Chapter 4
Monoids of Generalized Hypersubstitutions of

Type 7 = (2)

The order of hypersubstitutions and all idempotent elements of the monoid of all
hypersubstitutions of type 7 = (2) were studied by K. Denecke and S.L. Wismath
[15].  All idempotent elements of the monoid of all hypersubstitutions of type 7 =
(2,2) were studied by Th. Changphas and K. Denecke [3]. Green’s relations on the
monoid of all hypersubstitutions of type 7 = (2) were studied by K. Denecke and S.L.
Wismath [15]. We want to study similar problems for the monoid of all generalized
hypersubstitutions of type 7 = (2). In this chapter, we characterize all idempotent and
all regular elements of the monoid of all generalized hypersubstitutions of type 7 = (2)
and determine the order of generalized hypersubstitutions of this monoid. Then we
study Green’s relations, characterize all primitive idempotent elements of this monoid
and characterize the natural partial ordering on the set of all idempotent elements of
this monoid.

We assume that from now the type 7 = (2), i.e. we have only one binary operation
symbol, say f. By o, we denote the generalized hypersubstitution which maps f
to the term ¢ in W (X). Firstly, we introduce some notations. For s, f(c,d) €
Wiy (X), 25,25 € X,i,j7 € Nand S C Wy (X) \ X we denote :

leftmost(s) := the first variable (from the left) that occurs in s,
rightmost(s) := the last variable that occurs in s,

W(%({a:l}) = {s € W)(X)|z1 € var(s), zy ¢ var(s)},

W ({2}) = {s € Wiy (X)lz € var(s), a1 & var(s)},

W({z1}) = W§ {z1}) \{z1},

W({z2}) == WG ({z2}) \ {22},

W(%({ml,xz}) = {t € W)(X)|z1, 22 € var(t)},

W= {t € We)(X)|t € X, 1,22 ¢ var(t)},
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P;(2) :=={0., € Hypc(2)|i € N, z; € X},

EY = {0 € Hypc(2)|s € Wiz)(X), 22 ¢ var(s)},

B, = {0f(s22) € Hypc(2)|s € Wig)(X), 21 ¢ var(s)},

E%({z1}):={o: € Hypa(2)|t € W({z1})},

EC({x2}):={or € Hypc(2)|t € W({z2})},

E9 ({22} )i={o1 € Hyp(D)[t € WG ({1,221}

G = {o. € Hype(ls € Wiy (X)\X. 21,22 ¢ var(s)},

f(c,d):= the term obtained from f(c,d) by interchanging all occurrences of the
letters 1 and z,, i.e. f(c,d) = S2(f(c,d), xq, 1) and f(c,d) = S%(f(c,d), x9, 1),

f(c,d):= the term defined inductively by z; = z; and f(c,d) = f(d', <),

= C[f (¢, d)]:= the term obtained from f(c, d) by replacing each of the occurrences
of the letter z1 by z; i.e. ,,C[f(c,d)] = S*(f(c,d), x;, z2),

Cy,[f (¢, d)]:= the term obtained from f(c, d) by replacing each of the occurrences
of the letter zy by z; i.e. Cy,[f(c,d)] = S%(f(c,d), z1,x;),

2:Ce;|f(c, d)]:= the term obtained from f(c,d) by replacing each of the occur-
rences of the letter 2y by ; and the letter x5 by z; i.e. ,,Cy,[f(c,d)] = S*(f(c,d), x;, ;).

S = {5|s € S},

S = {d|s € S},

H = {o3lo; € H} where H C Hypa(2) \ Pa(2),

H' = {oy|o, € H} where H C Hypa(2) \ Pa(2).

Then we have for any ¢ € W) (X)\ X, (') = ti=t1 =07 =17 =t flc,d) =

f@d), S=5,(8) =8, H=H, (H) = H, 0f(ays) G Ot = 01, 01 G O f(zpar) = O,
(ES) =BG and (ES) — FY.

4.1 Idempotent Elements in Hypq(2)

Now, we characterize all idempotent elements of Hypg(2).

Proposition 4.1.1. Let oy be a generalized hypersubstitution of type T = (2). Then oy is
idempotent if and only if 6,[t] = t.

Proof. Assume that o; is idempotent, i.e. o? = o;,. Then 6;(t] = 6:[o:(f)] =

(610 0)(f) = (0406 a1)(f) = a2(f) = ou(f) = t. Conversely, let 6,[t] = t. We have
(01 0c 00)(f) = (61 0 00)(f) = Gu[ow(f)] = Gu[t] = t = o¢(f). Thus o7 = oy u
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Proposition 4.1.2. For every z; € X, 0,, and 0,4 are idempotent.

Proof. Since for every i € N and z; € X, ,,[x;] = x;. By Proposition 4.1.1, we

have o0,, is idempotent. Since 0,4 is the identity element, thus o;4 is idempotent. [ ]

Proposition 4.1.3. Let t € W5y(X). Then the following statements hold:
(i) If xo & var(t), then oz, 4 s idempotent.

(ii) If 1 ¢ var(t), then 0fu ., is idempotent.

Proof. (i) Let x5 ¢ var(t). Then 6, y[f(21,t)] = S*(0par.6)(f): T1, 0oy ) [t]) =
S2(f(x1,t), 21,05y [t]) = f(z1,1) since o ¢ var(t).

(i) Let 21 ¢ var(t). Then 6 (e, [f (8 22)] = S*(04(t.00) (f): O st [t], 72) =
S2(f(t,x2), 0 p(tan)[t], x2) = f(t, x2) since 1 ¢ var(t). ]

Lemma 4.1.4. Let f(c,d) € Wi (X)\ X, 04, € Pg(2), 0, € Hype(2) and oy € G.
Then the following statements hold:

(i) 050G 0y, = O,
(i) 04, 0g 05 € Pu(2) (04[] € X).
(ili) o oq Of(,a) = o¢ (G itself is a left zero band).

Proof. (i) Consider (o5060,,)(f) = (6500.,)(f) = 650w, (f)] = 0s[xi] = xi = 04, (f).
S0 050G Oy, = Oy,
(ii) We will prove by induction on the complexity of the term s. If s € X, then
by (i) we get o,, og 05 = 05 € Pg(2). Assume that s = f(u,v) and o, og 0y, 04, oG
oy € Pg(2). Thus 6,,[ul,6,,[v] € X. Consider (04, og 05)(f) = (02, °G O (f) =
Sz, 64,[u], 04, [v]). If z; = x1, then (0., og 05)(f) = 6,,[u] € X. If z; = x4, then
(02,060)(f) = 04,[v] € X. Ifi > 2, then (0,,060,)(f) = x; € X. So 0,,060s € Ps(2).
(iii) Since 1, 3 ¢ var(t), thus (o og 0pea))(f) = S*(t, 6¢[c], 4[d]) =t (since there

has nothing to substitute in the term ¢). So oy og o f(cay = 0. |
Proposition 4.1.5. Fvery o, € G is idempotent.

Proof. By Lemma 4.1.4 (iii). ]



32

Proposition 4.1.6. Let t € W5y(X). Then the following statements hold:
(i) If zo € var(t) and t # x4, then oy, 1) is not idempotent.
(ii) If 1 € var(t) and t # xq, then oy, is not idempotent.
(iii) Ift # x1, then o4, is not idempotent.
(iv) Ift # 9, then op(z, ) s not idempotent.

(v) If x1 € var(t) or xo € var(t), then 0, and opu ., are not idempotent where

v € N with i > 2.

Proof. (i) Let zo € var(t) and ¢ # x5. Then we have G4, »[f(z1,t)] = S*(f(z1,1),
T1, 0 f(ay,0)[t])- Since z9 € var(t), then we have to substitute @, in the term ¢ by 64, 4 [t].

Thus SQ(f(xlvt)’xha-f(m,t)[t]) # f(xlwt)'

The proof of (ii), (iii), (iv) and (v) are similar to (i). ]

Proposition 4.1.7. Let t1,ty € Wiy (X)\ X. If 21 € var(t;) Uvar(ty) or xo € var(ty)U

var(ts), then oy, 1,) is not idempotent.

Proof. The proof is similar to the proof of Proposition 4.1.6. |

Then we have the main result:

Theorem 4.1.8. P;(2)UES UES UG U {04} is the set of all idempotent elements in
Hypa(2).

Proof. By Proposition 4.1.2, Proposition 4.1.3 and Proposition 4.1.5, we get every
element in PG(Q)UEf1 UEf2 UGU{0;4} is idempotent. Let o, € Hyps(2) be idempotent.
If t € X, then oy € P5(2). Let t = f(t1,t2). We consider into two cases:

Case 1: x1 € var(t). Suppose that t; = z1. If &, € X, then oy € ES U {0;q}. If
t> ¢ X, then by Proposition 4.1.6 (i) we get x5 ¢ var(t2). So oy € ES. Suppose that
t1 = x9. By Proposition 4.1.6 (iv), we get ts = xo, which contradicts to x; € var(t).
Suppose that ¢; = x; where ¢ > 2. Then x; € var(ty). By Proposition 4.1.6 (v), we
get oy is not idempotent. Suppose that t; ¢ X. If x; € var(t), then by Proposition
4.1.6 (ii), (iii), (v) and Proposition 4.1.7, we get oy is not idempotent. If z1 ¢ var(t,),
then x; € var(tz). By Proposition 4.1.6 (iii) and Proposition 4.1.7, we get o; is not

idempotent.

Case 2: x1 ¢ var(t). The proof of this case is similar to the proof of Case 1. u
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4.2 The Order of Generalized Hypersubstitutions of Type
T=(2)

In this section, we determine the order of generalized hypersubstitutions of type

T =(2).

