
Chapter 3

Complexity of Terms, Generalized

Superpositions and Generalized

Hypersubstitutions

In this chapter, we consider the four useful measurements of the complexity of a

term, called the maximum depth, the minimum depth, the variable count, and the

operation count. We construct a formula for the complexity of the generalized super-

position Sm(s, t1, . . . , tm) in terms of complexity of the inputs s, t1, . . . , tm for each of

these measurements. We also obtain formulas for the complexity of σ̂[t] in terms of the

complexity of t where t is a compound term and σ is a generalized hypersubstitution.

We apply these formulas to the theory of M -strongly solid varieties, examining the

k-normalization chains of a variety with respect to these complexity measurements.

In Section 3.1, we recall the definition of the measurements of the complexity of

a term which was defined by K. Denecke and S. L. Wismath [13]. We then consider

the complexity of generalized superpositions and generalized hypersubstitutions and

construct a formula for the complexity of the generalized superposition Sm(s, t1, . . . , tm)

in terms of the complexity of the inputs s, t1, . . . , tm for each of these measurements.

We also obtain formulas for the complexity of σ̂[t] in terms of the complexity of t

where t is a compound term and σ is a generalized hypersubstitution. In Section 3.3,

we apply these formulas to the theory of M -strongly solid varieties. We examine the

chains obtained by taking the k-normalizations of a given variety V , as defined in

[12], and show that under suitable choices of a monoid N , each variety of this chain

is M ∩ N -strongly solid when the variety V is M -strongly solid. This can be used to

construct an infinite chain of M ∩ N -strongly solid varieties of any type.
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3.1 Complexity of Terms

In this section, we recall the definition of measurements of the complexity of terms

which was defined by K. Denecke and S. L. Wismath [13]. At first, we consider the

following example.

Example 3.1.1. Let τ = (2, 3) be a type, i.e. we have one binary operation symbol

and one ternary operation symbol, say f and g, respectively. Consider the term t =

g(f(x1, x5), f(x5, g(f(x6, x6), x9, x1)), f(x1, x1)) which can be represented by a tree as

in Figure 1 below.
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Figure 1.

There are several numbers we can associate with the term t, each measuring a

different aspect of how complex this term is as follows:

(i) the length of the longest path (from root to vertex) in t is 4,

(ii) the length of the shortest path (from root to vertex) in t is 2,

(iii) the total number of occurrences of variable symbols in t is 9,

(iv) the number of distinct variables occurring in t is 4,

(v) the total number of occurrences of operation symbols in t is 6.

Definition 3.1.2. ([13]) Let τ = (ni)i∈I be a type and t ∈ Wτ (X).

(a) The maximum depth of a term t, which is denoted by maxdepth(t), is the length

of the longest path from the root to a vertex in the tree. It is defined inductively by
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(i) maxdepth(t) = 0 if t is a variable.

(ii) maxdepth(t) = 1 + max{maxdepth(tj) | 1 ≤ j ≤ ni} if t is a compound term,

t = fi(t1, . . . , tni
).

(b) The minimum depth of a term t, which is denoted by mindepth(t), is the length

of the shortest path from the root to a vertex in the tree and is defined inductively by

(i) mindepth(t) = 0 if t is a variable.

(ii) mindepth(t) = 1 + min{mindepth(tj) | 1 ≤ j ≤ ni} if t is a compound term,

t = fi(t1, . . . , tni
).

(c) The variable count or the length of a term t, denoted by vb(t), is the total

number of occurrences of variables in t (including multiplicities). This can be defined

inductively by

(i) vb(t) = 1 if t is a variable.

(ii) vb(t) =

ni∑

j=1

vb(tj) if t is a compound term, t = fi(t1, . . . , tni
).

(d) The operation symbol count of a term t, denoted by op(t), is the total number

of occurrences of operation symbols in t and is defined inductively by

(i) op(t) = 0 if t is a variable.

(ii) op(t) = 1 +

ni∑

j=1

op(tj) if t is a compound term, t = fi(t1, . . . , tni
).

Let c : Wτ (X) → N∪{0} be a mapping from the set of all terms of type τ to the set

of all non-negative natural numbers, which assigns to each term t a complexity number

c(t). They refer to such a function as a complexity mapping or a cost function.

They also need to measure, for each variable xi ∈ X, both how many times it occurs

in t and the maximum depth and the minimum depth at which it occurs.

Definition 3.1.3. ([13]) Let t ∈ Wτ (Xn) be an n-ary term. For each variable xk, the

maximum depth with respect to k of the term t denoted by maxdepthk(t) is defined

inductively as follows:

(i) If t is a variable from Xn, then maxdepthk(t) = 0.
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(ii) If xk /∈ var(t), then maxdepthk(t) = 0.

