
Chapter 4

Monoids of Generalized Hypersubstitutions of

Type τ = (2)

The order of hypersubstitutions and all idempotent elements of the monoid of all

hypersubstitutions of type τ = (2) were studied by K. Denecke and S.L. Wismath

[15]. All idempotent elements of the monoid of all hypersubstitutions of type τ =

(2, 2) were studied by Th. Changphas and K. Denecke [3]. Green’s relations on the

monoid of all hypersubstitutions of type τ = (2) were studied by K. Denecke and S.L.

Wismath [15]. We want to study similar problems for the monoid of all generalized

hypersubstitutions of type τ = (2). In this chapter, we characterize all idempotent and

all regular elements of the monoid of all generalized hypersubstitutions of type τ = (2)

and determine the order of generalized hypersubstitutions of this monoid. Then we

study Green’s relations, characterize all primitive idempotent elements of this monoid

and characterize the natural partial ordering on the set of all idempotent elements of

this monoid.

We assume that from now the type τ = (2), i.e. we have only one binary operation

symbol, say f . By σt we denote the generalized hypersubstitution which maps f

to the term t in W(2)(X). Firstly, we introduce some notations. For s, f(c, d) ∈
W(2)(X), xi, xj ∈ X, i, j ∈ N and S ⊆ W(2)(X) \ X we denote :

leftmost(s) := the first variable (from the left) that occurs in s,

rightmost(s) := the last variable that occurs in s,

WG
(2)({x1}) := {s ∈ W(2)(X)|x1 ∈ var(s), x2 /∈ var(s)},

WG
(2)({x2}) := {s ∈ W(2)(X)|x2 ∈ var(s), x1 /∈ var(s)},

W ({x1}) := WG
(2)({x1}) \ {x1},

W ({x2}) := WG
(2)({x2}) \ {x2},

WG
(2)({x1, x2}) := {t ∈ W(2)(X)|x1, x2 ∈ var(t)},

WG := {t ∈ W(2)(X)|t /∈ X, x1, x2 /∈ var(t)},
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PG(2) := {σxi
∈ HypG(2)|i ∈ N, xi ∈ X},

EG
x1

:= {σf(x1,s) ∈ HypG(2)|s ∈ W(2)(X), x2 /∈ var(s)},
EG

x2
:= {σf(s,x2) ∈ HypG(2)|s ∈ W(2)(X), x1 /∈ var(s)},

EG({x1}):={σt ∈ HypG(2)|t ∈ W ({x1})},
EG({x2}):={σt ∈ HypG(2)|t ∈ W ({x2})},
EG({x1, x2}):={σt ∈ HypG(2)|t ∈ WG

(2)({x1, x2})},
G := {σs ∈ HypG(2)|s ∈ W(2)(X)\X, x1, x2 /∈ var(s)},
f(c, d):= the term obtained from f(c, d) by interchanging all occurrences of the

letters x1 and x2, i.e. f(c, d) = S2(f(c, d), x2, x1) and f(c, d) = S2(f(c, d), x2, x1),

f(c, d)′:= the term defined inductively by x′
i = xi and f(c, d)′ = f(d′, c′),

xi
C[f(c, d)]:= the term obtained from f(c, d) by replacing each of the occurrences

of the letter x1 by xi i.e. xi
C[f(c, d)] = S2(f(c, d), xi, x2),

Cxi
[f(c, d)]:= the term obtained from f(c, d) by replacing each of the occurrences

of the letter x2 by xi i.e. Cxi
[f(c, d)] = S2(f(c, d), x1, xi),

xi
Cxj

[f(c, d)]:= the term obtained from f(c, d) by replacing each of the occur-

rences of the letter x1 by xi and the letter x2 by xj i.e. xi
Cxj

[f(c, d)] = S2(f(c, d), xi, xj).

S := {s|s ∈ S},
S ′ := {s′|s ∈ S},
H := {σt|σt ∈ H} where H ⊆ HypG(2) \ PG(2),

H ′ := {σt′|σt ∈ H} where H ⊆ HypG(2) \ PG(2).

Then we have for any t ∈ W(2)(X)\X, (t′)′ = t, t = t, t
′
= t′, t′

′
= t, t

′
= t′, f(c, d) =

f(c, d), S = S, (S ′)′ = S, H = H, (H ′)′ = H, σf(x2,x1) ◦G σt = σt′ , σt ◦G σf(x2,x1) = σt,

(EG
x1

)′ = EG
x2

and (EG
x2

)′ = EG
x1

.

4.1 Idempotent Elements in HypG(2)

Now, we characterize all idempotent elements of HypG(2).

Proposition 4.1.1. Let σt be a generalized hypersubstitution of type τ = (2). Then σt is

idempotent if and only if σ̂t[t] = t.

Proof. Assume that σt is idempotent, i.e. σ2
t = σt. Then σ̂t[t] = σ̂t[σt(f)] =

(σ̂t ◦ σt)(f) = (σt ◦G σt)(f) = σ2
t (f) = σt(f) = t. Conversely, let σ̂t[t] = t. We have

(σt ◦G σt)(f) = (σ̂t ◦ σt)(f) = σ̂t[σt(f)] = σ̂t[t] = t = σt(f). Thus σ2
t = σt.
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Proposition 4.1.2. For every xi ∈ X, σxi
and σid are idempotent.

Proof. Since for every i ∈ N and xi ∈ X, σ̂xi
[xi] = xi. By Proposition 4.1.1, we

have σxi
is idempotent. Since σid is the identity element, thus σid is idempotent.

Proposition 4.1.3. Let t ∈ W(2)(X). Then the following statements hold:

(i) If x2 /∈ var(t), then σf(x1,t) is idempotent.

(ii) If x1 /∈ var(t), then σf(t,x2) is idempotent.

Proof. (i) Let x2 /∈ var(t). Then σ̂f(x1,t)[f(x1, t)] = S2(σf(x1,t)(f), x1, σ̂f(x1,t)[t]) =

S2(f(x1, t), x1, σ̂f(x1,t)[t]) = f(x1, t) since x2 /∈ var(t).

(ii) Let x1 /∈ var(t). Then σ̂f(t,x2)[f(t, x2)] = S2(σf(t,x2)(f), σ̂f(t,x2)[t], x2) =

S2(f(t, x2), σ̂f(t,x2)[t], x2) = f(t, x2) since x1 /∈ var(t).

Lemma 4.1.4. Let f(c, d) ∈ W(2)(X) \ X, σxi
∈ PG(2), σs ∈ HypG(2) and σt ∈ G.

Then the following statements hold:

(i) σs ◦G σxi
= σxi

.

(ii) σxi
◦G σs ∈ PG(2) (σ̂xi

[s] ∈ X).

(iii) σt ◦G σf(c,d) = σt (G itself is a left zero band).

Proof. (i) Consider (σs◦Gσxi
)(f) = (σ̂s◦σxi

)(f) = σ̂s[σxi
(f)] = σ̂s[xi] = xi = σxi

(f).

So σs ◦G σxi
= σxi

.

(ii) We will prove by induction on the complexity of the term s. If s ∈ X, then

by (i) we get σxi
◦G σs = σs ∈ PG(2). Assume that s = f(u, v) and σxi

◦G σu, σxi
◦G

σv ∈ PG(2). Thus σ̂xi
[u], σ̂xi

[v] ∈ X. Consider (σxi
◦G σs)(f) = (σxi

◦G σf(u,v))(f) =

S2(xi, σ̂xi
[u], σ̂xi

[v]). If xi = x1, then (σxi
◦G σs)(f) = σ̂xi

[u] ∈ X. If xi = x2, then

(σxi
◦Gσs)(f) = σ̂xi

[v] ∈ X. If i > 2, then (σxi
◦Gσs)(f) = xi ∈ X. So σxi

◦Gσs ∈ PG(2).