Lemma 4.2.1. Let f(c,d), f(u,v) € Wix)(X) and 0¢(c.a) 0G 0 fuw) = Ow. Then vb(w) >
vb(f(c,d)) unless f(c,d) and f(u,v) match one of the following 16 possibilities:

E(1) 0f(ca) °G Ofup) = Of(c,ay Where opca) € G.

B(2) 05ca) °6 Of(1m1) = 00, [f(ed)-

B(3) 05(ca) °G Of(wam2) = 0., 0l5(c.d))

E(4) 0f(ca) °G Tid = O f(c,a-

E(5) 0f(cd) 0C Of(ar.a:) = OC,, [f(ed)) Where 73 € X, 1> 2.

E(6) 0f(ca) °¢ Of@sar) = TFoay

E(7) 0f(c.d) ©G O fsm) = 0,,Co[f(cd) Where T; € X, 0> 2.

E(8) 0f(ca) 06 Of(zsz) = 0, O lf(cd)) Where x; € X, 1> 2.

E9) 0f(ca) 06 Of(zsz0) = 0, Clf(cdy) Where z; € X, i > 2.
E(10) 0f(ca) °G Of(aia;) = 0., Cor, [/ (D) where x;,x; € X, 1,7 > 2.
E(11) o4(ca) °c Of@iv) = Oea) where v & X, f(e,d) € W({a1}).
E(12) 0f(c,a) 06 Of(zaw) = Ofeay Where v ¢ X, f(c,d) € W({{x1}).
E(13) 0(ca) 06 Of(ziw) = 0,.Clf(ea) where z; € Xii >2,v & X, f(e,d) € W({z1}).
E(14) 0y(cd) 96 Ofum) = Ofay where u ¢ X, f(c,d) € W({x2}).
E(15) 0f(c.d) 06 O f(uzs) = Of(c,a) Where u ¢ X, f(c,d) € W({x2}).

E(16) 0f(cd) 06 Ofum) = 0C,,[f(ed) Where 73 € Xji > 2, u ¢ X, f(c,d) € W({z2}).
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Proof. Assume that f(c,d), f(u,v) € W (X) and ofca) 0¢ Ofuy) = 0w We
want to compare vb(w) with vb(f(c,d)). From ofra) oG Ofup) = 0w, thus w =
S2(f(e,d),0¢caul, 6pcalv]). If ofcay € G, then by Lemma 4.1.4 (iii) we get w =
f(c,d) and we have E(1). Assume that ofcq ¢ G. Then z; € var(f(c,d)) or
xo € var(f(c,d)). We will consider the following cases.

Case 1: u,v € X. We have 6, [u] =uand 6, ,[v] =v. This gives 9 possible
subcases:

(1) u=v = z1. We have 0f(c.a) 0G T f(21,21) = 0C;, [f(e,a)), Which is E(2).

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9

U= z2. We have 0(c.d) G O f(zy,2) = O,,C[f(c.d)), Which is E(3).

&
|

= 1,0 = Ty. We have 0y(.q4) 0¢ 0ig = 0f(c,a), which is E(4).

N

= 21,0 = 23,4 > 2. We have 0f(.a) 96 Of(ay,2;) = 0C,, [f(ca)), Which is E(5).

S
I

To,v = x1. We have 0(c.a) 0G Of(zsz,) = O ey which is E(6).

Q

= T2, v = 4,1 > 2. We have o) 0G Tf(as.2) = 0,0, [f(ed)), Which is E(7).
7
8

u =z, v=z1,1> 2. We have ofa) oG Of(z;21) = 0,,C,, [f(ed), Which is E(8).
U =T, 0 = Tg,1 > 2. We have of(a) 96 Of(x;25) = 0, C[f(c.a), Which is E(9).
) u=x;,v = 15,1,5 > 2. We have 0(c.q)0c 0f(z,2;,) = 0, Cos [ (esd)]s which is E(10).
Case 2: u = 27 and v ¢ X. We have w = S*(f(c,d), 1,6 pcav]). If f(c,d) €
W ({x1}), then w = f(e,d), as in E(11). Assume that x5 € wvar(f(c,d)). Since
vb(6y(ca)[v]) > 1 and we have to substitute z in f(c,d) by Gfafv] thus vb(w) >
vb(f (e, d)).
Case 3: u = x5 and v ¢ X. In this case we get E(12) or vb(w) > vb(f(c,d)).
Case 4: u =z, > 2 and v ¢ X. In this case we get E(13) or vb(w) > vb(f(c,d)).
Case 5: u ¢ X and v = 2. In this case we get E(14) or vb(w) > vb(f(c,d)).
Case 6: u ¢ X and v = 5. In this case we get E(15) or vb(w) > vb(f(c,d)).
Case 7: u ¢ X and v = z;,7 > 2. In this case we get E(16) or vb(w) > vb(f(c,d)).
Case 8: u,v ¢ X. We have vb(Gfcafu]) > 1 and vb(dpcaqlv]) > 1. Since
vb(6y(cay[u]) > 1 and vb(Gfq)[v]) > 1 and we have to substitute z; in f(c,d) by
Gp(eay[u] or x2 in f(c,d) by Gfcalv], thus vb(w) > vb(f(c,d)). ]

Lemma 4.2.2. Let s € W) (X)\X, 21,22 € var(s),t € Wp)(X) and z; € X. If

x; € var(t), then x; € var(ds[t]) (x; € var((os oq o1)(f)))-

Proof. We will prove by induction on the complexity of the term ¢. If ¢ € X,
then ¢t = z;. So &4[t] = z; and thus x; € var(cs[t]). Let t = f(t1,t2). Then z; €
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var(ty) or x; € var(ty). Assume that x; € var(t;) and z; € var(ds[t;]). Consider
Gs[t] = 0s[f(t1,t2)] = S?(s,04t1],04[t2]). Since z1 € var(s) and x; € var(d,4[t1]), thus
x; € var(os[t]). By the same way, we can show that if x; € var(ty), then x; € var(s[t]).

Lemma 4.2.3. Let s € Wi (X)\X. If 21,25 € var(s), then x1, x5 € var(o?(f)) for all

n € N.

Proof. Let s = f(s1,89). For n = 1, ol(f) = 0,(f) = s. So x1, 25 € var(cl(f)).
Assume that z1, 75 € var(o?(f)). Consider o™*1(f) = (o7 og 0,)(f) = o[os(f)] =
on[s] = an[f(s1,80)] = S%(a™(f),o"[s1],07[sq]). If 21,25 € var(s;), then by Lemma
4.2.2 we get x1, 1y € var(o?[s;]). Since z; € var(c?(f)) and x1,z9 € var(c?[s;]) thus
1,29 € var(oft(f)). If s1 € WG ({21}), then 5 € var(sy). By Lemma 4.2.2, we
get x1 € var(o?[s;]) and zo € var(c?[sq]). Since w1, 7o € var(o™(f)), thus zy,zy €
var(a?(f)). If s € W(%({xg}), then by the same proof of the case s; € Wg)({xl})

we get x1, 7o € var(o™(f)). If x1, 2o ¢ var(s;), then zy, 9 € var(sy). By the same

proof of the case z1, x5 € var(sy), we get x1, 2o € var((os)" " (f)). ]

Lemma 4.2.4. Let s € Wy (X). If leftmost(s) = x1, then leftmost(o](f)) = x1 for
alln € N.

Proof. It is clear for s € X. Let s = f(s1,52). For n =1, ol(f) = 04(f) = s. So
leftmost(cl(f)) = x1. Assume that leftmost(o”(f)) = x1. Consider "™ (f) = (0" o¢

S

~

o) (f) = onls] = a2[f(s1,52)] = SH0™(f), 07 [s1],07[sq]). If 51 € X, then s; is the left-
most of s, so 51 = x1. Thus 07[s1] = ;. Since o?T1(f) = S2(a?(f), 0[s1], 07 [s2]),
leftmost(a™(f)) = z1 and o”[s;] = 1, thus leftmost(c™(f)) = ;. Let s, =
f(s3,84). Consider 07[s;] = o[ f(s3,584)] = S*(07(f), 07[s3],07[s4]). If s3 € X, then s3
is the leftmost of s, 80 s3 = ;. Thus 0%[s3] = z;. Since 0?[s;] = S*(a”(f), 0"[s3], 7"[s4]),
leftmost((c™)(f)) = z1 and o?[s3] = z1, thus leftmost(c”[s1]) = z1, which im-

plies that leftmost(c™"'(f)) = x;. This procedure stops after finitely many steps

at leftmost(s) = x;. ]
Lemma 4.2.5. Let s € W({z1}). If leftmost(s) = x; where i > 2, then x1,xs ¢
var(o3(f)).

Proof. Let s = f(s1,82). Consider o2(f) = (05 0g 04)(f) = 64[s] = 6s[f(s1,82)] =

S%(s,05[s1],05[50]). If s; € X, then s; is the leftmost of s, so s; = ;. Thus 6,[s1] = ;.
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Since s € W({x1}), 71,22 ¢ var(4[s1]) and o2(f) = S?(s,6s[s1], 0s[s2]), thus 1, o &
var(o2(f)). Let s; = f(s3,54). Consider G,[s1] = 6,[f(s3,54)] = S*(s,04[s3], 5[s4]). If
s3 € X, then s3 is the leftmost of s, so s3 = ;. Thus d4[s3] = x;. Since s € W({x1}),
x1,To & var(Gs[ss]) and 64s1] = S*(s, 6s[s3], 0s[s4]), thus z1,x9 & var(64s1]), which
implies that w1, 7y & var(o?(f)). This procedure stops after finitely many steps at

leftmost(s) = ;. ]

Lemma 4.2.6. Let s € Wy (X). If rightmost(s) = x4, then rightmost(o?(f)) = x2
for alln € N.