(iii) If t = fi(t1, . . . , tni
) and xk ∈ var(t), then

maxdepthk(t) = 1 + max{maxdepthk(tj)|1 ≤ j ≤ ni, xk ∈ var(tj)}.

Similarly, they define the minimum depth with respect to k for any term t and any

variable xk.

Definition 3.1.4. ([13]) Let t ∈ Wτ (Xn) be an n-ary term. For each variable xk, the

minimum depth with respect to k of the term t denoted by mindepthk(t) is defined

inductively as follows:

(i) If t is a variable from Xn, then mindepthk(t) = 0.

(ii) If xk /∈ var(t), then mindepthk(t) = 0.

(iii) If t = fi(t1, . . . , tni
) and xk ∈ var(t), then

mindepthk(t) = 1 + min{mindepthk(tj)|1 ≤ j ≤ ni, xk ∈ var(tj)}.

They also need a function that counts the number of occurrences of a specific

variable xk in a term t.

Definition 3.1.5. ([13]) Let t ∈ Wτ (Xn) be an n-ary term. For each variable xk, the

xk-variable count vbk(t) of t is defined inductively as follows:

(i) vbk(xk) = 1.

(ii) If xk /∈ var(t), then vbk(t) = 0.

(iii) If t = fi(t1, . . . , tni
) and xk ∈ var(t), then vbk(t) =

ni∑

j=1

vbk(tj).

3.2 Complexity of Generalized Superpositions and Gen-

eralized Hypersubstitutions

In this section, we generalize the concept of complexity of compositions and hyper-

substitutions which were studied by K. Denecke and S. L. Wismath [13] to complexity of

generalized superpositions and generalized hypersubstitutions. We have the following

proposition.
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Proposition 3.2.1. Let s, t1, . . . , tm ∈ Wτ (X). Then,

(i) mindepth(Sm(s, t1, . . . , tm)) = min{mindepthj(s)+mindepth(tj),mindepthk(s)|

1 ≤ j ≤ m, k > m, xj, xk ∈ var(s)}.

(ii) maxdepth(Sm(s, t1, . . . , tm)) = max{maxdepthj(s)+maxdepth(tj),maxdepthk(s)|

1 ≤ j ≤ m, k > m, xj, xk ∈ var(s)}.

(iii) vb(Sm(s, t1, . . . , tm)) =
m∑

j=1

vbj(s)vb(tj) +
∑

j>m

vbj(s).

(iv) op(Sm(s, t1, . . . , tm)) =
m∑

j=1

vbj(s)op(tj) + op(s).

Proof. We will prove all of (i)-(iv) by induction on the complexity of the term s.

(i) If s = xl ∈ X for some 1 ≤ l ≤ m, then

mindepth(Sm(s, t1, . . . , tm)) = mindepth(tl)

= min{mindepthj(s) + mindepth(tj),mindepthk(s) |
1 ≤ j ≤ m, k > m, xj, xk ∈ var(s)}.

If s = xl ∈ X for some l > m, then

mindepth(Sm(s, t1, . . . , tm)) = 0

= min{mindepthj(s) + mindepth(tj),mindepthk(s) |
1 ≤ j ≤ m, k > m, xj, xk ∈ var(s)}.

Let s = fi(s1, . . . , sni
) and the formula is satisfied for s1, . . . , sni

. Then
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mindepth(Sm(s, t1, . . . , tm))

= mindepth(Sm(fi(s1, . . . , sni
), t1, . . . , tm))

= mindepth(fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)))

= min{mindepth(Sm(s1, t1, . . . , tm)), . . . , mindepth(Sm(sni
, t1, . . . , tm))} + 1

= min{min{mindepthj(s1) + mindepth(tj),mindepthk(s1) | 1 ≤ j ≤ m, k > m,

xj, xk ∈ var(s1)}, . . . , min{mindepthj(sni
) + mindepth(tj),mindepthk(sni

) |
1 ≤ j ≤ m, k > m, xj, xk ∈ var(sni

)}} + 1

= min{min{mindepthj(s1) + 1 + mindepth(tj),mindepthk(s1) + 1 | 1 ≤ j ≤ m,

k > m, xj, xk ∈ var(s1)}, . . . , min{mindepthj(sni
) + 1 + mindepth(tj),

mindepthk(sni
) + 1 | 1 ≤ j ≤ m, k > m, xj, xk ∈ var(sni

)}}
= min{min{mindepthj(st) | 1 ≤ t ≤ ni, xj ∈ var(st)} + 1 + mindepth(tj),

min{mindepthk(st) | 1 ≤ t ≤ ni, xk ∈ var(st)} + 1 | 1 ≤ j ≤ m, k > m, xj, xk

∈ ∪{var(sr) | 1 ≤ r ≤ ni}}
= min{mindepthj(s) + mindepth(tj),mindepthk(s) | 1 ≤ j ≤ m, k > m, xj, xk

∈ var(s)}.

