Chapter 3
Complexity of Terms, Generalized
Superpositions and (Generalized

Hypersubstitutions

In this chapter, we consider the four useful measurements of the complexity of a
term, called the maximum depth, the minimum depth, the variable count, and the
operation count. We construct a formula for the complexity of the generalized super-
position S™(s,t1,...,ty,) in terms of complexity of the inputs s,t,...,t,, for each of
these measurements. We also obtain formulas for the complexity of 7[t] in terms of the
complexity of t where t is a compound term and o is a generalized hypersubstitution.
We apply these formulas to the theory of M-strongly solid varieties, examining the
k-normalization chains of a variety with respect to these complexity measurements.

In Section 3.1, we recall the definition of the measurements of the complexity of
a term which was defined by K. Denecke and S. L. Wismath [13]. We then consider
the complexity of generalized superpositions and generalized hypersubstitutions and
construct a formula for the complexity of the generalized superposition S™(s,t1, ..., tm)
in terms of the complexity of the inputs s,tq,...,t,, for each of these measurements.
We also obtain formulas for the complexity of [¢] in terms of the complexity of ¢
where t is a compound term and o is a generalized hypersubstitution. In Section 3.3,
we apply these formulas to the theory of M-strongly solid varieties. We examine the
chains obtained by taking the k-normalizations of a given variety V', as defined in
[12], and show that under suitable choices of a monoid N, each variety of this chain
is M N N-strongly solid when the variety V' is M-strongly solid. This can be used to

construct an infinite chain of M N N-strongly solid varieties of any type.
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3.1 Complexity of Terms

In this section, we recall the definition of measurements of the complexity of terms
which was defined by K. Denecke and S. L. Wismath [13]. At first, we consider the

following example.

Example 3.1.1. Let 7 = (2,3) be a type, i.e. we have one binary operation symbol
and one ternary operation symbol, say f and g, respectively. Consider the term ¢t =
g(f(x1,25), f(zs, 9(f(x6,T6), e, 1)), f(21,21)) which can be represented by a tree as

in Figure 1 below.

Figure 1.

There are several numbers we can associate with the term ¢, each measuring a

different aspect of how complex this term is as follows:

(i) the length of the longest path (from root to vertex) in t is 4,
(ii) the length of the shortest path (from root to vertex) in ¢ is 2,
(iii) the total number of occurrences of variable symbols in ¢ is 9,
(iv) the number of distinct variables occurring in t is 4,

(v) the total number of occurrences of operation symbols in ¢ is 6. n

Definition 3.1.2. ([13]) Let 7 = (n;)icr be a type and t € W, (X).
(a) The maximum depth of a term ¢, which is denoted by maxdepth(t), is the length
of the longest path from the root to a vertex in the tree. It is defined inductively by
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(i) maxdepth(t) =0 if t is a variable.

(ii) mazdepth(t) = 1 4+ max{maxdepth(t;) | 1 < j < n;} if ¢t is a compound term,

t= fi(tb e ,tnz)

(b) The minimum depth of a term ¢, which is denoted by mindepth(t), is the length

of the shortest path from the root to a vertex in the tree and is defined inductively by
(i) mindepth(t) = 0 if t is a variable.

(ii) mindepth(t) = 1 + min{mindepth(t;) | 1 < j < n;} if t is a compound term,

t= fi(t,... tn,).

(c) The variable count or the length of a term ¢, denoted by vb(t), is the total
number of occurrences of variables in ¢ (including multiplicities). This can be defined

inductively by

(i) vb(t) = 11if t is a variable.

(i) vb(t) = Z vb(t;) if t is a compound term, t = fi(t1,...,t,,).
j=1

(d) The operation symbol count of a term ¢, denoted by op(t), is the total number

of occurrences of operation symbols in ¢ and is defined inductively by

(i) op(t) = 0 if t is a variable.
(ii) op(t) =1+ Z op(t;) if t is a compound term, t = fi(t1,..., 1, ).
j=1

Let ¢ : W-(X) — NU{0} be a mapping from the set of all terms of type 7 to the set
of all non-negative natural numbers, which assigns to each term ¢ a complexity number
c(t). They refer to such a function as a complexity mapping or a cost function.