Proof. The proof is similar to the proof of Lemma 4.2.4. |

Lemma 4.2.7. Let s € W({xzy}). If rightmost(s) = x; where i > 2, then z1,xs ¢
var(o3(f)).

Proof. The proof is similar to the proof of Lemma 4.2.5. |

Note that {o%,, ,\|In € N} = {04, 0f(2s,21)}, the order of o (s, 0, is 2.

Proposition 4.2.8. Let s € W9 (X), x1,22 € var(s), o, not be idempotent and not be

equal t0 O f(z, 1) Then the order of oy is infinite.

Proof. Let n € N. Let w be the term for ¢7. By Lemma 4.2.3, we get x1, 29 €
var(w). Then the equation 07! = 0" oz o, dose not fit any of E(1) to E(16), so by

Lemma 4.2.1 we must have the term for o"*! is longer than w. This implies the order

of o, is infinite. [ |

Proposition 4.2.9. Let s € W({x1}) and o5 not be idempotent. If leftmost(s) = x,

then the order of o is infinite.

Proof. Let n € N. Let w be the term for ¢7. By Lemma 4.2.4, we get le ftmost(w) =

n+1

x1. Then the equation o

= ol og 0, dose not fit any of E(1) to E(16), so by Lemma
4.2.1 we must have the term for 7! is longer than w. This implies the order of o, is

infinite. n

Proposition 4.2.10. Let s € W({z1}) and o not be idempotent. If leftmost(s) = x;

where © > 2, then the order of o5 is 2.

Proof. Let w be the term for 02. By Lemma 4.2.5, we get x1, 7o ¢ var(w). This

implies 07 = o2 for all n € N where n > 2. So the order of oy is 2. m
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Proposition 4.2.11. Let s € W ({x2}) and o5 not be idempotent. If rightmost(s) = x,

then the order of o, is infinite.
Proof. The proof is similar to the proof of Proposition 4.2.9. |

Proposition 4.2.12. Let s € W({z2}) and o5 not be idempotent. If rightmost(s) = z;

where © > 2, then the order of o4 is 2.

Proof. The proof is similar to the proof of Proposition 4.2.10. |

Then we have the main result:

Theorem 4.2.13. The order of any generalized hypersubstitution of type T = (2) is 1,2

or infinite.

Proof. Let 0, € Hypg(2). If o4 is idempotent, then the order of oy is 1. If oy
is not idempotent, then x; € wvar(t) or xs € wvar(t). Assume that zq,2s € var(t).
If 0 = Of(wy), then the order of oy is 2. If 0y # 0f(4,.4,), then by Proposition
4.2.8 we get the order of oy is infinite. Assume that z; € var(t) and zo ¢ var(t).
If leftmost(t) = x1, then by Proposition 4.2.9 we get the order of o; is infinite. If
leftmost(t) = x; where i > 2, then by Proposition 4.2.10 we get the order of o, is 2.
By the same way we can show that if xo € var(t) and x; ¢ var(t), then the order of oy

is 2 or infinite. [

4.3 Regular Elements in Hypg(2)

Now, we characterize all regular elements of Hypg(2).
Proposition 4.3.1. For every x; € X, o,, and 0,4 are regular.

Proof. Since every o,, € P;(2) and 0,4 are idempotent, thus they are regular. m
Proposition 4.3.2. 0y, .,) s reqular for every r;,z, € X.

Proof. Let z;,2; € X. We consider into three cases.
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Case 1: i = 2,7 € N. We have

(O f@s.2)) ©C Tf(arr) 06 Ofara)) () = (Oparzy) 0 Opar ) [Of(aaay) ()]
= (Of(a)) Oc Uf(m,xl))A[f(iU?? ;)]
= O f(waay) O s [ (22, 75)]]
= G fana[S*(f (22, 21), w2, 7))
= Of(asuy [ f(2),22)]
= S%(f (2, 25), 7, 22)

= f(x%xj)'

Thus 0 (ey,2;) OC T f(as,e1) OC Of(wase;) = O f(wa,z;)-

Case 2: 1 # 2,7 = 1. We have

(0 f(21,21) ©G O f(wain) OG Tf(ia))(f) = (0f(i01) OC O f(a,en)) [0 s (i) ()]
= (0fm) O Of(aaen) [f (@i, 1))
= 0f(@iw) [0 (o) [f (i, 21)]]
= (e [S°(f (2, 21), 4, 11)]
= Ofian)f (@1, 2i)]
= SQ(f@u%)@n%)

T f(xw Il)'

ThUS 04(2:,21) OG O f(w2,01) OG Tf(wim) = O f(aiw)-
Case 3: i # 2,j # 1. We have 0y (y, ) is idempotent, thus it is regular.

Then (s, ;) s regular for all z;,z, € X.

Proposition 4.3.3. Let t € W) (X)\X. Then the following statements hold:
(i) If zo ¢ var(t), then o)), Of@ ) are regular.

(ii) If 1 ¢ var(t), then Of(z,), Of(zs) are Teqular.



39

Proof. (i) Let x5 ¢ var(t). Then we have

(05(t21) ©G T f(aa2) 0¢ Tf(tan) () = (Tfar) 06 Tpas ) [0 f(t.a0) ()]
= (04(t01) OG T f(aaen) Lf (£, 21)]
= Oftan) [0 f@aan [ (E, 21)]]
= Gt S (f (2, 2), 6 (w900 [t], 71)]
= Ot f(21,21)]
= S*(f(t, 1), 21, 21)

= f(t,x1) (zo & var(t)).

Thus 04(1,01) 06 O f(ws,23) OG Of(t,21) = O f(t21)-
Since (g, 1) is idempotent, thus it is regular.
(ii) Let z1 ¢ var(t). Since 04 4,) is idempotent, thus it is regular.

Counsider

(04 (@2.0) ©G Tf(a121) 0C Tfeat) () = (Tf(ant) 0 Tp(are0)) [0y ()]
= (04(@2) OG Tfar,o0) [f (22,1)]
= 0f(2) [0 f(@ranf (22, 1)]]
= G () [S°( (21, 71), 22, 6 f(ay a0 [1])]
= O f(an) [ (T2, T2)]
= S*(f(x2,t), 2, 25)

= [f(x2,t) (21 ¢ var(t)).
Thus 0f(as,4) 0G Of(1,21) OG Tf(wa,t) = Of(aa,t)-
Proposition 4.3.4. Fvery o, € G is reqular.
Proof. Since every o; € G is idempotent, thus it is regular.
Proposition 4.3.5. Let t € W5)(X) \ X. Then the following statements hold:
(i) If xo € var(t), then o), Of@ ) are not reqular.

il) If x1 € var(t), then o¢.zy), Oyt aT€ NOL TEGUlAT.
f(72) f( 27)
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Proof. (i) Let x, € wvar(t). We will show that o 4,), 0, are not regular.
Suppose that oy, is regular, thus there exists oy, € W) (X) such that Of(ter) OG
Ot OG Of(ta) = Of(twy)- ThUs (0pue) ¢ 0t °G Tie)(f) = Opuen(f). We have
Oran|0n [ f(t,x1)]] = f(t,z1). Put s = 63, [f(t,21)]. Then Gpuq,)[s] = f(t,z1). We
have s ¢ X, thus s = f(s1,s2) for some 51,59 € W2)(X). Thus 60 [f(51,52)] =
f(t,z1). We have S%(f(t,21), 60251, 0ranyls2]) = f(t,21). Thus G4 m)(s1] = 21
and since xy € wvar(t) thus Gy¢a,)[s2] = 22. We have s; = x1,50 = 9. Thus

[f(t,xz1)] = f(x1,22). By Lemma 4.1.4 (ii), we get t; ¢ X,
thus t1 = f(t2,t3) for some ty,t5 € Wio)(X). Thus Gy, [f(t, 21)] = f(21,22). We
have S?(f(ta,t3), O ftatn)lt], z1) = f(21,22). Since ¢t ¢ X, thus 6, .4)[t] ¢ X. From

s = f(x1,72) and &y,

S?(f(t2,t3), O ptta s [t], 1) = f(x1,22), thus t3 = z1 and G, 4)[t] = 2 which contra-
dicts to O, [t] ¢ X. Hence oy 4, is not regular. Suppose that oy, 4 is regular,
thus there exists 0, € W) (X) such that o, 4 oG 04 G Ofz14) = Of(ar)- Lhus
(0 f(21.0) °G 01, G Tf(a1,0)) (f) = Oparp(f). We have 64, )[04, [f (21, 0)]] = f(a1,1). Put
s = 04, [f(x1,t)]. Then 6z, 4[s] = f(x1,t). We have s ¢ X, thus s = f(sy, s2) for some
s1, 82 € W) (X). Thus 0 [ f(s1,82)] = f(z1,t). We have S2(f(21,t), 0 (1) [51],
Gz pls2]) = f(x1,t). Thus 64, 4)[s1] = 21 and since x5 € var(t), thus 6z, ) [s2] = 2.
We have sy = 1,89 = x3. Thus s = f(xy,29) and 6y, [f(x1,t)] = f(zx1,22). By
Lemma 4.1.4 (ii), we get ¢; ¢ X thus t; = f(t2,13) for some t5,t3 € Wy (X). Thus
Ottaty) [ f(21,1)] = f(x1,22). We have S(f(t2,t3), %1, 0 ftane)t]) = f(x1,22). Since
t ¢ X, thus G, u)[t] ¢ X. From S?(f(ta,t3), 21, ¢t 1a)[t]) = f(@1, 22), thus t5 = x5
and G, 1,)[t] = 2 which contradicts to G, ) [t] € X. Hence 0., 1) is not regular.