(iii) Since x1, x2 /∈ var(t), thus (σt ◦G σf(c,d))(f) = S2(t, σ̂t[c], σ̂t[d]) = t (since there

has nothing to substitute in the term t). So σt ◦G σf(c,d) = σt.

Proposition 4.1.5. Every σt ∈ G is idempotent.

Proof. By Lemma 4.1.4 (iii).
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Proposition 4.1.6. Let t ∈ W(2)(X). Then the following statements hold:

(i) If x2 ∈ var(t) and t �= x2, then σf(x1,t) is not idempotent.

(ii) If x1 ∈ var(t) and t �= x1, then σf(t,x2) is not idempotent.

(iii) If t �= x1, then σf(t,x1) is not idempotent.

(iv) If t �= x2, then σf(x2,t) is not idempotent.

(v) If x1 ∈ var(t) or x2 ∈ var(t), then σf(xi,t) and σf(t,xi) are not idempotent where

i ∈ N with i > 2.

Proof. (i) Let x2 ∈ var(t) and t �= x2. Then we have σ̂f(x1,t)[f(x1, t)] = S2(f(x1, t),

x1, σ̂f(x1,t)[t]). Since x2 ∈ var(t), then we have to substitute x2 in the term t by σ̂f(x1,t)[t].

Thus S2(f(x1, t), x1, σ̂f(x1,t)[t]) �= f(x1, t).

The proof of (ii), (iii), (iv) and (v) are similar to (i).

Proposition 4.1.7. Let t1, t2 ∈ W(2)(X) \X. If x1 ∈ var(t1)∪ var(t2) or x2 ∈ var(t1)∪
var(t2), then σf(t1,t2) is not idempotent.

Proof. The proof is similar to the proof of Proposition 4.1.6.

Then we have the main result:

Theorem 4.1.8. PG(2)∪EG
x1
∪EG

x2
∪G∪ {σid} is the set of all idempotent elements in

HypG(2).

Proof. By Proposition 4.1.2, Proposition 4.1.3 and Proposition 4.1.5, we get every

element in PG(2)∪EG
x1
∪EG

x2
∪G∪{σid} is idempotent. Let σt ∈ HypG(2) be idempotent.

If t ∈ X, then σt ∈ PG(2). Let t = f(t1, t2). We consider into two cases:

Case 1: x1 ∈ var(t). Suppose that t1 = x1. If t2 ∈ X, then σt ∈ EG
x1

∪ {σid}. If

t2 /∈ X, then by Proposition 4.1.6 (i) we get x2 /∈ var(t2). So σt ∈ EG
x1

. Suppose that

t1 = x2. By Proposition 4.1.6 (iv), we get t2 = x2, which contradicts to x1 ∈ var(t).

Suppose that t1 = xi where i > 2. Then x1 ∈ var(t2). By Proposition 4.1.6 (v), we

get σt is not idempotent. Suppose that t1 /∈ X. If x1 ∈ var(t1), then by Proposition

4.1.6 (ii), (iii), (v) and Proposition 4.1.7, we get σt is not idempotent. If x1 /∈ var(t1),

then x1 ∈ var(t2). By Proposition 4.1.6 (iii) and Proposition 4.1.7, we get σt is not

idempotent.

Case 2: x1 /∈ var(t). The proof of this case is similar to the proof of Case 1.
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4.2 The Order of Generalized Hypersubstitutions of Type

τ = (2)

In this section, we determine the order of generalized hypersubstitutions of type

τ = (2).

Lemma 4.2.1. Let f(c, d), f(u, v) ∈ W(2)(X) and σf(c,d) ◦G σf(u,v) = σw. Then vb(w) >

vb(f(c, d)) unless f(c, d) and f(u, v) match one of the following 16 possibilities:

E(1) σf(c,d) ◦G σf(u,v) = σf(c,d) where σf(c,d) ∈ G.

E(2) σf(c,d) ◦G σf(x1,x1) = σCx1 [f(c,d)].

E(3) σf(c,d) ◦G σf(x2,x2) = σx2C[f(c,d)].

E(4) σf(c,d) ◦G σid = σf(c,d).

E(5) σf(c,d) ◦G σf(x1,xi) = σCxi [f(c,d)] where xi ∈ X, i > 2.

E(6) σf(c,d) ◦G σf(x2,x1) = σf(c,d).

E(7) σf(c,d) ◦G σf(x2,xi) = σx2Cxi [f(c,d)] where xi ∈ X, i > 2.

E(8) σf(c,d) ◦G σf(xi,x1) = σxiCx1 [f(c,d)] where xi ∈ X, i > 2.

E(9) σf(c,d) ◦G σf(xi,x2) = σxiC[f(c,d)] where xi ∈ X, i > 2.

E(10) σf(c,d) ◦G σf(xi,xj) = σxiCxj [f(c,d)] where xi, xj ∈ X, i, j > 2.

E(11) σf(c,d) ◦G σf(x1,v) = σf(c,d) where v /∈ X, f(c, d) ∈ W ({x1}).

E(12) σf(c,d) ◦G σf(x2,v) = σf(c,d) where v /∈ X, f(c, d) ∈ W ({x1}).

E(13) σf(c,d) ◦G σf(xi,v) = σxiC[f(c,d)] where xi ∈ X,i > 2, v /∈ X, f(c, d) ∈ W ({x1}).

E(14) σf(c,d) ◦G σf(u,x1) = σf(c,d) where u /∈ X, f(c, d) ∈ W ({x2}).

E(15) σf(c,d) ◦G σf(u,x2) = σf(c,d) where u /∈ X, f(c, d) ∈ W ({x2}).

E(16) σf(c,d) ◦G σf(u,xi) = σCxi [f(c,d)] where xi ∈ X,i > 2, u /∈ X, f(c, d) ∈ W ({x2}).
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Proof. Assume that f(c, d), f(u, v) ∈ W(2)(X) and σf(c,d) ◦G σf(u,v) = σw. We

want to compare vb(w) with vb(f(c, d)). From σf(c,d) ◦G σf(u,v) = σw, thus w =

S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]). If σf(c,d) ∈ G, then by Lemma 4.1.4 (iii) we get w =

f(c, d) and we have E(1). Assume that σf(c,d) /∈ G. Then x1 ∈ var(f(c, d)) or

x2 ∈ var(f(c, d)). We will consider the following cases.

Case 1: u, v ∈ X. We have σ̂
f(c,d)

[u] = u and σ̂
f(c,d)

[v] = v. This gives 9 possible

subcases:

(1) u = v = x1. We have σf(c,d) ◦G σf(x1,x1) = σCx1 [f(c,d)], which is E(2).

(2) u = v = x2. We have σf(c,d) ◦G σf(x2,x2) = σx2C[f(c,d)], which is E(3).

(3) u = x1, v = x2. We have σf(c,d) ◦G σid = σf(c,d), which is E(4).

(4) u = x1, v = xi, i > 2. We have σf(c,d) ◦G σf(x1,xi) = σCxi [f(c,d)], which is E(5).

(5) u = x2, v = x1. We have σf(c,d) ◦G σf(x2,x1) = σf(c,d), which is E(6).

(6) u = x2, v = xi, i > 2. We have σf(c,d) ◦G σf(x2,xi) = σx2Cxi [f(c,d)], which is E(7).

(7) u = xi, v = x1, i > 2. We have σf(c,d) ◦G σf(xi,x1) = σxiCx1 [f(c,d)], which is E(8).