(ii) The proof is similar to the proof of (i).

(iii) If s = xl ∈ X for some 1 ≤ l ≤ m, then

vb(Sm(s, t1, . . . , tm)) = vb(tl)

=
m∑

j=1

vbj(s)vb(tj) +
∑

j>m

vbj(s).

If s = xl ∈ X for some l > m, then

vb(Sm(s, t1, . . . , tm)) = 1

=
m∑

j=1

vbj(s)vb(tj) +
∑

j>m

vbj(s).
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Let s = fi(s1, . . . , sni
) and the formula is satisfied for s1, . . . , sni

. Then

vb(Sm(s, t1, . . . , tm)) = vb(Sm(fi(s1, . . . , sni
), t1, . . . , tm))

= vb(fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)))

=

ni∑

k=1

vb(Sm(sk, t1, . . . , tm))

=

ni∑

k=1

(
m∑

j=1

vbj(sk)vb(tj) +
∑

j>m

vbj(sk))

=

ni∑

k=1

(
m∑

j=1

vbj(sk)vb(tj)) +

ni∑

k=1

(
∑

j>m

vbj(sk))

=
m∑

j=1

(

ni∑

k=1

vbj(sk)vb(tj)) +
∑

j>m

(

ni∑

k=1

vbj(sk))

=
m∑

j=1

((

ni∑

k=1

vbj(sk))vb(tj)) +
∑

j>m

vbj(s)

=
m∑

j=1

vbj(s)vb(tj) +
∑

j>m

vbj(s).

(iv) If s = xl ∈ X for some 1 ≤ l ≤ m, then

op(Sm(s, t1, . . . , tm)) = op(tl)

=
m∑

j=1

vbj(s)op(tj) + op(s).

If s = xl ∈ X for some l > m, then

op(Sm(s, t1, . . . , tm)) = 0

=
m∑

j=1

vbj(s)op(tj) + op(s).



23

Let s = fi(s1, . . . , sni
) and the formula is satisfied for s1, . . . , sni

. Then

op(Sm(s, t1, . . . , tm)) = op(Sm(fi(s1, . . . , sni
), t1, . . . , tm))

= op(fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)))

=

ni∑

k=1

op(Sm(sk, t1, . . . , tm)) + 1

=

ni∑

k=1

(
m∑

j=1

vbj(sk)op(tj) + op(sk)) + 1

=

ni∑

k=1

(
m∑

j=1

vbj(sk)op(tj)) +

ni∑

k=1

op(sk) + 1

=
m∑

j=1

(

ni∑

k=1

vbj(sk)op(tj)) + op(s)

=
m∑

j=1

((

ni∑

k=1

vbj(sk))op(tj)) + op(s)

=
m∑

j=1

vbj(s)op(tj) + op(s).

Using the fact that σ̂[t] is defined by using generalized superposition, we have the

following corollary.

Corollary 3.2.2. Let τ = (ni)i∈I be a type and let t be a compound term of the form

t = fi(t1, . . . , tni
) where fi is an ni-ary operation symbol. Let σ be a generalized hyper-

substitution of type τ . Then,

(i) mindepth(σ̂[t]) = min{mindepthj(σ(fi)) + mindepth(σ̂[tj]),mindepthk(σ(fi))|

1 ≤ j ≤ ni, k > ni, xj, xk ∈ var(σ(fi))}.

(ii) maxdepth(σ̂[t]) = max{maxdepthj(σ(fi)) + maxdepth(σ̂[t
j
]),maxdepthk(σ(fi))|

1 ≤ j ≤ ni, k > ni, xj, xk ∈ var(σ(fi))}.

(iii) vb(σ̂[t]) =

ni∑

j=1

vbj(σ(fi))vb(σ̂[tj]) +
∑

j>ni

vbj(σ(fi)).

(iv) op(σ̂[t]) =

ni∑

j=1

vbj(σ(fi))op(σ̂[tj]) + op(σ(fi)).

For the case of arity preserving hypersubstitutions is contained in this result.
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3.3 M -Strongly Solid Varieties

Firstly, we give some notations which are used to discuss the k-normalization of

a variety. Let V be a variety of type τ and let k be a non-negative natural number.