(ii) The proof is similar to (i). ]

Proposition 4.3.6. For any t € W) (X)\X. If x1 € var(t) or xo € var(l), then oz,

and 0y, 1) where 1 > 2, are not regular.

Proof. Let x; € var(t) or x € var(t) and let i € N with ¢ > 2. We will show that
Of(te;) and oy, ) are not regular.

Case 1: z; € var(t). Suppose that 0, is regular, thus there exists oy, € Wig)(X)
such that o 4,) 0G0 OGO f(t,e) = Tf(tas)- THUS (01120604 0G0 f12))(f) = 0w (f
We have 60,04, [f(t, 2:)]] = f(t,2;). Put s =64, [f(t,2;)]. Then 64¢q,)[s] = f(t,
We have s ¢ X, thus s = f(s1,52) for some s1, 50 € Wio)(X). Thus 60, [f(51,52)] =
f(t,z;). We have S*(f(t,2;), 0 pals1], Opan|se]) = f(t,2;). Since z1 € var(t), thus

)-
;).
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Of(tz)[51] = x1. We have s; = x1. Thus s = f(z1, s2) and 6y, [f(t,2;)] = f(21,52). By
Lemma 4.1.4 (ii), we get ¢t; ¢ X thus t; = f(t2,t3) for some t5,t3 € Wy (X). Thus
Oftate) [ (t, )] = flx1,82). We have S?(f(t2,t3), 0 fta)lt], z:) = f(z1,52). Since
t & X, thus 6, )[t] € X. From S?(f(ta,t3), Opaus[t], i) = f(21,52), thus to = 23
and G, 14)[t] = 1 which contradicts to ,.)[t] € X. Hence o4,y is not regular.
For 05,4 1s not regular we can prove in the similar way.

Case 2: x5 € var(t). Suppose that oy 4,) is regular, thus there exists oy, € W) (X)
such that o f(.z;)0¢ 01, 0G0 f(t2) = Of(ta) TS (0420601 000 (120)) () = Tz (f)-
We have G e, [04 [f(t, 2:)]] = f(t,25). Put s =64, [f(t,2:)]. Then 6¢q,)(s] = f(t, 2:).
We have s ¢ X, thus s = f(s1,52) for some s1, 50 € Wig)(X). Thus 60, [f(51,52)] =
f(t,x;). We have S?(f(t,2;), 0 panls1], Opanls2]) = f(t,2;). Since x5 € var(t), thus
O f(t,2)[52] = x2. We have sy = x5. Thus s = f(s1,22) and 6y, [f(t,2;)] = f(s1,22). By
Lemma 4.1.4 (ii), we get t; ¢ X thus t; = f(t2,t3) for some 5, t3 € Wy (X). Thus
Ofttats) [ (L)) = f(s1,22). We have S?(f(ta,t3), Ofans)[t], i) = f(s1,22). Since
t & X, thus 6p,)[t] € X. From S*(f(t2,t3), Opaus[t], i) = f(s1,22), thus t3 = 13
and Gy, 1)[t] = 22 which contradicts to 0, .4)[t] € X. Hence o4,y is not regular.

For 0f(5,+) 1s not regular we can prove in the similar way. |

Proposition 4.3.7. If t = f(t1,t2) where t1,ty € Wo)(X)\X and z1 € var(ty) Uvar(ts)

or ko € var(ty) Uvar(ty), then o, is not regular.

Proof. Let t = f(t1,ty) where t1,ty € Wio)(X)\X and 2y € var(t;) Uwvar(ty) or
xo € var(t;) Uvar(ty). Then we will show that o, is not regular.

Case 1: x; € var(t;) Uwvar(ty). Suppose that oy = 0,4, is regular, thus there
exists 0, € Wig)(X) such that oy, 1) 06 0u 0G Tft14s) = Oftrt)- Thus (05w, 1) O
0u 06 Of(t14))(f) = Osart) () We have G, u0)[0ulf (1, 82)]] = f(t1,82). Put s =
Guf(t1,t2)]. Then 6y, 1,)[s] = f(t1,t2). We have s ¢ X, thus s = f(s1,52) for some
s1, 52 € W) (X). Thus ¢, 1) [f (51, 52)] = f(t1,t2). We have S?(f(t1,t2), 0 ¢(t1,1)[51]s
Ot t0)[52]) = f(t1,t2). Since 1 € var(ty) Uwvar(ty), thus 6y, 4,)[51] = 1. We have
s1 = x1. Thus s = f(z1,s2) and 6,[f(t1,t2)] = f(x1,s2). By Lemma 4.1.4 (ii), we
get u ¢ X thus u = f(t3,ts) for some t3,t4 € Wo)(X). Thus 6pu,lf(ti,t2)] =
f(z1,52). We have S2(f(t3,t4), Optann)[t1], O psinlta]) = f(x1,s2). Since t1,t, ¢ X,
thus 6 7y 00 [1]s 0 st e [t2] ¢ X From S*(f(ts,ta), 6 p(es e [t1]s st [2]) = f(21,52),

thus t3 = 2y or t3 = 2 and this implies that 7, +,)[t1] = 21 Or 0,4, [t2] = 21, which
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contradicts t0 Gy, 10)[t1], O p(ts,00)[t2] & X. Hence oy, 1,) is not regular.
Case 2: x9 € var(ty) Uwvar(ty). The proof is similar to Case 1. ]

Then we have the main result:

Theorem 4.3.8. P;(2) U ES U ES U E_fl U E_g UG U {0id, Of(as,e0)} 15 the set of all

reqular elements in Hypg(2).

Proof. The proof of this theorem is similar to the proof of Theorem 4.1.8. |

4.4 Green’s Relations on Hypg(2)

In this section, we study Green’s relations on Hypg(2).

Proposition 4.4.1. For any o, € Hypa(2)\ Pe(2), we have 0, Roy, 0yLoy and oy DogDoy
,DO't*,.

Proof. Let 0, € Hypa(2) \ Pa(2). Then 07 og 0faya) = 0ty 0t OG Of(aom) =
Ofy Of(aoar) OG Op = 0p and Oz, 20) 0G 0 = 0y. So o0/Ro; and 0yLoy. Therefore

O'tDO'gDUt/DO't*,. |

Proposition 4.4.2. Any o,, € Pg(2) is L-related only to itself, but is R-related, D-
related and J-related to all elements of Pg(2), and not related to any other generalized

hypersubstitutions. Moreover, the set Pg(2) forms an R-, D- and J- class.

Proof. By Lemma 4.1.4 (i), we get for any o,, € Ps(2), 0 og 0., = 04, for all
o € Hyps(2). This shows that any o,, € Pg(2) can be L-related only to itself.
Since 0,, og 04, = 0, for all 0,,,0,, € Pg(2), so any two elements in Pg(2) are
R-related. From R C D C J, thus any two elements in Pg(2) are D— and J—
related. Moreover by Lemma 4.1.4 (i),(ii), we get o5 og 04, oG 0r € Pg(2) for all
0s,0¢ € Hypg(2), 0., € P(2). This implies if 0 ¢ P;(2), then o cannot be J-related
to every element in Pg(2). So Pg(2) is the J-class of its elements. Since any two
elements in Pg(2) are R— and D— related, R C J,D C J and Pg(2) is the J-class

of its elements, thus P;(2) forms an R-, D-class. ]

Lemma 4.4.3. Let 05,0, € Hypa(2). Then the following statements hold:

(i) If os0q oy = 04, then either o3 = 0y = 034 0T 05 = Ot = O f(gy21)-
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(ii) If 050G Ot = O f(a,e1), then either (05 = 0id, 0t = Of(z0.2,)) OT (Os = Of(zp.21): Ot =

Uid)-

Proof. (i) Assume that o4 og 0y = 0;4. Since f(x1,22) ¢ X, thus by Lemma 4.1.4
(i),(ii) we get s,t ¢ X and thus s = f(a,b),t = f(c,d) for some a,b,c,d € W5 (X).
From o, oG 0y = 04, thus S*(f(a,b),6¢an ), G fapld]) = f(z1,22). So (a =c =z
ora=xy,d=1x1) and (b =d = x5 or b = x1,c = x3). This implies 05 = 0y = 044 Or
Os = 0t = Of(zgm1)

(ii) The proof of (ii) is similar to the proof of (i). ]
Proposition 4.4.4. All of R-, L- and D-class of 0,4 are equal to {0, 0 f(zy.21)}-

Proof. By Proposition 4.4.1, we get iy and 0y(y,4,) are R-, L- and D-related.
This implies the R-, £- and D-class of 0,4 contain at least {0iq, 0p(zy.00)}- Let oy €
Hypg(2) where 0,Do;q. So 0,Los and 0,Ro;q for some o5 € Hypg(2). Then there
exist o, 0y,0,,0, € Hypa(2) such that o = 0, o¢ 05, 05 = 040G 04, 05 = Tiq O Oy,
and 0,y = 05 oG 0,. From 0,4 = 05 0og 0, thus by Lemma 4.4.3 (i) we get o5 = 04 or
Os = Of(zy,1). FTOM 05 = Ojq OF O3 = O f(zy2,) and o5 = 040G 04, thus by Lemma 4.4.3
we get 0; = 04q OT 0y = O f(zy2,)- S0 the D-class of 044 is equal to {04, af(m,xl)}. From

R C D, L C D, thus the R- and the L-class of 0,4 are equal to {04, 0 f(zy.21)}- [

Proposition 4.4.5. (0,4); = Hypc(2) = (0f(@ee))i, and if 0 € Hypa(2) and (0); =
Hypa(2), then o is one of 0iq 01 0(zy2,). Moreover, the J-class of 0,4 is equal to its

'D—CZCLSS, {O'idy O'f(@,m)}-

Proof. Since 0,4 is the identity element, thus (0;4); = Hypg(2). Let 0 € Hypg(2).
Then 0 oG Of(zye1) OG Of(wae) = - 50 (0ia)i = Hypa(2) = (0f(zs,21))i- This implies
0idJ O f(zg,21)- Assume that (0); = Hype(2). Then 0J 04 and thus there exist d,p €
Hypa(2) such that § og 0 og p = 0;9. By Lemma 4.4.3 (i), we get o og p = 0iq Or

0 0G P = Of(zs0y)- Again by Lemma 4.4.3, we get 0 = 0jq OT 0 = O f(z,0,)- [

Lemma 4.4.6. Let u € W(9(X), 00 € Hypa(2) and x = 1 or v = x9. If x ¢ var(u),

then x ¢ var(64[u]) (z is not a variable occurring in the term (o, og 04)([f)).