(8) u = xi, v = x2, i > 2. We have σf(c,d) ◦G σf(xi,x2) = σxiC[f(c,d)], which is E(9).

(9) u = xi, v = xj, i, j > 2. We have σf(c,d) ◦G σf(xi,xj) = σxiCxj [f(c,d)], which is E(10).

Case 2: u = x1 and v /∈ X. We have w = S2(f(c, d), x1, σ̂f(c,d)[v]). If f(c, d) ∈
W ({x1}), then w = f(c, d), as in E(11). Assume that x2 ∈ var(f(c, d)). Since

vb(σ̂f(c,d)[v]) > 1 and we have to substitute x2 in f(c, d) by σ̂f(c,d)[v] thus vb(w) >

vb(f(c, d)).

Case 3: u = x2 and v /∈ X. In this case we get E(12) or vb(w) > vb(f(c, d)).

Case 4: u = xi, i > 2 and v /∈ X. In this case we get E(13) or vb(w) > vb(f(c, d)).

Case 5: u /∈ X and v = x1. In this case we get E(14) or vb(w) > vb(f(c, d)).

Case 6: u /∈ X and v = x2. In this case we get E(15) or vb(w) > vb(f(c, d)).

Case 7: u /∈ X and v = xi, i > 2. In this case we get E(16) or vb(w) > vb(f(c, d)).

Case 8: u, v /∈ X. We have vb(σ̂f(c,d)[u]) > 1 and vb(σ̂f(c,d)[v]) > 1. Since

vb(σ̂f(c,d)[u]) > 1 and vb(σ̂f(c,d)[v]) > 1 and we have to substitute x1 in f(c, d) by

σ̂f(c,d)[u] or x2 in f(c, d) by σ̂f(c,d)[v], thus vb(w) > vb(f(c, d)).

Lemma 4.2.2. Let s ∈ W(2)(X)\X, x1, x2 ∈ var(s), t ∈ W(2)(X) and xi ∈ X. If

xi ∈ var(t), then xi ∈ var(σ̂s[t]) (xi ∈ var((σs ◦G σt)(f))).

Proof. We will prove by induction on the complexity of the term t. If t ∈ X,

then t = xi. So σ̂s[t] = xi and thus xi ∈ var(σ̂s[t]). Let t = f(t1, t2). Then xi ∈
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var(t1) or xi ∈ var(t2). Assume that xi ∈ var(t1) and xi ∈ var(σ̂s[t1]). Consider

σ̂s[t] = σ̂s[f(t1, t2)] = S2(s, σ̂s[t1], σ̂s[t2]). Since x1 ∈ var(s) and xi ∈ var(σ̂s[t1]), thus

xi ∈ var(σ̂s[t]). By the same way, we can show that if xi ∈ var(t2), then xi ∈ var(σ̂s[t]).

Lemma 4.2.3. Let s ∈ W(2)(X)\X. If x1, x2 ∈ var(s), then x1, x2 ∈ var(σn
s (f)) for all

n ∈ N.

Proof. Let s = f(s1, s2). For n = 1, σ1
s(f) = σs(f) = s. So x1, x2 ∈ var(σ1

s(f)).

Assume that x1, x2 ∈ var(σn
s (f)). Consider σn+1

s (f) = (σn
s ◦G σs)(f) = σ̂n

s [σs(f)] =

σ̂n
s [s] = σ̂n

s [f(s1, s2)] = S2(σn
s (f), σ̂n

s [s1], σ̂n
s [s2]). If x1, x2 ∈ var(s1), then by Lemma

4.2.2 we get x1, x2 ∈ var(σ̂n
s [s1]). Since x1 ∈ var(σn

s (f)) and x1, x2 ∈ var(σ̂n
s [s1]) thus

x1, x2 ∈ var(σn+1
s (f)). If s1 ∈ WG

(2)({x1}), then x2 ∈ var(s2). By Lemma 4.2.2, we

get x1 ∈ var(σ̂n
s [s1]) and x2 ∈ var(σ̂n

s [s2]). Since x1, x2 ∈ var(σn
s (f)), thus x1, x2 ∈

var(σn+1
s (f)). If s1 ∈ WG

(2)({x2}), then by the same proof of the case s1 ∈ WG
(2)({x1})

we get x1, x2 ∈ var(σn+1
s (f)). If x1, x2 /∈ var(s1), then x1, x2 ∈ var(s2). By the same

proof of the case x1, x2 ∈ var(s1), we get x1, x2 ∈ var((σs)
n+1(f)).

Lemma 4.2.4. Let s ∈ W(2)(X). If leftmost(s) = x1, then leftmost(σn
s (f)) = x1 for

all n ∈ N.

Proof. It is clear for s ∈ X. Let s = f(s1, s2). For n = 1, σ1
s(f) = σs(f) = s. So

leftmost(σ1
s(f)) = x1. Assume that leftmost(σn

s (f)) = x1. Consider σn+1
s (f) = (σn

s ◦G

σs)(f) = σ̂n
s [s] = σ̂n

s [f(s1, s2)] = S2(σn
s (f), σ̂n

s [s1], σ̂n
s [s2]). If s1 ∈ X, then s1 is the left-

most of s, so s1 = x1. Thus σ̂n
s [s1] = x1. Since σn+1

s (f) = S2(σn
s (f), σ̂n

s [s1], σ̂n
s [s2]),

leftmost(σn
s (f)) = x1 and σ̂n

s [s1] = x1, thus leftmost(σn+1
s (f)) = x1. Let s1 =

f(s3, s4). Consider σ̂n
s [s1] = σ̂n

s [f(s3, s4)] = S2(σn
s (f), σ̂n

s [s3], σ̂n
s [s4]). If s3 ∈ X, then s3

is the leftmost of s, so s3 = x1. Thus σ̂n
s [s3] = x1. Since σ̂n

s [s1] = S2(σn
s (f), σ̂n

s [s3], σ̂n
s [s4]),

leftmost((σn
s )(f)) = x1 and σ̂n

s [s3] = x1, thus leftmost(σ̂n
s [s1]) = x1, which im-

plies that leftmost(σn+1
s (f)) = x1. This procedure stops after finitely many steps

at leftmost(s) = x1.

Lemma 4.2.5. Let s ∈ W ({x1}). If leftmost(s) = xi where i > 2, then x1, x2 /∈
var(σ2

s(f)).

Proof. Let s = f(s1, s2). Consider σ2
s(f) = (σs ◦G σs)(f) = σ̂s[s] = σ̂s[f(s1, s2)] =

S2(s, σ̂s[s1], σ̂s[s2]). If s1 ∈ X, then s1 is the leftmost of s, so s1 = xi. Thus σ̂s[s1] = xi.
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Since s ∈ W ({x1}), x1, x2 /∈ var(σ̂s[s1]) and σ2
s(f) = S2(s, σ̂s[s1], σ̂s[s2]), thus x1, x2 /∈

var(σ2
s(f)). Let s1 = f(s3, s4). Consider σ̂s[s1] = σ̂s[f(s3, s4)] = S2(s, σ̂s[s3], σ̂s[s4]). If

s3 ∈ X, then s3 is the leftmost of s, so s3 = xi. Thus σ̂s[s3] = xi. Since s ∈ W ({x1}),
x1, x2 /∈ var(σ̂s[s3]) and σ̂s[s1] = S2(s, σ̂s[s3], σ̂s[s4]), thus x1, x2 /∈ var(σ̂s[s1]), which

implies that x1, x2 /∈ var(σ2
s(f)). This procedure stops after finitely many steps at

leftmost(s) = xi.

Lemma 4.2.6. Let s ∈ W(2)(X). If rightmost(s) = x2, then rightmost(σn
s (f)) = x2

for all n ∈ N.

