . . , tni
∈ Wτ (X).

Note that for A ∈ Alg(τ), any mapping ϕ : X → A can be uniquely extend a

homomorphism ϕ̂ : Fτ (X) → A. Up to isomorphism, the algebra Fτ (X) is uniquely

determined by the alphabet X.

The following concept will be used to define identities. Let τ = (ni)i∈I be a type

with the sequence of operation symbols (fi)i∈I . Let t ∈ Wτ (Xn) for n ∈ N and A =

(A; (fA
i )i∈I) be an algebra of type τ . The n-ary term operation tA : An → A of type τ

is inductively defined by

(i) tA(a1, . . . , an) := ai if t = xi ∈ Xn.

(ii) tA(a1, . . . , an) := fA
i (tA1 (a1, . . . , an), . . . , tAni

(a1, . . . , an)) if t is a compound term

fi(t1, . . . , tni
).

We will denote by Wτ (Xn)A the set of all n-ary term operations of the algebra A,

and by Wτ (X)A the set of all (finitary) term operations on A. Make a remark that

the elements of Wτ (Xn)A are also called n-ary term operations induced by terms from

Wτ (Xn).

2.2.4 Varieties and Identities

Let τ = (ni)i∈I be a type. Let s, t be n-ary terms of type τ and A be an algebra of

type τ . An equation of type τ is a pair (s, t); such pair are commonly written as s ≈ t.

The set of all equations of type τ is denoted by Eτ (X).

An equation s ≈ t is an identity of A, denoted by A |= s ≈ t if sA = tA.

Let K be a class of algebras of type τ . The class K satisfies an equation s ≈ t,

denoted by K |= s ≈ t, if for every A ∈ K, A |= s ≈ t.
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Let Σ be a set of equations of type τ . The class K is said to satisfy Σ, denoted by

K |= Σ, if K |= s ≈ t, for every s ≈ t ∈ Σ. Let

IdK := {s ≈ t ∈ Eτ (X) | K |= s ≈ t},

ModΣ := {A ∈ Alg(τ) | A |= Σ}.
Then Id is a function from the power set of Alg(τ) to the power set of Eτ (X) and

Mod is a function from the power set of Eτ (X) to the power set of Alg(τ). We obtain

Theorem 2.2.5. Let K, K1, K2 ⊆ Alg(τ) and Σ, Σ1, Σ2 ⊆ Eτ (X). Then

(i) K ⊆ ModIdK and Σ ⊆ IdModΣ.

(ii) K1 ⊆ K2 ⇒ IdK2 ⊆ IdK1 and Σ1 ⊆ Σ2 ⇒ ModΣ2 ⊆ ModΣ1.

Then we have the ordered pair (Id, Mod) is a Galois connection between Alg(τ)

and Eτ (X).

By the properties of Galois connection, we obtain

Theorem 2.2.6. The following statements hold:

(i) ModId and IdMod are closure operators on Alg(τ) and Eτ (X), respectively.

(ii) The closed sets under IdMod are exactly the sets of the form IdK,K ⊆ Alg(τ),

and the closed sets under ModId are exactly the sets of the form ModΣ, Σ ⊆
Eτ (X).

Let V be a non-empty subset of Alg(τ). V is called a variety if V = ModIdV . Let

Σ be a non-empty subset of Eτ (X). Σ is called an equational theory if Σ = IdModΣ.

We obtain

Theorem 2.2.7. A non-empty subset V of Alg(τ) is a variety if and only if V = ModΣ

for some Σ ⊆ Eτ (X).

2.2.5 Hypersubstitutions

The concept of a hypersubstitution was introduced by K. Denecke, D. Lau, R.

Pöschel and D. Schweigert in 1991 [11]. They used it as the tool to study hyperidentities
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and solid varieties. Let τ = (ni)i∈I be a type with the sequence of operation symbols

(fi)i∈I .

A hypersubstitution of type τ is a mapping σ : {fi|i ∈ I} → Wτ (X) where σ(fi) ∈
Wτ (Xni

). Let Hyp(τ) be the set of all hypersubstitutions of type τ .

For all σ ∈ Hyp(τ) induces a mapping σ̂ : Wτ (X) → Wτ (X) as follows, for any

t ∈ Wτ (X), σ̂[t] is inductively defined by

(i) σ̂[t] := t if t ∈ X.

(ii) σ̂[fi(t1, . . . , tni
)] := σ(fi)(σ̂[t1], . . . , σ̂[tni

]), if t is a compound term fi(t1, . . . , tni
).

Using the induced maps σ̂, a binary operation ◦h can be defined on the set Hyp(τ).

For any hypersubstitutions σ1, σ2 ∈ Hyp(τ), σ1 ◦h σ2 := σ̂1 ◦ σ2 i.e.

∀i ∈ I, (σ1 ◦h σ2)(fi) = σ̂1[σ2(fi)].