Proof. We will prove by induction on the complexity of the term u. If u € X,

then 6;[u] = u and so x ¢ var(oy[u]). Assume that u = f(uq,u2) and x ¢ var(o[uq]),
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x ¢ var(ous]). Since x ¢ var(6iui]), x ¢ var(ci|us]) and 6¢[u] = &¢[f (w1, uz)] =

S%(t, 64uy], 0¢[us)), thus = & var(6.[u]). n

Proposition 4.4.7. Any o, € G is R-related only to itself, but is L-related, D-related
and J -related to all elements of G, and not related to any other generalized hypersub-

stitutions. Moreover, the set G forms an L-, D- and J - class.

Proof. Let 0, € G. Assume that o, € Hypg(2) where o,Ro,. By Proposition
4.4.2,we get s ¢ X. Then there exists 0, € Hypg(2) such that o5 = 0y o¢ 0,. Since
s ¢ X, thus by Lemma 4.1.4 (i) we get p ¢ X. Since 0, € G and p ¢ X, thus by
Lemma 4.1.4 (iii) we get 0y og 0, = 0y. So 05 = 0;. Thus oy is R-related only to itself.
Let 04,0, € G. By Lemma 4.1.4 (iii), we get o, og 0y = 0, and 0, og 05 = 0. Thus
osLos. So any two elements in G are L-related. Since £L C D C J, thus any two
elements in G are D— and J — related. Assume that o, € G and o5 € Hyps(2) where
osJo.. By Proposition 4.4.2, we get s ¢ X. Then there exist 0,,0, € Hyps(2) such
that o, og 04 0 0, = 0. Since s ¢ X, thus by Lemma 4.1.4 (i),(ii) we get p,q ¢ X.
Since o, € G and ¢ ¢ X, thus by Lemma 4.1.4 (iii) we get o, og 0, = 0y. Since
x1, 2 ¢ var(t), thus by Lemma 4.4.6 we get x, x5 are not variables occurring in the
term (0, o¢ 0¢)(f) = (0p 0g 01 0 04)(f). Thus 1,22 ¢ var(s) and so g, € G. So G
is the J-class of its elements. Since any two elements in G are L— and D— related,

LCJ,DCJ and G is the J-class of its elements, thus G forms an £-, D-class. =

Theorem 4.4.8. Let 7 = (n;)ier be a type and 01,09 € Hypg(7). Then o1Roy if and

only if Imao, = Imao.

Proof. Assume that 0;Ros. Then o, = 09 o 03 and 09 = 0, og 04 for some
03,04 € Hypg(7). By Proposition 2.2.10 (ii), we get 61 = (09 0g 03)" = (3 0 03)" =
g9 003 and Gy = (07 0og 04)" = (61 0 04)" = 01 0 4. Thus Imdo, = 57[W(X)] =
(69 0 03)[Wr(X)] = 62[03[W-(X)]] C 62[W,(X)] = Imdy. By the same way we can
show that Imay C Ima,. Conversely, assume that Imo, = Imo,. For each i € I,
we have o1(f;) = S™(o1(fi),x1,. .., 2n,) = o1[fi(x1,...,2n,)] € IMmdy = Imds. So
o1(f;) = 62[t;] for some t; € W,(X). We define v : {fi]i € [} — W(X) by v(f:) =
foralli € I. Let i € I. Then (02067)(fi) = d2[v(fi)] = 62[ti] = 01(fi). So o1 = g9047.

By the same way we can show that o9 = 01 og 3 for some 5 € W, (X). n
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Theorem 4.4.9. For any o, 0, € Hypg(2), 0sRoy if and only if the following conditions
hold:

(i) If s€ X, thent € X.
(ii) If s¢ X, then s =1t or s =1.

Proof. Assume that o,Ro;. If s € X, then by Proposition 4.4.2 we get t € X. Let
s ¢ X. Then there exist o,,0, € Hypg(2) such that o, = 0, og 0, and o, = 04 o¢ 7.
By Lemma 4.1.4 (i), (ii), we get t,u,v ¢ X. Then u = f(uy,us) and v = f(vy,v,) for
some 1y, Uz, V1, V2 € Wig)(X). Then we have two equations

s = S2(t, orfua], 6efua]) (1)
t = S2(s,0,[v1], 0s[va]) (2).
From (1) and (2), we get vb(s) = vb(t). We consider into four cases:

Case 1: t € WY, From (1), we get s = t.

Case 2: t € W(%({xl,xQ}). Suppose that u; ¢ X or us ¢ X. Then 64Jus] ¢ X or
G¢lus) ¢ X. From (1) and z1, 2o € var(t), thus vb(s) > vb(t) and it is a contradiction.
So uy,us € X. Suppose that u; = ug = 1. Then 6[uy] = 64[us] = x1. From (1), we
get s € W({z1}). Suppose that v; ¢ X. Then 64[v1] ¢ X. From (2) and z; € var(s),
thus vb(t) > vb(s) and it is a contradiction. So vy € X and thus G5[v1] = v;. Since
s € W({x1}) and 64[v1] = vy, thus from (2) we get x; ¢ var(t) or xo ¢ var(t) which
contradicts to t € Wg)<{l'1,$2}). If uy = x1,u9 = x9, then 6, {us] = x1,0¢[us] = xo.
From (1), we get s = t. If u; = x1,uy = x; where ¢ > 2, then by the same proof as
the case u; = uy = w7 we get x1 ¢ var(t) or zo & var(t). If uy = x9,us = 1, then
O¢lur] = 2, 6¢[us] = 1. From (1), we get s = ¢. If u; = x9,us = x9, then by the same
proof as the case u; = uy = x1 we get x1 ¢ var(t) or xo ¢ var(t). If uy = x9,us = z;
where ¢ > 2, then by the same proof as the case u; = us = 21 we get x; ¢ var(t)
or xo & var(t). If u; = x;,us = x; where i > 2, then by the same proof as the case
Uy = ug = x1 we get xy & var(t) or xo & var(t). If uy = x;,ug = xo where i > 2, then
by the same proof as the case u; = us = x; we get x; ¢ var(t) or xo ¢ var(t). Suppose
that u; = x;,ug = x; where 7,7 > 2. Then 6[u1] = x;, ¢[us] = ;. From (1), we get
s € WY, Since x1, x5 ¢ var(s), thus from (2) we get s = t. So x1, 75 ¢ var(t) and it is
a contradiction.

Case 3: t € W({z1}). Suppose that u; ¢ X. Then 6;Ju;] ¢ X. From (1),
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xy € var(t) and oJui] ¢ X, thus vb(s) > vb(t) and it is a contradiction. So u; € X
and thus 0g[u;] = uy. If uy = xq, then by (1) we get s = t. If u; = x9, then by (1)
we get s = f. Suppose that u; = z; where i > 2. From (1), we get s € WY, Since
x1, T2 & var(s), thus from (2) we get s =t. So x1 ¢ var(t) and it is a contradiction.
Case 4: t € W({z2}). By the same proof as the case t € W({z,}) we get s =t or
= 1.
Conversely, assume that the conditions hold. By Proposition 4.4.1 and Proposition

4.4.2, we get o, Roy. [ |
Lemma 4.4.10. Efl 18 a left zero band.