Proof. The proof is similar to the proof of Lemma 4.2.4.

Lemma 4.2.7. Let s ∈ W ({x2}). If rightmost(s) = xi where i > 2, then x1, x2 /∈
var(σ2

s(f)).

Proof. The proof is similar to the proof of Lemma 4.2.5.

Note that {σn
f(x2,x1)|n ∈ N} = {σid, σf(x2,x1)}, the order of σf(x2,x1) is 2.

Proposition 4.2.8. Let s ∈ W(2)(X), x1, x2 ∈ var(s), σs not be idempotent and not be

equal to σf(x2,x1). Then the order of σs is infinite.

Proof. Let n ∈ N. Let w be the term for σn
s . By Lemma 4.2.3, we get x1, x2 ∈

var(w). Then the equation σn+1
s = σn

s ◦G σs dose not fit any of E(1) to E(16), so by

Lemma 4.2.1 we must have the term for σn+1
s is longer than w. This implies the order

of σs is infinite.

Proposition 4.2.9. Let s ∈ W ({x1}) and σs not be idempotent. If leftmost(s) = x1,

then the order of σs is infinite.

Proof. Let n ∈ N. Let w be the term for σn
s . By Lemma 4.2.4, we get leftmost(w) =

x1. Then the equation σn+1
s = σn

s ◦G σs dose not fit any of E(1) to E(16), so by Lemma

4.2.1 we must have the term for σn+1
s is longer than w. This implies the order of σs is

infinite.

Proposition 4.2.10. Let s ∈ W ({x1}) and σs not be idempotent. If leftmost(s) = xi

where i > 2, then the order of σs is 2.

Proof. Let w be the term for σ2
s . By Lemma 4.2.5, we get x1, x2 /∈ var(w). This

implies σn
s = σ2

s for all n ∈ N where n ≥ 2. So the order of σs is 2.



37

Proposition 4.2.11. Let s ∈ W ({x2}) and σs not be idempotent. If rightmost(s) = x2,

then the order of σs is infinite.

Proof. The proof is similar to the proof of Proposition 4.2.9.

Proposition 4.2.12. Let s ∈ W ({x2}) and σs not be idempotent. If rightmost(s) = xi

where i > 2, then the order of σs is 2.

Proof. The proof is similar to the proof of Proposition 4.2.10.

Then we have the main result:

Theorem 4.2.13. The order of any generalized hypersubstitution of type τ = (2) is 1,2

or infinite.

Proof. Let σt ∈ HypG(2). If σt is idempotent, then the order of σt is 1. If σt

is not idempotent, then x1 ∈ var(t) or x2 ∈ var(t). Assume that x1, x2 ∈ var(t).

If σt = σf(x2,x1), then the order of σt is 2. If σt �= σf(x2,x1), then by Proposition

4.2.8 we get the order of σt is infinite. Assume that x1 ∈ var(t) and x2 /∈ var(t).

If leftmost(t) = x1, then by Proposition 4.2.9 we get the order of σt is infinite. If

leftmost(t) = xi where i > 2, then by Proposition 4.2.10 we get the order of σt is 2.

By the same way we can show that if x2 ∈ var(t) and x1 /∈ var(t), then the order of σt

is 2 or infinite.

4.3 Regular Elements in HypG(2)

Now, we characterize all regular elements of HypG(2).

Proposition 4.3.1. For every xi ∈ X, σxi
and σid are regular.

Proof. Since every σxi
∈ PG(2) and σid are idempotent, thus they are regular.

Proposition 4.3.2. σf(xi,xj) is regular for every xi, xj
∈ X.

Proof. Let xi, xj ∈ X. We consider into three cases.
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Case 1: i = 2, j ∈ N. We have

(σf(x2,xj) ◦G σf(x2,x1) ◦G σf(x2,xj))(f) = (σf(x2,xj) ◦G σf(x2,x1))
ˆ[σf(x2,xj)(f)]

= (σf(x2,xj) ◦G σf(x2,x1))
ˆ[f(x2, xj)]

= σ̂f(x2,xj)[σ̂f(x2,x1)[f(x2, xj)]]

= σ̂f(x2,xj)[S
2(f(x2, x1), x2, xj)]

= σ̂f(x2,xj)[f(xj, x2)]

= S2(f(x2, xj), xj, x2)

= f(x2, xj).

Thus σf(x2,xj) ◦G σf(x2,x1) ◦G σf(x2,xj) = σf(x2,xj).

Case 2: i �= 2, j = 1. We have

(σf(xi,x1) ◦G σf(x2,x1) ◦G σf(xi,x1))(f) = (σf(xi,x1) ◦G σf(x2,x1))
ˆ[σf(xi,x1)(f)]

= (σf(xi,x1) ◦G σf(x2,x1))
ˆ[f(xi, x1)]

= σ̂f(xi,x1)[σ̂f(x2,x1)[f(xi, x1)]]

= σ̂f(xi,x1)[S
2(f(x2, x1), xi, x1)]

= σ̂f(xi,x1)[f(x1, xi)]

= S2(f(xi, x1), x1, xi)

= f(xi, x1).

Thus σf(xi,x1) ◦G σf(x2,x1) ◦G σf(xi,x1) = σf(xi,x1).

Case 3: i �= 2, j �= 1. We have σf(xi,xj) is idempotent, thus it is regular.

Then σf(xi,xj) is regular for all xi, xj
∈ X.

Proposition 4.3.3. Let t ∈ W(2)(X)\X. Then the following statements hold:

(i) If x2 /∈ var(t), then σf(t,x1), σf(x1,t) are regular.

(ii) If x1 /∈ var(t), then σf(t,x2), σf(x2,t) are regular.
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Proof. (i) Let x2 /∈ var(t). Then we have

(σf(t,x1) ◦G σf(x2,x2) ◦G σf(t,x1))(f) = (σf(t,x1) ◦G σf(x2,x2))
ˆ[σf(t,x1)(f)]

= (σf(t,x1) ◦G σf(x2,x2))
ˆ[f(t, x1)]

= σ̂f(t,x1)[σ̂f(x2,x2)[f(t, x1)]]

= σ̂f(t,x1)[S
2(f(x2, x2), σ̂f(x2,x2)[t], x1)]

= σ̂f(t,x1)[f(x1, x1)]

= S2(f(t, x1), x1, x1)

= f(t, x1) (x2 /∈ var(t)).

Thus σf(t,x1) ◦G σf(x2,x2) ◦G σf(t,x1) = σf(t,x1).

Since σf(x1,t) is idempotent, thus it is regular.

(ii) Let x1 /∈ var(t). Since σf(t,x2) is idempotent, thus it is regular.

Consider

(σf(x2,t) ◦G σf(x1,x1) ◦G σf(x2,t))(f) = (σf(x2,t) ◦G σf(x1,x1))
ˆ[σf(x2,t)(f)]

= (σf(x2,t) ◦G σf(x1,x1))
ˆ[f(x2, t)]

= σ̂f(x2,t)[σ̂f(x1,x1)[f(x2, t)]]

= σ̂f(x2,t)[S
2(f(x1, x1), x2, σ̂f(x1,x1)[t])]

= σ̂f(x2,t)[f(x2, x2)]

= S2(f(x2, t), x2, x2)

= f(x2, t) (x1 /∈ var(t)).

Thus σf(x2,t) ◦G σf(x1,x1) ◦G σf(x2,t) = σf(x2,t).

Proposition 4.3.4. Every σt ∈ G is regular.

Proof. Since every σt ∈ G is idempotent, thus it is regular.