Let c be one of the four complexity functions defined in Section 3.1. We define the

k-normalization of V , with respect to the complexity function c, to be the variety

N c
k(V ) = Mod{u ≈ v ∈ IdV |c(u), c(v) ≥ k}.

It is clear that N c
0(V ) = V and that the k-normalization of V forms a chain

V = N c
0(V ) ≤ N c

1(V ) ≤ N c
2(V ) ≤ · · · .

The properties of these varieties, and of the operator N c
k for k ≥ 0, have been

studied for c = mindepth in [10] and c = maxdepth in [12].

Next, we will consider the M -strongly solidity properties of the varieties N c
k(V ).

Suppose that we start with an M -strongly solid variety V of type τ for some monoid

M of generalized hypersubstitutions of type τ . To show that N c
k(V ) is also M -strongly

solid where k ≥ 1, we have to show that for any identity u ≈ v of N c
k(V ) and any

σ ∈ M , we have σ̂[u] ≈ σ̂[v] also in IdN c
k(V ). It suffices to consider an identity u ≈ v

from the defining basis for N c
k(V ), that is we may assume that u ≈ v is an identity of

V with the property that both c(u) and c(v) are greater than or equal to k. Since V

itself is M -strongly solid, we know that σ̂[u] ≈ σ̂[v] is in IdV . Thus it suffices to show

that c(σ̂[u]) ≥ k and c(σ̂[v]) ≥ k. In general, then, we need to compare the complexity

of σ̂[t] and would like to be able to show that c(σ̂[t]) > c(t). However, this is not always

the case as in the following example.

Example 3.3.1. (i) Let τ = (2) be a type, i.e. we have only one binary operation symbol,

say f . Let t be the term f(x1, f(x2, x3)) so that maxdepth(t) = 2, mindepth(t) = 1,

vb(t) = 3 and op(t) = 2. Let σ be the generalized hypersubstitution mapping f to the

term f(x1, x1). Then, we have σ̂[t] = f(x1, x1), and this term has maxdepth(σ̂[t]) =

mindepth(σ̂[t]) = op(σ̂[t]) = 1 and vb(σ̂[t]) = 2. Thus all but mindepth result in lower

complexity for σ̂[t] than for t.

(ii) Let τ = (2, 2) be a type, i.e. we have two binary operation symbols, say f and

g. Let t be the term f(f(x1, x2), g(x1, x2)). Let σ be the generalized hypersubstitution

mapping f to the term f(x2, x2) and g to the variable x1. Then, although t has

mindepth(t) = 2, the term σ̂[t] = f(x1, x1) has mindepth(σ̂[t]) equal to 1.
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Although not all generalized hypersubstitutions σ have the property that σ̂[t] has

a complexity greater than or equal to the complexity of t, there are conditions we

can put on σ to ensure this property. Next, we will consider a kind of generalized

hypersubstitutions, i.e. regular generalized hypersubstitutions which was introduced

by S. Leeratanavalee in [24]. A generalized hypersubstitution σ ∈ HypG(τ) is called

regular if for every i ∈ I, all the variables x1, . . . , xni
occur in the term σ(fi). The set

of all regular generalized hypersubstitutions of type τ is denoted by RegG(τ). In [24]

S. Leeratanavalee proved that RegG(τ) forms a submonoid of HypG(τ), and a variety

which is M -strongly solid for this submonoid M is called regular-strongly solid.

Note that the concept of regularity in this section is different from the concept of

regularity that was defined in Chapter 2, Section 2.1.

Theorem 3.3.2. Let τ = (ni)i∈I be a type, t ∈ Wτ (X) be a term, and σ ∈ HypG(τ) be

a generalized hypersubstitution of type τ . Then the following statements hold:

(i) If σ is a regular generalized hypersubstitution and ni > 1 for all i ∈ I, then

maxdepth(σ̂[t]) ≥ maxdepth(t).

(ii) If σ is a regular generalized hypersubstitution, then vb(σ̂[t]) ≥ vb(t).

(iii) If σ is a regular generalized hypersubstitution and ni > 1 for all i ∈ I, then

op(σ̂[t]) ≥ op(t).

Proof. We prove all of the three claims by induction on the complexity of the term

t. In all cases, when t is a variable x ∈ X, we have σ̂[t] = x = t, and both σ̂[t] and t

have the same complexity.