Proof. Let 04z, ), 0f(a10) € Efl Since xo ¢ var(s), thus (s, ¢ Tf@)(f) =

S2(f(21,8), 21,05z, 9)[t]) = [(21,5). SO Ofar.s) OG Ofart) = (o). S0 ES is a left

zero band. u
Proposition 4.4.11. The L-class of the element 0y, +,) is precisely the set E’g U E_g

Proof. For any two idempotent elements e and f in a semigroup S, eLf if and
only if ef = e and fe = f. Since Efl is a left zero band, it follows that o, 4) is
L-related to any element of ES . By Proposition 4.4.1, we get o 4(s, ) is L-related to
any element of (ES ) = E_g Thus the £-class of 0f(y, +,) contains at least ES U E_g
For the opposite inclusion, assume that o, € Hypg(2) where 6.L0 (s, 2,)- By Propo-
sition 4.4.2, we get t ¢ X. Then t = f(u,v) for some u,v € Wy (X). From
0L f (1 ,21), then there exist o,,0, € Hyps(2) such that o, o 044, 2) = 0v and
0q 0G Ot = Of(zy,2,)- Since t, f(x1,21) ¢ X, thus by Lemma 4.1.4 (ii) we get p,q ¢ X.
Then there exist a,b,c,d € W3)(X) such that p = f(a,b) and ¢ = f(c,d). Thus we
have 04(a,4) 0G0 f(w1,01) = Of(uv) AN O f(a) OGO f(up) = Of(ar,er)- FIOM O(a,0) 0G0 f(a1,01) =
Of(uw), thus by Lemma 4.4.6 we get xo ¢ var(f(u,v)). From ofcq) o¢ Ofwue) =
O f(a1,00), thus S?(f(c, d), 0 p(ca[ul, 0pca[v]) = f(21,21). Suppose that u,v # 1. Thus
G teanlt]s & s 0] # 1. This implies S2(£(e,d), 65, Fyceaplo)) # flar, 1), which
is a contradiction. So u = x; or v = x1. Since xy ¢ var(f(u,v)) and u = x; or v = 1z,

thus o, = o) € EIG1 U E_fz [ |

Corollary 4.4.12. The D-class of the element 0y, 4) is precisely the set Efl U Eg U
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Proof. Assume that o, € Hyps(2) where 04 Doy, ). Then there exists o, €
Hypa(2) such that 0, Ro, and 0,L0f(z, 4,). Since 0,Rog, thus by Theorem 4.4.9 we
get 0y = 0, or 0y = 05. Since 0,L0¢(y, 2,), thus by Proposition 4.4.11 we get o,
ES UES. If o, € ES, then oy € ES UES C ES UES UEY UEC. If o, € Eg,
then o, € Eg U E_fz - EIG1 U Eg’; U E_IG1 U E_QL,G2 For the opposite inclusion, assume
that o, € EG U EG UE_GU E_G If oy € EG U E_G then by Proposition 4.4.11 we get
0tL0f(2) 2,y Since L C D, thus 0;Doy(y, 2. If 04 € EG U Ex17 then o7 € Efl U E_g

By Proposition 4.4.11, we get 07L0(y, 2,). By Theorem 4.4.9, we get o,Ro;. So

O'tDUf(:pl,:pl)- |

Lemma 4.4.13. Let 0f(ca) € Hypa(2) \ {0id, Of(z,01)} and u € Wiy (X)\ X. If 0f(ca) €
EC({z1,22}), then the term w corresponding to the composition o () oG 0w s longer

than w.

Proof. We will prove by induction on the complexity of the term u. Since z1, x5 €
var(f(c,d)) and f(c,d) # f(x1,22), f(x2,21), thus ¢ ¢ X or d ¢ X and vb(f(c,d)) > 3.
Let vb(u) = 2. Then u = f(x;,x;) for some x;,2; € X. So vb(w) = vb((0y(ca) o
) (F)) = Ob((05tet) 0G Trama)(f)) = OB(S(flerd), ;) = 3 > wb(u). Let u =
f(s,t) where s € X and ¢t ¢ X. Then 6yq[s] = s € X. Assume that vb(Gsa)lt]) >
vb(t). Since x1, 22 € var(f(c,d)) and vb(G s alt]) > vb(t), thus vb(w) = vb((0f(c,a) O
52)(F)) = 0b((0 e 06 T3)(F)) = WB(S2(F(e, ), 5, Gem 1)) > vb(F(s,)) = vb(u).
Let u = f(s,t) where s,t ¢ X. Assume that vb(6(.q)[s]) > vb(s) and vb(Gf(ca)t]) >
vb(t). Since x1,x2 € var(f(c,d)) and vb(G(ca)ls]) > vb(s), Vb(Gy(ca)[t]) > vb(t), thus
vb(w) = vb((05(e.a) 0c Tu)(f)) = VO((T f(ca) 0c Tr(s)) () = vb(S?(f(c,d), G eals],
51ealt]) > vb(f (s, 1)) = vblu). .

Lemma 4.4.14. If f(c,d) € W({x1}) UW({x2}) U W (2, & var(f(e,d)) or xo ¢
var(f(c,d))), then for any u,v € W) (X) the term w corresponding to o ¢(c.q) ©G O f(uw)
is in W({z1}) U W ({x}) U WY,

Proof. We will prove by induction on the complexity of the term u. Assume
that f(c,d) € W({x1}). We have to consider the letters used in the term w =
S2(f(e,d),0¢caul, 6pealv]). If u € X, then opcafu] = u € X. Since f(c,d) €

W({z1}), o5calul € X and w = S*(f(c,d), 64(ca)[u], 6f(ca)[v]), thus w € W({a1}) U

W({z2})UWEC. Letu = f(p,q) and 6 p(ca)[p] € W({z1 HUW ({22 HUW . S0 6 p(ca)[u] =
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S2(f(e,d), 0Pl 0fcalq) € W({z1}) UW ({z2}) UWE. Since f(c,d) € W({z1}),
peau] € W({ai}) UW({a2}) UWE and w = S*(f(c,d), 6fcalul, pcav]), thus
w € W({z })UW ({zo})UWE. By the same way we can show that if f(c,d) € W ({x2}),
then w € W({x1}) UW({xo}) UWE. If f(c,d) € WY, then w = f(c,d) € WE. ]

Proposition 4.4.15. The following statements hold:

(i) (0f@21))i =1 :={or € Hypa(2)|t € W(g)({xl})UW(%({arg}) or xy,xe & var(t)}.

(ii) Ifaelwherecrg_fEGUEGUEGUEG then (0); € 1.

T’
(iii) The J-class of 0 (a2 is equal to its D-class, ES U ES U E_guE_g

Proof. (i) Assume that oy € (0f(s, ,))i- Then there exist §,p € Hypa(2) such
that 0 og 0(z,,0,) 0a p = 0s. If 0 or p € Pg(2), then by Lemma 4.1.4 (i), (ii) we get
0s = 000G Of(z12) 9 P € Pa(2) C I. Assume that 0,p ¢ Po(2). By Lemma 4.4.14,
we get Of(z,0) 0¢ p € 1. By Lemma 4.4.6, we get 0, = 6 og (04, 01) °c p) € 1.
For the opposite inclusion, suppose that o, € I. If 0, € Pg(2), then by Lemma
4.1.4 (i) we get 05 = Of(z1.21) OG Tf(w1,e1) G Os € (Of(@121))i- Let o5 € Po(2). If
1,22 ¢ var(s), then by Lemma 4.1.4 (iii) we get 05 = 050G 0f(21.2,)°G Os € (Of(z1,21))i-
If s € W({x1}), then o5 = 0,06 01w, 01) ©G Of(a1,01) € (Of(ar,21))i- If s € W({z2}), then
0s = 059G Of(a1,a1) OG Of(azas) € (Of(aran))iv

(i) Assume that o € I where o ¢ E¢ UES UEY UES. If 0 € Pg(2), then (0); =
Hypa(2)oHypa(2) = Pg(2) € I. Assume that o ¢ Pg(2) and 0 = 0fy,). Let f(u,v) €
W ({x1})UW ({z2}). Suppose that u,v € X. Since f(u,v) € W({x1}) UW ({z2}), thus
O fluw) € Efl UEzG2 UE_zGIUE_sz and it is a contradiction. Suppose that u € X and v ¢ X.
If w = x, or u = @y, then oy, € Efl U Eg U E_fl U E_xG2 and it is a contradiction.
So u = x; for some i > 2. Suppose that 0y, 21) € (Tfuw)i- Since f(x1,21) ¢ X and
Of(@r,e1) € (Of(uw) )i, thus there exist p,q,r, s € W9 (X) such that osq) ¢ Tf@, ) O
Ofrs) = Of(arz)- Let w be the term (0f(,.0) 0 Tfs))(f). So w = f(x;,k) for
some k € Wy (X)\ X. Then we have 044 0G Of@ik) = Of(a1,21)- Lhis implies
f(p,q) = f(x2,22). Consider (0f(zy20) 0G Ofir)) (f) = S*(f (@2, 22), Ti, Oy w0 [k]) =
(G f(zs20) K] O f(aea)[K]) # f(x1,21), which is a contradiction. So (¢); € I. By the
same way we can show that if u ¢ X and v € X, then (0); € I. Suppose that u,v ¢ X.
Then vb(f(u,v)) > 4. Suppose that ofu, 2) € (0fww))i- Since f(xq,21) ¢ X and
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Of(@r,e1) € (Tfuw))is thus there exist p,q,7,5 € W) (X) such that oypq) 0 Ofww) O
Of(rs) = Of(z1,21)- Let w be the term (0f(u) 0G0 f(rs))(f). Then vb(w) > 4. By Lemma
4.1.4 (iii), we get x; € var(f(p,q)) or o € var(f(p,q)). Suppose that f(p,q) €
WG {z1,20}). I f(p,q) = f(a1,22) or f(p,q) = f(x9,21), then 0 = Of(, 4,y OF
Ow = Of(z,0) and it is a contradiction. Suppose that f(p,q) # f(x1,22), f(22,21).
By Lemma 4.4.13, we get vb(f(z1,x1)) > vb(w), which is a contradiction. Suppose
that f(p,q) € W({z1}) UW({z2}). Then the equation 04,4 oG 0w = Of(, ;) does
not fit any of E(1) to E(16), so by Lemma 4.2.1 we must have f(xi,z;) is longer
than f(p,q) and it is a contradiction. So (0); € I. Let f(u,v) € W. Suppose that
Ofra) € (Ofuw)i- Since f(xy,21) ¢ X and 0, 21) € (Ofuw) )i thus there exist
p,q,7,5 € Wi (X) such that opq) 06 Tfue) °G Tf(rs) = Tf@i,e). By Lemma 4.1.4
(iii), we get T f(uw) OG T f(rs) = Of(uw)- By Lemma 4.4.6, we get x,zy are not variables
occurring in the term (0f(,.4) 06 T f(u.0))(f) = (Of(p.q) ©C Ofuw) Oc Tfrs))(f), which is a
contradiction. So (¢); € I.