Proposition 4.3.5. Let t ∈ W(2)(X) \ X. Then the following statements hold:

(i) If x2 ∈ var(t), then σf(t,x1), σf(x1,t) are not regular.

(ii) If x1 ∈ var(t), then σf(t,x2), σf(x2,t) are not regular.
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Proof. (i) Let x2 ∈ var(t). We will show that σf(t,x1), σf(x1,t) are not regular.

Suppose that σf(t,x1) is regular, thus there exists σt1 ∈ W(2)(X) such that σf(t,x1) ◦G

σt1 ◦G σf(t,x1) = σf(t,x1). Thus (σf(t,x1) ◦G σt1 ◦G σf(t,x1))(f) = σf(t,x1)(f). We have

σ̂f(t,x1)[σ̂t1 [f(t, x1)]] = f(t, x1). Put s = σ̂t1 [f(t, x1)]. Then σ̂f(t,x1)[s] = f(t, x1). We

have s /∈ X, thus s = f(s1, s2) for some s1, s2 ∈ W(2)(X). Thus σ̂f(t,x1)[f(s1, s2)] =

f(t, x1). We have S2(f(t, x1), σ̂f(t,x1)[s1], σ̂f(t,x1)[s2]) = f(t, x1). Thus σ̂f(t,x1)[s1] = x1

and since x2 ∈ var(t) thus σ̂f(t,x1)[s2] = x2. We have s1 = x1, s2 = x2. Thus

s = f(x1, x2) and σ̂t1 [f(t, x1)] = f(x1, x2). By Lemma 4.1.4 (ii), we get t1 /∈ X,

thus t1 = f(t2, t3) for some t2, t3 ∈ W(2)(X). Thus σ̂f(t2,t3)[f(t, x1)] = f(x1, x2). We

have S2(f(t2, t3), σ̂f(t2,t3)[t], x1) = f(x1, x2). Since t /∈ X, thus σ̂f(t2,t3)[t] /∈ X. From

S2(f(t2, t3), σ̂f(t2,t3)[t], x1) = f(x1, x2), thus t3 = x1 and σ̂f(t2,t3)[t] = x2 which contra-

dicts to σ̂f(t2,t3)[t] /∈ X. Hence σf(t,x1) is not regular. Suppose that σf(x1,t) is regular,

thus there exists σt1 ∈ W(2)(X) such that σf(x1,t) ◦G σt1 ◦G σf(x1,t) = σf(x1,t). Thus

(σf(x1,t) ◦G σt1 ◦G σf(x1,t))(f) = σf(x1,t)(f). We have σ̂f(x1,t)[σ̂t1 [f(x1, t)]] = f(x1, t). Put

s = σ̂t1 [f(x1, t)]. Then σ̂f(x1,t)[s] = f(x1, t). We have s /∈ X, thus s = f(s1, s2) for some

s1, s2 ∈ W(2)(X). Thus σ̂f(x1,t)[f(s1, s2)] = f(x1, t). We have S2(f(x1, t), σ̂f(x1,t)[s1],

σ̂f(x1,t)[s2]) = f(x1, t). Thus σ̂f(x1,t)[s1] = x1 and since x2 ∈ var(t), thus σ̂f(x1,t)[s2] = x2.

We have s1 = x1, s2 = x2. Thus s = f(x1, x2) and σ̂t1 [f(x1, t)] = f(x1, x2). By

Lemma 4.1.4 (ii), we get t1 /∈ X thus t1 = f(t2, t3) for some t2, t3 ∈ W(2)(X). Thus

σ̂f(t2,t3)[f(x1, t)] = f(x1, x2). We have S2(f(t2, t3), x1, σ̂f(t2,t3)[t]) = f(x1, x2). Since

t /∈ X, thus σ̂f(t2,t3)[t] /∈ X. From S2(f(t2, t3), x1, σ̂f(t2,t3)[t]) = f(x1, x2), thus t3 = x2

and σ̂f(t2,t3)[t] = x2 which contradicts to σ̂f(t2,t3)[t] /∈ X. Hence σf(x1,t) is not regular.

(ii) The proof is similar to (i).

Proposition 4.3.6. For any t ∈ W(2)(X)\X. If x1 ∈ var(t) or x2 ∈ var(t), then σf(t,xi)

and σf(xi,t) where i > 2, are not regular.

Proof. Let x1 ∈ var(t) or x2 ∈ var(t) and let i ∈ N with i > 2. We will show that

σf(t,xi) and σf(xi,t) are not regular.

Case 1: x1 ∈ var(t). Suppose that σf(t,xi) is regular, thus there exists σt1 ∈ W(2)(X)

such that σf(t,xi)◦Gσt1◦Gσf(t,xi) = σf(t,xi). Thus (σf(t,xi)◦Gσt1◦Gσf(t,xi))(f) = σf(t,xi)(f).

We have σ̂f(t,xi)[σ̂t1 [f(t, xi)]] = f(t, xi). Put s = σ̂t1 [f(t, xi)]. Then σ̂f(t,xi)[s] = f(t, xi).

We have s /∈ X, thus s = f(s1, s2) for some s1, s2 ∈ W(2)(X). Thus σ̂f(t,xi)[f(s1, s2)] =

f(t, xi). We have S2(f(t, xi), σ̂f(t,xi)[s1], σ̂f(t,xi)[s2]) = f(t, xi). Since x1 ∈ var(t), thus
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σ̂f(t,xi)[s1] = x1. We have s1 = x1. Thus s = f(x1, s2) and σ̂t1 [f(t, xi)] = f(x1, s2). By

Lemma 4.1.4 (ii), we get t1 /∈ X thus t1 = f(t2, t3) for some t2, t3 ∈ W(2)(X). Thus

σ̂f(t2,t3)[f(t, xi)] = f(x1, s2). We have S2(f(t2, t3), σ̂f(t2,t3)[t], xi) = f(x1, s2). Since

t /∈ X, thus σ̂f(t2,t3)[t] /∈ X. From S2(f(t2, t3), σ̂f(t2,t3)[t], xi) = f(x1, s2), thus t2 = x1

and σ̂f(t2,t3)[t] = x1 which contradicts to σ̂f(t2,t3)[t] /∈ X. Hence σf(t,xi) is not regular.

For σf(xi,t) is not regular we can prove in the similar way.

Case 2: x2 ∈ var(t). Suppose that σf(t,xi) is regular, thus there exists σt1 ∈ W(2)(X)

such that σf(t,xi)◦Gσt1◦Gσf(t,xi) = σf(t,xi). Thus (σf(t,xi)◦Gσt1◦Gσf(t,xi))(f) = σf(t,xi)(f).

We have σ̂f(t,xi)[σ̂t1 [f(t, xi)]] = f(t, xi). Put s = σ̂t1 [f(t, xi)]. Then σ̂f(t,xi)[s] = f(t, xi).

We have s /∈ X, thus s = f(s1, s2) for some s1, s2 ∈ W(2)(X). Thus σ̂f(t,xi)[f(s1, s2)] =

f(t, xi). We have S2(f(t, xi), σ̂f(t,xi)[s1], σ̂f(t,xi)[s2]) = f(t, xi). Since x2 ∈ var(t), thus

σ̂f(t,xi)[s2] = x2. We have s2 = x2. Thus s = f(s1, x2) and σ̂t1 [f(t, xi)] = f(s1, x2). By

Lemma 4.1.4 (ii), we get t1 /∈ X thus t1 = f(t2, t3) for some t2, t3 ∈ W(2)(X). Thus

σ̂f(t2,t3)[f(t, xi)] = f(s1, x2). We have S2(f(t2, t3), σ̂f(t2,t3)[t], xi) = f(s1, x2). Since

t /∈ X, thus σ̂f(t2,t3)[t] /∈ X. From S2(f(t2, t3), σ̂f(t2,t3)[t], xi) = f(s1, x2), thus t3 = x1

and σ̂f(t2,t3)[t] = x2 which contradicts to σ̂f(t2,t3)[t] /∈ X. Hence σf(t,xi) is not regular.