Let σid be the hypersubstitution which maps each ni-ary operation symbol fi to the

term fi(x1, . . . , xni
). It turns out that Hyp(τ) = (Hyp(τ); ◦h, σid) is a monoid where

σid is the identity element.

Let M be a submonoid of Hyp(τ) = (Hyp(τ); ◦h, σid) and V be a variety of type τ .

The variety V is called M -solid variety if

∀s ≈ t ∈ IdV,∀σ ∈ M(σ̂[s] ≈ σ̂[t] ∈ IdV ).

An identity s ≈ t ∈ IdV is called M -hyperidentity if

∀σ ∈ M(V |= σ̂[s] ≈ σ̂[t]).

If M = Hyp(τ), then we speak of solid variety and hyperidentity, respectively.

2.2.6 Generalized Hypersubstitutions

In 2000, S. Leeratanavalee and K. Denecke [21] generalized the concept of a hyper-

substitution to a generalized hypersubstitution. We used it as a tool to study strong hy-

peridentities and used strong hyperidentities to classify varieties into collections called

strong hypervarieties. Varieties which are closed under arbitrary application of gener-

alized hypersubstitutions are called strongly solid.
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Let τ = (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . A gen-

eralized hypersubstitution of type τ , for short, a generalized hypersubstitution is a

mapping σ : {fi|i ∈ I} → Wτ (X) which maps each ni-ary operation symbol of type τ

to a term of this type which does not necessarily preserve the arity. We denoted the

set of all generalized hypersubstitutions of type τ by HypG(τ). Firstly, we define in-

ductively the concept of generalized superposition of terms Sm : Wτ (X)m+1 → Wτ (X)

by the following steps:

(i) If t = xj, 1 ≤ j ≤ m, then Sm(xj, t1, . . . , tm) := tj.

(ii) If t = xj,m < j ∈ N, then Sm(xj, t1, . . . , tm) := xj.

(iii) If t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).

Example 2.2.8. Let τ = (2, 3) be a type, i.e. we have one binary operation symbol and

one ternary operation symbol, say f and g, respectively. Then we have

S3(x1, x2, f(x3, x5), x3) = x2,

S3(x2, x2, f(x3, x5), x3) = f(x3, x5),

S3(x3, x2, f(x3, x5), x3) = x3,

S3(x7, x2, f(x3, x5), x3) = x7,

S3(g(x1, f(x2, x7), x3), x2, f(x3, x5), x3)

=g(S3(x1, x2, f(x3, x5), x3), S
3(f(x2, x7), x2, f(x3, x5), x3), S

3(x3, x2, f(x3, x5), x3))

=g(x2, f(S3(x2, x2, f(x3, x5), x3), S
3(x7, x2, f(x3, x5), x3)), x3)

=g(x2, f(f(x3, x5), x7), x3).

To define a binary operation on HypG(τ), we extend a generalized hypersubstitution

σ to a mapping σ̂ : Wτ (X) → Wτ (X) inductively defined as follows:

(i) σ̂[t] := t if t ∈ X.

(ii) σ̂[t] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni
]) if t is a compound term, fi(t1, . . . , tni

).

Example 2.2.9. Let τ = (2, 3) be a type, i.e. we have one binary operation symbol and

one ternary operation symbol, say f and g, respectively. Let σ : {f, g} → W(2,3)(X)
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where σ(f) = f(g(x1, x2, x1), x1) and σ(g) = f(x3, x5). Then σ is a generalized hyper-

substitution of type τ = (2, 3) which is not a hypersubstitution of type τ = (2, 3) since

σ(g) /∈ W(2,3)(X3). Then we have

σ̂[f(x1, g(x2, x3, x7))] = S2(σ(f), σ̂[x1], σ̂[g(x2, x3, x7)])

= S2(f(g(x1, x2, x1), x1), x1, S
3(σ(g), σ̂[x2], σ̂[x3], σ̂[x7]))

= S2(f(g(x1, x2, x1), x1), x1, S
3(f(x3, x5), x2, x3, x7))

= S2(f(g(x1, x2, x1), x1), x1, f(x7, x5))

= f(g(x1, f(x7, x5), x1), x1).

Then we define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦
denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ).

We proved the following propositions.

Proposition 2.2.10. ([21]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for arbitrary

generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)].

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Proposition 2.2.11. ([21]) HypG(τ) = (HypG(τ); ◦G, σid) is a monoid where σid is the

identity element and the set of all hypersubstitutions of type τ forms a submonoid of

HypG(τ).

Let M be a submonoid of HypG(τ) = (HypG(τ); ◦G, σid) and V be a variety of type

τ . The variety V is called M -strongly solid variety if

∀s ≈ t ∈ IdV,∀σ ∈ M(σ̂[s] ≈ σ̂[t] ∈ IdV ).

An identity s ≈ t ∈ IdV is called M -strong hyperidentity if

∀σ ∈ M(V |= σ̂[s] ≈ σ̂[t]).

If M = Hyp(τ), then we speak of strongly solid variety and strong hyperidentity,

respectively.