(iii) Since D C 7, thus we must have ES UES UE_IGIUE_E2 contained in the J-class
of 0¢(z, 1)- Assume that 0 € Hypg(2) where 0J 04z, 21). Then (0); = (0@ 21))i = 1.
Soo e l. By(ii),wegetaeEgUEgUE_gUE_g. ]

Proposition 4.4.16. For any o, € EY({x1,72}), the elements which are L-related to oy

are only oy itself and oy .

Proof. Let t = f(u,v). Assume that o, € Hypg(2) where o,L0;. By Proposi-
tion 4.4.2, we get s ¢ X. Then s = f(a,b) for some a,b € Wy (X). Since s,t ¢ X
and o,Lo;, thus there exist c,d,e,g € W) (X) such that ofca) 0¢ Ofup) = Ofap)
and o (e,g) OG Of(ap) = Of(uw)- Since xq1, 2 € var(f(u,v)), then by Lemma 4.4.14 and
Tf(e,g) OG Tf(ap) = Of(up) We get x1,29 € var(f(e,g)). Since x1,2o € var(f(u,v)),
then by Lemma 4.4.6 and o (c,g) 0G Of(ap) = Ofuw) We get 21,22 € var(f(a,b)). Since
x1,22 € var(f(a,b)), thus by Lemma 4.4.14 and 0f(cq) °G Ofuw) = Oflap) We get

¢,d)). Suppose that f(c,d), f(e,q) ¢ {f(x1,22), f(z2,21)}. Since
€, 9)

T,y € var(f(
f ) and x1,29 € war(f(c,d)), thus by Proposition 4.4.13 we get

x1,x9 € wvar(f(e,
vb(f(a,b)) > vb(f(u,v)) and vb(f(u,v)) > vb(f(a,b)), which is a contradiction. So
f(ca d) € {f<x17x2>7f<x27x1)} or f(e’g) € {f(mlaxZ)a f(x2>x1)}- This implies O0s = Ot

or oy = Oy. [
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Corollary 4.4.17. For o, € EY({z1,22}), Dy, = {04, 00,07, 07}.
Proof. By Theorem 4.4.9 and Proposition 4.4.16. |

Proposition 4.4.18. For o, € EY({x1,22}), the J-class of oy is equal to its D-class,

{ov, 00, 07,07}

= J

gid*

Proof. If 0y = 0iq or 0y = 0f(4,.4,), then by Proposition 4.4.5 we get D,
Let 0y # 0id, Of(z0,2,) and o, € Hypa(2) where 0,J0;. By Proposition 4.4.2, we get
s ¢ X. Then there exist o,,0,,0p,0, € Hyps(2) such that o, og 0y o¢ 0, = 05 and
0, 0G 05 0 04 = 0y. This implies 0, og 0, o¢ 04 °0G 0, 0 04 = 0. Since t ¢ X, thus
by Lemma 4.1.4 (i),(ii) we get u,v,p,q ¢ X. Since t € W(%({xl,mg}), thus by Lemma
4.4.6 and Lemma 4.4.14 we get u,v,p,q € W(%({asl,:@}) and terms corresponding to
the intermediate products are in W(%({azl, x9}). We consider into three cases.

Case 1: 0, og 0, = 044. Then by Lemma 4.4.3, we get 0, = 0, = 049 OF 0, = 0, =
O f(za,21)- U 0p = 0y = 04, then from o, og 0y 0g 0, = 0, and 0, og 05 0 04 = 0, We
get 0y og 0, = 05 and 05 o¢ 0, = 0. S0 0,Ro;. By Theorem 4.4.9, we get o, = 0, or
o, =07 If 0, = 0y = Of(gy,21), then from o, og 04 o¢ 0, = 05 and 0, oG 05 0 74 = 0y
we get oy og 0, = 05 and 05 0¢ 0y = oy. S0 0sRoy. By Theorem 4.4.9, we get 05 = oy
or o5 = 0.

Case 2: 0,060y = Of(zs2,)- Then by Lemma 4.4.3, we get 0, = 04, 0y = Of(z5,0,) OF
Op = Of(z9,01), Ou = Oiq- LThen o, = 0,060,0G010G0,0G0; = 0f(z5,0,)°G 010G 0,0GTq =
oy oG (0, og 04). By Lemma 4.2.1, we get ¢ is longer than t', unless the product
oy oG (0, og 0,) fits one of E(1) to E(16). But vb(t) = vb(t'), thus the product
oy og (0, 0¢ 0,) fits one of E(1) to E(16). We see that the cases E(1) — E(3), E(5),
E(7) — E(16) are impossible. Assume that £(4) holds. We have 0, og 0, = 0,4. By
Lemma 4.4.3, we get 0, = 04 = 044 OF 0y = Oy = Of(sp,)- If 0, = 04 = 044, then from
0y OG 01 oG 0, = 05 and 0, og 05 o 04 = 0y We get 0, og 0 = 05 and 0, o 05 = 0.
So o,Lo0;. By Proposition 4.4.16, we get 05 = 0; or 0, = op. If 0, = 0y = Of(y21),
then from o, o 0y og 0, = 05 and 0, 0 05 0 04 = 0y We get 0, 0G 04 OG O f(zy,2,) = O
and 0, 0G 050G Of(zy,2,) = 0¢. This implies o, og 07 = 0 and 0, og 0, = 07. So o,Lo7.
By Proposition 4.4.16, we get 0, = o3 or 0, = 0y = 0. Assume that E(6) holds.
We have 0, og 04 = 0f(s,2,)- By Lemma 4.4.3, we get 0, = 043 O 0 = Of(sya;). I

Op = Oq = Of(z;,2), then from o, 0q 0,060, = 0, we get 0, = 04 If 0, = 04 = O f(20,01),
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then from o, og 05 0g 0, = 0 we get 0y = oy. If 0, = 044,04 = Of(25.41), then from
0,0G050q0, = 0y we get 0, = 07. If 0, = 0f(3,01), 0q = 0iq, then from op0q0,0q00, = 0y
we get oy = oy.

Case 3: 0, 06 Oy # Oid; Of(xs,2,)- By Lemma 4.4.13, we get t is longer than the
term w = (0; og 0, 0¢ 04)(f). By Lemma 4.2.1 , we get w is longer than ¢, unless the
product o; og (0, oG 0,,) fits one of E(1) to E(16). But the case w is longer than ¢ is
impossible. We see that the cases E(1) — E(3), E(5), E(7) — E(16) are impossible.
Assume that E(4) holds. We must have o, og 0, = 0;4. By Lemma 4.4.3, we get
Oy = 0y = Tiq OF Oy = Oy = Of(zy0,)- U 0y = 04 = 04q, then from o, oG 0y 0g 0, = 0
and 0,000,060, = 0y we get 0,060, = 05 and 0,005 = 04. So 0,L0:. By Proposition
4.4.16, we get oy = 0y or 05 = op. If 0, = 0y = O (454, then from o, oG 0 0 0, = 0
and 0, og 05 0q 0, = 04 We get 0y, 0G 04 O0G O f(wy,2,) = Os and 0y 0G T OG O f(xg,1) = Ot
This implies 0, og 07 = 05 and 0, og 05 = 07. S0 0sLo07. By Proposition 4.4.16, we get
05 = 03 Or 05 = 0y = 0. Assume that E(6) holds. We must have o, og 0, = O f(zo01)-
Then o, = Op OG Oy OG 0 OG Oy OG Oq = 0p OG Oy OG 0t OG O f(za,x1) — (Up € Uu) °@G 0%-
Since 0, 0G Oy # Tids O f(zs,21), thus by Lemma 4.4.13 we get ¢ is longer than t and it is

a contradiction. [

Proposition 4.4.19. Let t € Wu)(X) \ X and x; € var(t) or o € var(t). Then the

following statements are equivalent:
(i) o¢ has an H-class of size 2.
(i) ¢ =t.
(iil) ¢ = f(u,v) for some u,v € Wz (X) with v =1,

Proof. (i)=>(ii) Assume that (i) holds. By Theorem 4.4.9, we get R,, = {0y, 07}.
Since H,, C R,, and |H,,| = 2, thus H,, = {0, 035}. So 0.Lo7. By Proposition 4.4.1,
we get 0y Loy. So oiLloy. If t € W(%({xl,xg}), then by Proposition 4.4.16, we get
t' =t. Ift € W({z1}), then by Lemma 4.4.6, we get 5 is not a variable occurring
in the term (o og o¢)(f) for all ¢ € Hypa(2). So 0 og o # o3 for all 0 € Hypa(2).
Thus it is impossible that o3 is L-related to o;. By the same way we can show that if

t € W({z2}), then oy and o7 are not related.
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(i)= (i) Assume that ¢ = ¢. By Proposition 4.4.1, we get o,Lo7. So R,, =
{oy,07} C L,,. Thus H,, = L,, N R,, = R,, = {0y, 07}. So |H,,| = 2.
(ii)==(iii) Assume that ¢ = f(u,v) for some u,v € Wy)(X) with ¢ = t. So

= f(ﬂ7 U) 7 f(vl7ul)
= u=17
= v=>0)=u=u

(iii)==(ii) Assume that ¢ = f(u,v) for some u,v € W9 (X) with v = . So
= f(u,v) = flu, ) = f(o W) = f(w,u) = f(@u) = f(@d) = fu,0) =1 ]

4.5 Natural Partial Ordering on the Set of All Idempotent
Elements of Hypg;(2)

In this section, we characterize all primitive idempotent elements of Hypg(2)

and characterize the natural partial ordering on the set of all idempotent elements

of Hypc(2).
Proposition 4.5.1. For all x; € X, 0y, is primitive.