They also need to measure, for each variable x; € X, both how many times it occurs

in ¢ and the maximum depth and the minimum depth at which it occurs.

Definition 3.1.3. ([13]) Let t € W,.(X,,) be an n-ary term. For each variable x, the
maximum depth with respect to k of the term ¢ denoted by maxdepthy(t) is defined

inductively as follows:

(i) If ¢ is a variable from X,,, then maxdepthy(t) = 0.
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(i) If xx & var(t), then maxdepthy(t) = 0.

(iii) If t = fi(t1,...,ts,) and zy € var(t), then
mazxdepthy(t) = 1 + maz{mazxdepthy(t;)|1 < j < n;, x), € var(t;)}.

Similarly, they define the minimum depth with respect to k for any term ¢ and any

variable zj.

Definition 3.1.4. ([13]) Let t € W,(X,,) be an n-ary term. For each variable zy, the
minimum depth with respect to k of the term ¢ denoted by mindepthy(t) is defined

inductively as follows:
(i) If ¢ is a variable from X,,, then mindepthy(t) = 0.
(i) If zx ¢ var(t), then mindepthy(t) = 0.
(iii) If t = fi(t1,...,tn,) and x € var(t), then
mindepthi(t) = 1 + min{mindepthy(t;)|1 < j < n;, xp € var(t;)}.

They also need a function that counts the number of occurrences of a specific

variable zj in a term ¢.

Definition 3.1.5. ([13]) Let t € W.(X,,) be an n-ary term. For each variable x, the

xy-variable count vby(t) of ¢ is defined inductively as follows:

(i) If xx & var(t), then vbg(t) = 0.

n.
)

(iii) If £ = fi(t1, ... t,,) and zx € var(t), then vby(t) = Y vby(t)).

3.2 Complexity of Generalized Superpositions and Gen-

eralized Hypersubstitutions

In this section, we generalize the concept of complexity of compositions and hyper-
substitutions which were studied by K. Denecke and S. L. Wismath [13] to complexity of
generalized superpositions and generalized hypersubstitutions. We have the following

proposition.
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Proposition 3.2.1. Let s,tq,...,t, € W (X). Then,

(i) mindepth(S™(s,t1,...,tm)) = min{mindepth;(s)+mindepth(t;), mindepthy(s)|

1<j<m,k>m,xjx €var(s)}.

(ii) maxdepth(S™(s,t1,...,tn)) = maz{mazdepth;(s)+mazdepth(t;), maxdepthy(s)|

1<j<m,k>m,zj;,x, € var(s)}.

[
NE

(iii) vb(S™(s,t1, ... tm)) vb;(s)ub(t;) + Y vbi(s).

1 j>m

<.
Il

M-

(iv) op(S™(s,t1,...,tm)) = > wvb,(s)op(t;) + op(s).

1

j
Proof. We will prove all of (i)-(iv) by induction on the complexity of the term s.
(i) If s =2y € X for some 1 <[ < m, then
mindepth(S™(s,t1,...,tm)) = mindepth(t;)
= min{mindepth;(s) + mindepth(t;), mindepthy(s) |
1<j<m,k>m,xjx, €var(s)}.
If s =x; € X for some [ > m, then
mindepth(S™(s,t1,...,tm)) = 0
= min{mindepth;(s) + mindepth(t;), mindepthy(s) |

1<j<m,k>m,xjx, €var(s)}.