For σf(xi,t) is not regular we can prove in the similar way.

Proposition 4.3.7. If t = f(t1, t2) where t1, t2 ∈ W(2)(X)\X and x1 ∈ var(t1) ∪ var(t2)

or x2 ∈ var(t1) ∪ var(t2), then σt is not regular.

Proof. Let t = f(t1, t2) where t1, t2 ∈ W(2)(X)\X and x1 ∈ var(t1) ∪ var(t2) or

x2 ∈ var(t1) ∪ var(t2). Then we will show that σt is not regular.

Case 1: x1 ∈ var(t1) ∪ var(t2). Suppose that σt = σf(t1,t2) is regular, thus there

exists σu ∈ W(2)(X) such that σf(t1,t2) ◦G σu ◦G σf(t1,t2) = σf(t1,t2). Thus (σf(t1,t2) ◦G

σu ◦G σf(t1,t2))(f) = σf(t1,t2)(f). We have σ̂f(t1,t2)[σ̂u[f(t1, t2)]] = f(t1, t2). Put s =

σ̂u[f(t1, t2)]. Then σ̂f(t1,t2)[s] = f(t1, t2). We have s /∈ X, thus s = f(s1, s2) for some

s1, s2 ∈ W(2)(X). Thus σ̂f(t1,t2)[f(s1, s2)] = f(t1, t2). We have S2(f(t1, t2), σ̂f(t1,t2)[s1],

σ̂f(t1,t2)[s2]) = f(t1, t2). Since x1 ∈ var(t1) ∪ var(t2), thus σ̂f(t1,t2)[s1] = x1. We have

s1 = x1. Thus s = f(x1, s2) and σ̂u[f(t1, t2)] = f(x1, s2). By Lemma 4.1.4 (ii), we

get u /∈ X thus u = f(t3, t4) for some t3, t4 ∈ W(2)(X). Thus σ̂f(t3,t4)[f(t1, t2)] =

f(x1, s2). We have S2(f(t3, t4), σ̂f(t3,t4)[t1], σ̂f(t3,t4)[t2]) = f(x1, s2). Since t1, t2 /∈ X,

thus σ̂f(t3,t4)[t1], σ̂f(t3,t4)[t2] /∈ X. From S2(f(t3, t4), σ̂f(t3,t4)[t1], σ̂f(t3,t4)[t2]) = f(x1, s2),

thus t3 = x1 or t3 = x2 and this implies that σ̂f(t3,t4)[t1] = x1 or σ̂f(t3,t4)[t2] = x1, which
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contradicts to σ̂f(t3,t4)[t1], σ̂f(t3,t4)[t2] /∈ X. Hence σf(t1,t2) is not regular.

Case 2: x2 ∈ var(t1) ∪ var(t2). The proof is similar to Case 1.

Then we have the main result:

Theorem 4.3.8. PG(2) ∪ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

∪ G ∪ {σid, σf(x2,x1)} is the set of all

regular elements in HypG(2).

Proof. The proof of this theorem is similar to the proof of Theorem 4.1.8.

4.4 Green’s Relations on HypG(2)

In this section, we study Green’s relations on HypG(2).

Proposition 4.4.1. For any σt ∈ HypG(2)\PG(2), we have σtRσt, σtLσt′ and σtDσtDσt′

Dσt′.

Proof. Let σt ∈ HypG(2) \ PG(2). Then σt ◦G σf(x2,x1) = σt, σt ◦G σf(x2,x1) =

σt, σf(x2,x1) ◦G σt′ = σt and σf(x2,x1) ◦G σt = σt′ . So σtRσt and σtLσt′ . Therefore

σtDσtDσt′Dσt′ .

Proposition 4.4.2. Any σxi
∈ PG(2) is L-related only to itself, but is R-related, D-

related and J -related to all elements of PG(2), and not related to any other generalized

hypersubstitutions. Moreover, the set PG(2) forms an R-, D- and J - class.

Proof. By Lemma 4.1.4 (i), we get for any σxi
∈ PG(2), σ ◦G σxi

= σxi
for all

σ ∈ HypG(2). This shows that any σxi
∈ PG(2) can be L-related only to itself.

Since σxi
◦G σxj

= σxj
for all σxi

, σxj
∈ PG(2), so any two elements in PG(2) are

R-related. From R ⊆ D ⊆ J , thus any two elements in PG(2) are D− and J−
related. Moreover by Lemma 4.1.4 (i),(ii), we get σs ◦G σxi

◦G σt ∈ PG(2) for all

σs, σt ∈ HypG(2), σxi
∈ PG(2). This implies if σ /∈ PG(2), then σ cannot be J -related

to every element in PG(2). So PG(2) is the J -class of its elements. Since any two

elements in PG(2) are R− and D− related, R ⊆ J ,D ⊆ J and PG(2) is the J -class

of its elements, thus PG(2) forms an R-, D-class.

Lemma 4.4.3. Let σs, σt ∈ HypG(2). Then the following statements hold:

(i) If σs ◦G σt = σid, then either σs = σt = σid or σs = σt = σf(x2,x1).
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(ii) If σs ◦G σt = σf(x2,x1), then either (σs = σid, σt = σf(x2,x1)) or (σs = σf(x2,x1), σt =

σid).

Proof. (i) Assume that σs ◦G σt = σid. Since f(x1, x2) /∈ X, thus by Lemma 4.1.4

(i),(ii) we get s, t /∈ X and thus s = f(a, b), t = f(c, d) for some a, b, c, d ∈ W(2)(X).

From σs ◦G σt = σid, thus S2(f(a, b), σ̂f(a,b)[c], σ̂f(a,b)[d]) = f(x1, x2). So (a = c = x1

or a = x2, d = x1) and (b = d = x2 or b = x1, c = x2). This implies σs = σt = σid or

σs = σt = σf(x2,x1).

(ii) The proof of (ii) is similar to the proof of (i).

Proposition 4.4.4. All of R-, L- and D-class of σid are equal to {σid, σf(x2,x1)}.

Proof. By Proposition 4.4.1, we get σid and σf(x2,x1) are R-, L- and D-related.

This implies the R-, L- and D-class of σid contain at least {σid, σf(x2,x1)}. Let σt ∈
HypG(2) where σtDσid. So σtLσs and σsRσid for some σs ∈ HypG(2). Then there

exist σu, σv, σp, σq ∈ HypG(2) such that σt = σp ◦G σs, σs = σq ◦G σt, σs = σid ◦G σu

and σid = σs ◦G σv. From σid = σs ◦G σv, thus by Lemma 4.4.3 (i) we get σs = σid or

σs = σf(x2,x1). From σs = σid or σs = σf(x2,x1) and σs = σq ◦G σt, thus by Lemma 4.4.3

we get σt = σid or σt = σf(x2,x1). So the D-class of σid is equal to {σid, σf(x2,x1)}. From

R ⊆ D,L ⊆ D, thus the R- and the L-class of σid are equal to {σid, σf(x2,x1)}.

Proposition 4.4.5. (σid)i = HypG(2) = (σf(x2,x1))i, and if σ ∈ HypG(2) and (σ)i =

HypG(2), then σ is one of σid or σf(x2,x1). Moreover, the J -class of σid is equal to its

D-class, {σid, σf(x2,x1)}.

Proof. Since σid is the identity element, thus (σid)i = HypG(2). Let σ ∈ HypG(2).