Proof. Let o, be an idempotent element with o, < 0,,. Then 0,05 0,, = 0,, 060, =

0. By Lemma 4.1.4 (i), we get 0y oG 05, = 04,. S0 04 = 0. n

Proposition 4.5.2. Let oy be an idempotent element with t ¢ X. Then o, is not primi-

tive.

Proof. By Lemma 4.1.4 (i), we get 0y og 045 = 04,. 1t is clear that 0., og 0y = 0,,.
So 0., < o and thus o, is not primitive. [ ]
By the previous two propositions, we get Pg(2) is the set of all primitive idempotent

elements.

A

Lemma 4.5.3. Let 0y € Hyps(2). Then oy, oG 01 = Olefimost(r) (0, [t] = leftmost(t))

and 0z, 0G 0t = Orightmost(t) (O, [t] = Tightmost(t)).
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Proof. We will show that 0,, oG 0 = Olefimostr). To do this we will prove by
induction on the complexity of the term ¢. If t € X, then le ftmost(t) = t and 0, 0c0; =
Ot = Oleftmost(t)- Assume that ¢ = f(t1,t2) and 04, 0G 0, = Olefimost(ty) 1-€- Oa[t1] =
le ftmost(t,). Consider (0y, oG 0¢)(f) = (021 G Oft102)) (f) = S (21, 04, [t1], Gay [t2]) =
0z [t1] = leftmost(t1) = leftmost(t). So 04, 0G Or = Olefimost(r)- By the same way we

can show that o,, og 04 = Orightmost(t)-

Proposition 4.5.4. Let o, be an idempotent element. Then o,, < o if and only if

leftmost(t) = ;.

Proof. Assume that o,, < 0y. Then o,, og 0y = 04 0 0, = 0,,. By Lemma 4.5.3,
Oz1 OG Ot = Olefimost(t)- S0 leftmost(t) = x;.

The proof of the converse direction is straightforward. ]

Proposition 4.5.5. Let o, be an idempotent element. Then o,, < o if and only if

rightmost(t) = xs.
Proof. The proof is similar to the proof of Proposition 4.5.4. |

Proposition 4.5.6. Let x; € X where i > 2 and o; be an idempotent element. Then

0z, < oy if and only if t = x; ort ¢ X.

Proof. Assume that o,, < 04. Then o,, og 0, = 0, 0¢ 0,, = 0,,. Suppose that
te X. Ift # x;, then 0,, og 0y = 0y # 0., and it is a contradiction. So ¢t = z;.

The proof of the converse direction is straightforward. |

Proposition 4.5.7. Let t € Wy (X) with x5 ¢ var(t) and oy be an idempotent element.

Then 0, 1) < 05 if and only if s = f(x1,29) or s = f(x1,1).

Proof. Assume that oy, ) < 0,. Then o, ¢ 06 05 = 050G Of(z,1) = Of(ar,r)- BY
Lemma 4.1.4 (i),(ii), we get s ¢ X. Let s = f(s1,52). Suppose that s # f(xy,z2).
From oz, 1) 0G 05 = Of(ay ), thus f(z1,t) = S2(f(21,1), 6 f(ay,0)[51)s O f(ar.[s2]). Hence
0 f(z1,)[51) = 1 and then s; = x;. Since o, is an idempotent element and f(xy,z2) #
s = f(x1,s2), thus xo & wvar(sy). From o, oq Ofz) = Op@), thus f(x,t) =
S%(f (1, 89), 1, 05[t]). From zo & var(sy) and f(xy,t) = S*(f(z1, s2), x1,04[t]), thus
Sy = 1.

The proof of the converse direction is straightforward. ]
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Proposition 4.5.8. Let t € W5)(X) with x1 ¢ var(t) and o, be an idempotent element.

Then 0z, < 05 if and only if s = f(x1,22) or s = f(t, x2).

Proof. The proof is similar to the proof of Proposition 4.5.7. |
Now, we assume that for an arbitrary term ¢ of type 7 = (2), we define two semi-

group words Lp(t) and Rp(t) over the alphabet {f} inductively as follows :
(i) Ift = f(xs,t2) where ty € W(9)(X), 2; € X, then Lp(t) := f.
(ii) If t = f(t1,2;) where t; € W9y (X), 2; € X, then Rp(t) := f.
(iii) if ¢t = f(t1,t2) where t; € Wioy(X) \ X, then Lp(t) := f(Lp(t1)).
(iv) If t = f(t1,t2) where ty € Wig)(X) \ X, then Rp(t) := f(Rp(ts)).

We denote the number of symbols occurring in the semigroup word Lp(t) (Rp(t))
by length(Lp(t)) (length(Rp(t))).

As an example, let t,11,ty € W9 (X) where t; = f(x1, f(23,24)),
ty = f(f(21,22), f(z1,25)) and t = f(t1, 1), then Lp(t:) = f, Rp(t1) = ff, Lp(t2) =
ff Rp(ta) = ff, Lp(t) = ff, Rp(t) = f[[, length(Lp(t)) = 2 and length(Rp(t)) = 3.

For any term ¢t € W) (X) with 2y & var(t) or x5 ¢ var(t). Then we define

(i) t':=1t.
(ii) ¢ = S2(t, " ") if n > 1.

(iii) 7 := S%(t", ws,x;) if v; € X, n € N,

T

Proposition 4.5.9. Let t € Wy (X) with x5 ¢ var(t) and o, be an idempotent element
with f(x1,t) # s ¢ X. Then o5 < 0p 0 if and only if s = f(xl,t)ingth@p(s)) where

x; = le ftmost(s) with i > 2.

Proof. Assume that oy < 04, 0. Then o, 06 0¢4y ) = Of@ 1) 06 05 = 0. Let

s = f(s1,82). So we have two equations
S?(f(@1,1), 610 [51], O parn[s2]) = f(51,52) (1)
S2(f(s1,82), 21, 65[t]) = f(s1,52) (2).
It is clear that 6,[t] # xo. If 51 = @1, then Gy, y[s1] = 1. By (1), we get f(z1,t) =

f(s1,82) and it is a contradiction. If s; = xs, thus s, = x5 since o, is an idempotent
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element. By (2), we get d5[t] = x2 and it is a contradiction. If s; = x; where i > 2, then
Ot pls1) = @i, leftmost(s) = x; and length(Lp(s)) = 1. By (1), we get f(x1,t)) =
f(s1,82). Let s1 = f(s3,84). Then 6, pls1] = S*(f(21,1), 0per0)[83), 0 p(ar.0[s4]). If
s3 = 21, then &y, p[ss] = 1. From 6, p[s1] = S*(f(21,1), 6 (ar.0)[53]: O (a0 [54]),
thus G, p[s1] = f(x1,t). From (1), we get s; ¢ X and z; € var(s), which con-
tradicts to o is an idempotent element. If s3 = x5, then Gy, (s3] = 22. From
Grmnlsi] = S?(f(@1,1), 0 far)[83], T parpls4]) and (1), we get x5 € wvar(s). Since
os is an idempotent element, thus so = z5. By (2), we get d4[t] = x2 and it is a
contradiction. If s3 = x; where i > 2, then 6y, ¢[s3s] = s, leftmost(s) = z; and
length(Lp(s)) = 2. From 6, 1[s1] = S2(f(21,1), 6 p(ar0)[53)s O ar,[s4]) and (1), we
get f(z1,t)7, = f(s1,s2). This procedure stops with a variable and then we have
f(xl,t)if;ngth@p(s)) = f(s1,82) where leftmost(s) = z;. Conversely, assume that the
condition holds. We will show that o, < 0, ). To do this we will prove by induction
on length(Lp(s)). If length(Lp(s)) = 1, then s = f(zy,t); . By Lemma 4.1.4 (iii),
we get 050G Of(a, ) = 05 Consider (0f(a, 1) 0a 05)(f) = (0f@ip) °G Ty )(f) =
S*(f(w1,t), i, ;) = f(21,1)L . SO Ofar ) 0 05 = 0. Assume that length(Lp(s)) = k
and 0,0k ©G Ofrt) = Of@t) O Ofit, = Op@iaf, Then Gpa, pnlf(er, )] =

f(x1,t)k . By Lemma 4.1.4 (iii), we get T (a1 )i+ OG Of(art) = O p(yy i1 Consider

T

(Tf@10) 06 Tp(ay o)) = Gparnlf (21, 1)5]

= G S (f(21,1), f(21,1)5,, flz,0)3,)]

= S*(61@olf (@ O] 05w lf (@1, 0)5] 05 [f(21,1)3,])
(by Proposition 2.2.10 (i))

= S*(f(z1,t), flz1,t)k, f(z1,8)E) (by induction)

N f(xb t)akc:jl

SO O f(a1 ) Oc Of(ar, )kt = O p(a,phit .

T

Proposition 4.5.10. Let t € Wy)(X) with xy ¢ var(t) and oy be an idempotent element
with f(t,x2) # s & X. Then 0, < 01,4,) if and only if s = f(t,mg);eingth(Rp(s)) where

x; = rightmost(s) with i > 2.
Proof. The proof is similar to the proof of Proposition 4.5.9. |

Proposition 4.5.11. Let s € W5)(X)\ X and 0y € G. If o3 < 0y, then s = t.
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Proof. Let 05 < ;. Then 0,050 = 0,. By Lemma 4.1.4 (iii), we get 0,06 05 = 0y.
So s =t. |
The following picture shows the natural partial ordering on the set of all idempotent

elements of Hypg(2).

Oid

O, Ogirt > 2 Oy
A={o,|u=s},n,icN,i>2},
B={oy|u=1},n,i€N,i>2}

Figure 2.