(i) Let t = fi(t1, . . . , tni
). Since σ is a regular generalized hypersubstitution and

ni > 1 for all i ∈ I, thus σ(fi) /∈ X and xj ∈ var(σ(fi)) for all 1 ≤ j ≤ ni. So
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maxdepthj(σ(fi)) ≥ 1 for all 1 ≤ j ≤ ni. We have

maxdepth(σ̂[t]) = max{maxdepthj(σ(fi)) + maxdepth(σ̂[t
j
]),maxdepthk(σ(fi)) |

1 ≤ j ≤ ni, k > ni, xj, xk ∈ var(σ(fi))}
= max{maxdepthj(σ(fi)) + maxdepth(σ̂[t

j
]),maxdepthk(σ(fi)) |

1 ≤ j ≤ ni, k > ni, xk ∈ var(σ(fi))} (since σ is regular)

≥ max{maxdepthj(σ(fi)) + maxdepth(σ̂[t
j
]) | 1 ≤ j ≤ ni}

≥ max{1 + maxdepth(σ̂[t
j
]) | 1 ≤ j ≤ ni}

= 1 + max{maxdepth(σ̂[t
j
]) | 1 ≤ j ≤ ni}

≥ 1 + max{maxdepth(tj) | 1 ≤ j ≤ ni} (by induction)

= maxdepth(t).

(ii) Let t = fi(t1, . . . , tni
). Since σ is a regular generalized hypersubstitution, thus

vbj(σ(fi)) ≥ 1 for all 1 ≤ j ≤ ni. We have

vb(σ̂[t]) =

ni∑

j=1

vbj(σ(fi))vb(σ̂[tj]) +
∑

j>ni

vbj(σ(fi))

≥
ni∑

j=1

vbj(σ(fi))vb(σ̂[tj])

≥
ni∑

j=1

1vb(σ̂[tj])

=

ni∑

j=1

vb(σ̂[tj])

≥
ni∑

j=1

vb(tj)

= vb(t).

(iii) Let t = fi(t1, . . . , tni
). Since σ is a regular generalized hypersubstitution and

ni > 1 for all i ∈ I, thus σ(fi) /∈ X and xj ∈ var(σ(fi)) for all 1 ≤ j ≤ ni. So
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vbj(σ(fi)) ≥ 1 for all 1 ≤ j ≤ ni. Since σ(fi) /∈ X, thus op(σ(fi)) ≥ 1. Then

op(σ̂[t]) =

ni∑

j=1

vbj(σ(fi))op(σ̂[tj]) + op(σ(fi))

≥
ni∑

j=1

1op(σ̂[tj]) + 1

=

ni∑

j=1

op(σ̂[tj]) + 1

≥
ni∑

j=1

op(tj) + 1

= op(t).

The next example shows that if σ is a regular generalized hypersubstitution and

t is a term, then maxdepth(σ̂[t]) and op(σ̂[t]) need not be greater than or equal to

maxdepth(t) and op(t), respectively. Moreover, the example shows that if σ is a regular

generalized hypersubstitution, τ is a type which does not contain a unary operation

symbol and t is a term, then mindepth(σ̂[t]) need not be greater than or equal to

mindepth(t).

Example 3.3.3. (i) Let τ = (1) be a type with one unary operation symbol f . Let t

be the term f(f(x5)). So that maxdepth(t) = op(t) = 2. Let σ be the generalized

hypersubstitution mapping f to the term x1. Then, we have σ is a regular generalized

hypersubstitution and σ̂[t] = x5, and this term has maxdepth(σ̂[t]) = op(σ̂[t]) = 0.

Hence maxdepth(σ̂[t]) < maxdepth(t) and op(σ̂[t]) < op(t).

(ii) Let τ = (2) be a type with one binary operation symbol f . Let t be the term

f(f(x1, x2), f(x1, x2)). So that mindepth(t) = 2. Let σ be the generalized hypersubsti-

tution mapping f to the term f(f(x1, x2), x3). Then, we have σ is a regular generalized

hypersubstitution and σ̂[t] = f(f(f(f(x1, x2), x3), f(f(x1, x2), x3)), x3) and this term

has mindepth(σ̂[t]) = 1. Hence mindepth(σ̂[t]) < mindepth(t).

Combining Theorem 3.3.2 with the discussion preceding Theorem 3.3.2 gives the

following result.

Corollary 3.3.4. Let τ = (ni)i∈I be a type and V be a non-trivial M-strongly solid

variety of type τ . Let k ≥ 1. Then the following statements hold:

(i) For the maximum depth c, if ni > 1 for all i ∈ I, then each N c
k(V ) is (M ∩Reg)-

strongly solid.
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(ii) For the variable count c, each N c
k(V ) is (M ∩ Reg)-strongly solid.

(iii) For the operation count c, if ni > 1 for all i ∈ I, then each N c
k(V ) is (M ∩Reg)-

strongly solid.