Let s = fi(s1,...,5,,) and the formula is satisfied for s1,...,s,,. Then
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mindepth(S™(s,t1, ..., tm))

= mindepth(S™(fi(s1,...,5n,),t1, - tm))

= miandepth(fi(S™(s1,t1, - tm)y -y S (Snys b1y tm)))

= min{mindepth(S™(s1,t1, ... ,tm)), ..., mindepth(S™(sn,, t1,- .., tm))} +1

= min{min{mindepth;(s1) + mindepth(t;), mindepthy(s1) | 1 < j <m,k > m,
zj, x € var(s1)}, ..., min{mindepth;(s,,) + mindepth(t;), mindepthy(s,,) |
1<j<mk>m,z;x, €var(sy)}}+1

= min{min{mindepth;(s1) + 1 + mindepth(t;), mindepth(s1) + 1|1 < j < m,
k> m,z;,x, € var(s1)}, ..., min{mindepth;(s,,) + 1 + mindepth(t;),
mindepthy(s,,) +1]1<j <m,k>m,z;,x, € var(s,,)}}

= min{min{mindepth;(s;) | 1 <t < n;,x; € var(s;)} + 1+ mindepth(t;),
min{mindepthi(s;) | 1 <t < my,xp €var(s)}+1|1<j7<m,k>m,x;, xy
€ U{wvar(s,) |1 <r <n;}}

= min{mindepth;(s) + mindepth(t;), mindepthi(s) | 1 < j <m,k >m,x;, x4

€ var(s)}.

(ii) The proof is similar to the proof of (i).

(iii) If s = 2; € X for some 1 <1 < m, then

vb(S™(s,t1, ... tm)) = vb(t;)

— Z vb;(s)vb(t;) + Z vb;(s).

7=1 ji>m

If s =x;, € X for some [ > m, then

vb(S™(s,t1, ... tm)) = 1
= ) ubi(s)vb(t;) + > vbj(s).

i>m

<.
I
v
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sp,;) and the formula is satisfied for sy, ..., s,,. Then
Ub(Sm(fi(Sl, ce 73ni)7t1a ce ,tm))
Ub(fi(Sm(Sl, tl, Ce ,tm>, ey Sm<8m,t1

vtm))

ng

Z vb(S™ (s, t1, - . .

k=1

ng

vb;(si)vb(t

vb;(sk)vb(t

s tm))

+va Sk

]>m

NES I

k1]>m

]>mk1

)+ > vbi(s)

j>m

D ubi(s)ob(t;) + Y vbs(s)

op(t)
vaj() (t;) + op(s)

If s =x;, € X for some [ > m, then

op(S™(s,t1,. ..

s tm))

0
> vbj(s)

<.
Il
—

op(t;) + op(s).
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Let s = fi(s1,...,Sy,) and the formula is satisfied for si,...,s,,. Then

op(S™(s,t1, ... tm)) = op(S™(fi(S1,-- -y 8n;),t1s e ytm))

= Op(fi(5m<81,t1, N ,tm), ceey Sm(Sn“tl, ce ,tm)))

ng

= Zop(Sm(Sk, tr, .o tm)) +1
k=1

ng

vb;(sk)op(t;) + op(sk)) + 1

Using the fact that ot] is defined by using generalized superposition, we have the

following corollary.

Corollary 3.2.2. Let 7 = (n;)ier be a type and let t be a compound term of the form
t = fi(ts,. .., tn,) where f; is an n;-ary operation symbol. Let o be a generalized hyper-
substitution of type 7. Then,

(i) mindepth(a[t]) = min{mindepth;(c(f;)) + mindepth([t;]), mindepthi(o(f;))|

1 <j<nik>ng, x5, € var(a(f))}.

(ii) maxdepth(c(t]) = maz{mazxdepth;(o(f;)) + maxdepth(c[t,]), maxdepthy(o(fi))]

1 <j <ng k> ng, o, x € var(o(f)}.

(iii) vb(o[t] Z o(fi)vb(at;]) + Z vb;(

J>ng

3

i

(iv) op(6[t]) = D vb;(o(f)op(61t;]) + op(a(fi)- u

—1

<

For the case of arity preserving hypersubstitutions is contained in this result.
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3.3 M-Strongly Solid Varieties

Firstly, we give some notations which are used to discuss the k-normalization of
a variety. Let V be a variety of type 7 and let k£ be a non-negative natural number.
Let ¢ be one of the four complexity functions defined in Section 3.1. We define the
k-normalization of V|, with respect to the complexity function ¢, to be the variety
N{(V) = Mod{u ~ v € IdV|c(u), c(v) > k}.