Then σ ◦G σf(x2,x1) ◦G σf(x2,x1) = σ. So (σid)i = HypG(2) = (σf(x2,x1))i. This implies

σidJ σf(x2,x1). Assume that (σ)i = HypG(2). Then σJ σid and thus there exist δ, ρ ∈
HypG(2) such that δ ◦G σ ◦G ρ = σid. By Lemma 4.4.3 (i), we get σ ◦G ρ = σid or

σ ◦G ρ = σf(x2,x1). Again by Lemma 4.4.3, we get σ = σid or σ = σf(x2,x1).

Lemma 4.4.6. Let u ∈ W(2)(X), σt ∈ HypG(2) and x = x1 or x = x2. If x /∈ var(u),

then x /∈ var(σ̂t[u]) (x is not a variable occurring in the term (σt ◦G σu)(f)).

Proof. We will prove by induction on the complexity of the term u. If u ∈ X,

then σ̂t[u] = u and so x /∈ var(σ̂t[u]). Assume that u = f(u1, u2) and x /∈ var(σ̂t[u1]),
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x /∈ var(σ̂t[u2]). Since x /∈ var(σ̂t[u1]), x /∈ var(σ̂t[u2]) and σ̂t[u] = σ̂t[f(u1, u2)] =

S2(t, σ̂t[u1], σ̂t[u2]), thus x /∈ var(σ̂t[u]).

Proposition 4.4.7. Any σt ∈ G is R-related only to itself, but is L-related, D-related

and J -related to all elements of G, and not related to any other generalized hypersub-

stitutions. Moreover, the set G forms an L-, D- and J - class.

Proof. Let σt ∈ G. Assume that σs ∈ HypG(2) where σsRσt. By Proposition

4.4.2,we get s /∈ X. Then there exists σp ∈ HypG(2) such that σs = σt ◦G σp. Since

s /∈ X, thus by Lemma 4.1.4 (i) we get p /∈ X. Since σt ∈ G and p /∈ X, thus by

Lemma 4.1.4 (iii) we get σt ◦G σp = σt. So σs = σt. Thus σt is R-related only to itself.

Let σs, σt ∈ G. By Lemma 4.1.4 (iii), we get σs ◦G σt = σs and σt ◦G σs = σt. Thus

σsLσt. So any two elements in G are L-related. Since L ⊆ D ⊆ J , thus any two

elements in G are D− and J− related. Assume that σt ∈ G and σs ∈ HypG(2) where

σsJ σt. By Proposition 4.4.2, we get s /∈ X. Then there exist σp, σq ∈ HypG(2) such

that σp ◦G σt ◦G σq = σs. Since s /∈ X, thus by Lemma 4.1.4 (i),(ii) we get p, q /∈ X.

Since σt ∈ G and q /∈ X, thus by Lemma 4.1.4 (iii) we get σt ◦G σq = σt. Since

x1, x2 /∈ var(t), thus by Lemma 4.4.6 we get x1, x2 are not variables occurring in the

term (σp ◦G σt)(f) = (σp ◦G σt ◦G σq)(f). Thus x1, x2 /∈ var(s) and so σs ∈ G. So G

is the J -class of its elements. Since any two elements in G are L− and D− related,

L ⊆ J ,D ⊆ J and G is the J -class of its elements, thus G forms an L-, D-class.

Theorem 4.4.8. Let τ = (ni)i∈I be a type and σ1, σ2 ∈ HypG(τ). Then σ1Rσ2 if and

only if Imσ̂1 = Imσ̂2.

Proof. Assume that σ1Rσ2. Then σ1 = σ2 ◦G σ3 and σ2 = σ1 ◦G σ4 for some

σ3, σ4 ∈ HypG(τ). By Proposition 2.2.10 (ii), we get σ̂1 = (σ2 ◦G σ3)̂ = (σ̂2 ◦ σ3)̂ =

σ̂2 ◦ σ̂3 and σ̂2 = (σ1 ◦G σ4)̂ = (σ̂1 ◦ σ4)̂ = σ̂1 ◦ σ̂4. Thus Imσ̂1 = σ̂1[Wτ (X)] =

(σ̂2 ◦ σ̂3)[Wτ (X)] = σ̂2[σ̂3[Wτ (X)]] ⊆ σ̂2[Wτ (X)] = Imσ̂2. By the same way we can

show that Imσ̂2 ⊆ Imσ̂1. Conversely, assume that Imσ̂1 = Imσ̂2. For each i ∈ I,

we have σ1(fi) = Sni(σ1(fi), x1, . . . , xni
) = σ̂1[fi(x1, . . . , xni

)] ∈ Imσ̂1 = Imσ̂2. So

σ1(fi) = σ̂2[ti] for some ti ∈ Wτ (X). We define γ : {fi|i ∈ I} −→ Wτ (X) by γ(fi) = ti

for all i ∈ I. Let i ∈ I. Then (σ2◦Gγ)(fi) = σ̂2[γ(fi)] = σ̂2[ti] = σ1(fi). So σ1 = σ2◦Gγ.

By the same way we can show that σ2 = σ1 ◦G β for some β ∈ Wτ (X).
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Theorem 4.4.9. For any σs, σt ∈ HypG(2), σsRσt if and only if the following conditions

hold:

(i) If s ∈ X, then t ∈ X.

(ii) If s /∈ X, then s = t or s = t.

Proof. Assume that σsRσt. If s ∈ X, then by Proposition 4.4.2 we get t ∈ X. Let

s /∈ X. Then there exist σu, σv ∈ HypG(2) such that σs = σt ◦G σu and σt = σs ◦G σv.

By Lemma 4.1.4 (i), (ii), we get t, u, v /∈ X. Then u = f(u1, u2) and v = f(v1, v2) for

some u1, u2, v1, v2 ∈ W(2)(X). Then we have two equations

s = S2(t, σ̂t[u1], σ̂t[u2]) (1)

t = S2(s, σ̂s[v1], σ̂s[v2]) (2).

From (1) and (2), we get vb(s) = vb(t). We consider into four cases:

Case 1: t ∈ WG. From (1), we get s = t.

Case 2: t ∈ WG
(2)({x1, x2}). Suppose that u1 /∈ X or u2 /∈ X. Then σ̂t[u1] /∈ X or

σ̂t[u2] /∈ X. From (1) and x1, x2 ∈ var(t), thus vb(s) > vb(t) and it is a contradiction.

So u1, u2 ∈ X. Suppose that u1 = u2 = x1. Then σ̂t[u1] = σ̂t[u2] = x1. From (1), we

get s ∈ W ({x1}). Suppose that v1 /∈ X. Then σ̂s[v1] /∈ X. From (2) and x1 ∈ var(s),

thus vb(t) > vb(s) and it is a contradiction. So v1 ∈ X and thus σ̂s[v1] = v1. Since

s ∈ W ({x1}) and σ̂s[v1] = v1, thus from (2) we get x1 /∈ var(t) or x2 /∈ var(t) which

contradicts to t ∈ WG
(2)({x1, x2}). If u1 = x1, u2 = x2, then σ̂t[u1] = x1, σ̂t[u2] = x2.