It is clear that N§(V) =V and that the k-normalization of V' forms a chain

V=N5(V) < N{(V) < N3 (V) < -

The properties of these varieties, and of the operator N; for £ > 0, have been
studied for ¢ = mindepth in [10] and ¢ = maxdepth in [12].

Next, we will consider the M-strongly solidity properties of the varieties Nf(V).
Suppose that we start with an M-strongly solid variety V' of type 7 for some monoid
M of generalized hypersubstitutions of type 7. To show that NZ(V) is also M-strongly
solid where £ > 1, we have to show that for any identity v ~ v of N{(V) and any
o € M, we have ¢[u] = ¢[v] also in IdNg(V'). It suffices to consider an identity u ~ v
from the defining basis for Ng(V'), that is we may assume that v ~ v is an identity of
V' with the property that both ¢(u) and ¢(v) are greater than or equal to k. Since V/
itself is M-strongly solid, we know that 6[u| ~ ¢[v] is in IdV. Thus it suffices to show
that ¢(6[u]) > k and ¢(6[v]) > k. In general, then, we need to compare the complexity
of 6[t] and would like to be able to show that ¢(a[t]) > ¢(t). However, this is not always

the case as in the following example.

Example 3.3.1. (i) Let 7 = (2) be a type, i.e. we have only one binary operation symbol,
say f. Let t be the term f(xz1, f(z2,x3)) so that maxdepth(t) = 2, mindepth(t) = 1,
vb(t) = 3 and op(t) = 2. Let o be the generalized hypersubstitution mapping f to the
term f(z1,21). Then, we have 6[t] = f(z1, 1), and this term has maxdepth(ct]) =
mindepth(a[t]) = op(at]) = 1 and vb(5t]) = 2. Thus all but mindepth result in lower
complexity for 4[t] than for t.

(ii) Let 7 = (2,2) be a type, i.e. we have two binary operation symbols, say f and
g. Let t be the term f(f(xy1,22),g(x1,22)). Let o be the generalized hypersubstitution
mapping f to the term f(z9,72) and g to the variable x;. Then, although ¢ has
mindepth(t) = 2, the term &[t] = f(x1, z1) has mindepth(G|t]) equal to 1. ]
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Although not all generalized hypersubstitutions o have the property that &[t] has
a complexity greater than or equal to the complexity of ¢, there are conditions we
can put on o to ensure this property. Next, we will consider a kind of generalized
hypersubstitutions, i.e. regular generalized hypersubstitutions which was introduced
by S. Leeratanavalee in [24]. A generalized hypersubstitution o € Hypg(7) is called
reqular if for every i € I, all the variables x1,...,x,, occur in the term o(f;). The set
of all regular generalized hypersubstitutions of type 7 is denoted by Regs (7). In [24]
S. Leeratanavalee proved that Regg(7) forms a submonoid of Hypg(7), and a variety
which is M-strongly solid for this submonoid M is called regular-strongly solid.

Note that the concept of regularity in this section is different from the concept of

regularity that was defined in Chapter 2, Section 2.1.

Theorem 3.3.2. Let 7 = (n;)iesr be a type, t € W (X) be a term, and o € Hypg(T) be
a generalized hypersubstitution of type 7. Then the following statements hold:

(i) If o is a regular generalized hypersubstitution and n; > 1 for all i € I, then

maxdepth(a[t]) > maxdepth(t).
(i) If o is a reqular generalized hypersubstitution, then vb(G[t]) > vb(t).

(i) If o is a regular generalized hypersubstitution and n; > 1 for all i € I, then

op(a1t]) = op(t).

Proof. We prove all of the three claims by induction on the complexity of the term
t. In all cases, when t is a variable z € X, we have d[t] = « = t, and both [t] and ¢
have the same complexity.

(i) Let t = fi(t1,...,tn,). Since o is a regular generalized hypersubstitution and

n; > 1 for all ¢ € I, thus o(f;) ¢ X and z; € var(o(f;)) for all 1 < j < n;. So
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mazxdepth;(o(f;)) > 1 for all 1 < j <n;. We have

mazdepth(6t]) = maz{mazdepth;(o(f;)) + maxdepth(6[t,]), mazdepthy(c(f;)) |
1 <j<nik>ng,xj,x, €var(o(fi))}
= max{maxdepth;(o(f;)) + mavdepth(c[t,]), mazdepthy(o(f;)) |

1 <j<mnyk>n;ax, €var(o(fi))} (since o is regular)

v

mazx{maxdepth;(o(f;)) + mazxdepth(c[t,]) | 1 < j < n;}

A%

max{1l + mazdepth(ct.]) | 1 < j<mn;}

J

1 + max{mazxdepth(c[t.]) | 1 < j < mn;}

J

v

1 + max{maxdepth(t;) | 1 < j <mn;} (by induction)

= mazxdepth(t).

(ii) Let t = fi(t1,...,ts,). Since o is a regular generalized hypersubstitution, thus
vb;i(o(f;)) > 1forall 1 <j <n,. We have

ng

ob(a[f]) = Y vbs(a(fi))eb(8[ts]) + D vbi(a(fi)

j=1 j>ng

vV
(e
S
—~
Q
YamS
=
N—
N—
4
S%
—
Q>
"~
2
N——

v
—_
<
=
—
Q>
T~
<
=

= wb(t).

(iii) Let t = fi(t1,...,tn,). Since o is a regular generalized hypersubstitution and

n; > 1 for all ¢ € I, thus o(f;) ¢ X and x; € var(o(f;)) for all 1 < j < n;. So
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vb;(o(fi)) > 1for all 1 <j <n,;. Since o(f;) ¢ X, thus op(c(fi;)) > 1. Then

n;

op(6lt]) = Y vbi(a(f:))op(61t;]) + op(a(f:))

j=1

Z lop(alt]) +1

j=1

= ) op(o[t;]) +1

j=1

> > opl(ty) +1

S 0]_)(25). u

v

The next example shows that if o is a regular generalized hypersubstitution and
t is a term, then maxdepth(é[t]) and op(Gt]) need not be greater than or equal to
maxdepth(t) and op(t), respectively. Moreover, the example shows that if ¢ is a regular
generalized hypersubstitution, 7 is a type which does not contain a unary operation
symbol and t is a term, then mindepth(5[t]) need not be greater than or equal to

mindepth(t).

Example 3.3.3. (i) Let 7 = (1) be a type with one unary operation symbol f. Let ¢
be the term f(f(x5)). So that maxdepth(t) = op(t) = 2. Let o be the generalized
hypersubstitution mapping f to the term z;. Then, we have ¢ is a regular generalized
hypersubstitution and &[t] = x5, and this term has maxdepth(a[t]) = op(a[t]) = 0.
Hence maxdepth(a[t]) < maxdepth(t) and op(c[t]) < op(t).

(ii) Let 7 = (2) be a type with one binary operation symbol f. Let ¢ be the term
f(f(xy, 22), f(x1,22)). So that mindepth(t) = 2. Let o be the generalized hypersubsti-
tution mapping f to the term f(f(z1,x2),x3). Then, we have o is a regular generalized
hypersubstitution and &[t] = f(f(f(f(z1,22),23), f(f(z1,22),23)),z3) and this term
has mindepth(a|t]) = 1. Hence mindepth(c[t]) < mindepth(t). ]

Combining Theorem 3.3.2 with the discussion preceding Theorem 3.3.2 gives the

following result.

Corollary 3.3.4. Let 7 = (n;)ie; be a type and V' be a non-trivial M -strongly solid
variety of type 7. Let k > 1. Then the following statements hold:

(i) For the maximum depth c, ifn; > 1 for alli € I, then each NZ(V') is (M N Reg)-

strongly solid.
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(ii) For the variable count ¢, each Ng(V') is (M N Reg)-strongly solid.

(iii) For the operation count c, if n; > 1 for alli € I, then each Ng(V') is (M N Reg)-

strongly solid. |