From (1), we get s = t. If u1 = x1, u2 = xi where i > 2, then by the same proof as

the case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). If u1 = x2, u2 = x1, then

σ̂t[u1] = x2, σ̂t[u2] = x1. From (1), we get s = t. If u1 = x2, u2 = x2, then by the same

proof as the case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). If u1 = x2, u2 = xi

where i > 2, then by the same proof as the case u1 = u2 = x1 we get x1 /∈ var(t)

or x2 /∈ var(t). If u1 = xi, u2 = x1 where i > 2, then by the same proof as the case

u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). If u1 = xi, u2 = x2 where i > 2, then

by the same proof as the case u1 = u2 = x1 we get x1 /∈ var(t) or x2 /∈ var(t). Suppose

that u1 = xi, u2 = xj where i, j > 2. Then σ̂t[u1] = xi, σ̂t[u2] = xj. From (1), we get

s ∈ WG. Since x1, x2 /∈ var(s), thus from (2) we get s = t. So x1, x2 /∈ var(t) and it is

a contradiction.

Case 3: t ∈ W ({x1}). Suppose that u1 /∈ X. Then σ̂t[u1] /∈ X. From (1),
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x1 ∈ var(t) and σ̂t[u1] /∈ X, thus vb(s) > vb(t) and it is a contradiction. So u1 ∈ X

and thus σ̂s[u1] = u1. If u1 = x1, then by (1) we get s = t. If u1 = x2, then by (1)

we get s = t. Suppose that u1 = xi where i > 2. From (1), we get s ∈ WG. Since

x1, x2 /∈ var(s), thus from (2) we get s = t. So x1 /∈ var(t) and it is a contradiction.

Case 4: t ∈ W ({x2}). By the same proof as the case t ∈ W ({x1}) we get s = t or

s = t.

Conversely, assume that the conditions hold. By Proposition 4.4.1 and Proposition

4.4.2, we get σsRσt.

Lemma 4.4.10. EG
x1

is a left zero band.

Proof. Let σf(x1,s), σf(x1,t) ∈ EG
x1

. Since x2 /∈ var(s), thus (σf(x1,s) ◦G σf(x1,t))(f) =

S2(f(x1, s), x1, σ̂f(x1,s)[t]) = f(x1, s). So σf(x1,s) ◦G σf(x1,t) = σf(x1,s). So EG
x1

is a left

zero band.

Proposition 4.4.11. The L-class of the element σf(x1,x1) is precisely the set EG
x1

∪ EG
x2

.

Proof. For any two idempotent elements e and f in a semigroup S, eLf if and

only if ef = e and fe = f . Since EG
x1

is a left zero band, it follows that σf(x1,x1) is

L-related to any element of EG
x1

. By Proposition 4.4.1, we get σf(x1,x1) is L-related to

any element of (EG
x1

)′ = EG
x2

. Thus the L-class of σf(x1,x1) contains at least EG
x1

∪ EG
x2

.

For the opposite inclusion, assume that σt ∈ HypG(2) where σtLσf(x1,x1). By Propo-

sition 4.4.2, we get t /∈ X. Then t = f(u, v) for some u, v ∈ W(2)(X). From

σtLσf(x1,x1), then there exist σp, σq ∈ HypG(2) such that σp ◦G σf(x1,x1) = σt and

σq ◦G σt = σf(x1,x1). Since t, f(x1, x1) /∈ X, thus by Lemma 4.1.4 (ii) we get p, q /∈ X.

Then there exist a, b, c, d ∈ W(2)(X) such that p = f(a, b) and q = f(c, d). Thus we

have σf(a,b)◦Gσf(x1,x1) = σf(u,v) and σf(c,d)◦Gσf(u,v) = σf(x1,x1). From σf(a,b)◦Gσf(x1,x1) =

σf(u,v), thus by Lemma 4.4.6 we get x2 /∈ var(f(u, v)). From σf(c,d) ◦G σf(u,v) =

σf(x1,x1), thus S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]) = f(x1, x1). Suppose that u, v �= x1. Thus

σ̂f(c,d)[u], σ̂f(c,d)[v] �= x1. This implies S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]) �= f(x1, x1), which

is a contradiction. So u = x1 or v = x1. Since x2 /∈ var(f(u, v)) and u = x1 or v = x1,

thus σt = σf(u,v) ∈ EG
x1

∪ EG
x2

.

Corollary 4.4.12. The D-class of the element σf(x1,x1) is precisely the set EG
x1

∪ EG
x2

∪
EG

x1
∪ EG

x2
.
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Proof. Assume that σt ∈ HypG(2) where σtDσf(x1,x1). Then there exists σs ∈
HypG(2) such that σtRσs and σsLσf(x1,x1). Since σtRσs, thus by Theorem 4.4.9 we

get σt = σs or σt = σs. Since σsLσf(x1,x1), thus by Proposition 4.4.11 we get σs ∈
EG

x1
∪ EG

x2
. If σs ∈ EG

x1
, then σt ∈ EG

x1
∪ EG

x1
⊆ EG

x1
∪ EG

x2
∪ EG

x1
∪ EG

x2
. If σs ∈ EG

x2
,

then σt ∈ EG
x2

∪ EG
x2

⊆ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

. For the opposite inclusion, assume

that σt ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

. If σt ∈ EG
x1

∪ EG
x2

, then by Proposition 4.4.11 we get

σtLσf(x1,x1). Since L ⊆ D, thus σtDσf(x1,x1). If σt ∈ EG
x2

∪ EG
x1

, then σt ∈ EG
x1

∪ EG
x2

.

By Proposition 4.4.11, we get σtLσf(x1,x1). By Theorem 4.4.9, we get σtRσt. So

σtDσf(x1,x1).

Lemma 4.4.13. Let σf(c,d) ∈ HypG(2) \ {σid, σf(x2,x1)} and u ∈ W(2)(X) \X. If σf(c,d) ∈
EG({x1, x2}), then the term w corresponding to the composition σf(c,d) ◦G σu is longer

than u.

Proof. We will prove by induction on the complexity of the term u. Since x1, x2 ∈
var(f(c, d)) and f(c, d) �= f(x1, x2), f(x2, x1), thus c /∈ X or d /∈ X and vb(f(c, d)) ≥ 3.

Let vb(u) = 2. Then u = f(xi, xj) for some xi, xj ∈ X. So vb(w) = vb((σf(c,d) ◦G

σu)(f)) = vb((σf(c,d) ◦G σf(xi,xj))(f)) = vb(S2(f(c, d), xi, xj)) ≥ 3 > vb(u). Let u =

f(s, t) where s ∈ X and t /∈ X. Then σ̂f(c,d)[s] = s ∈ X. Assume that vb(σ̂f(c,d)[t]) >

vb(t). Since x1, x2 ∈ var(f(c, d)) and vb(σ̂f(c,d)[t]) > vb(t), thus vb(w) = vb((σf(c,d) ◦G

σu)(f)) = vb((σf(c,d) ◦G σf(s,t))(f)) = vb(S2(f(c, d), s, σ̂f(c,d)[t])) > vb(f(s, t)) = vb(u).

Let u = f(s, t) where s, t /∈ X. Assume that vb(σ̂f(c,d)[s]) > vb(s) and vb(σ̂f(c,d)[t]) >

vb(t). Since x1, x2 ∈ var(f(c, d)) and vb(σ̂f(c,d)[s]) > vb(s), vb(σ̂f(c,d)[t]) > vb(t), thus

vb(w) = vb((σf(c,d) ◦G σu)(f)) = vb((σf(c,d) ◦G σf(s,t))(f)) = vb(S2(f(c, d), σ̂f(c,d)[s],

σ̂f(c,d)[t])) > vb(f(s, t)) = vb(u).

Lemma 4.4.14. If f(c, d) ∈ W ({x1}) ∪ W ({x2}) ∪ WG (x1 /∈ var(f(c, d)) or x2 /∈
var(f(c, d))), then for any u, v ∈ W(2)(X) the term w corresponding to σf(c,d) ◦G σf(u,v)

is in W ({x1}) ∪ W ({x2}) ∪ WG.

Proof. We will prove by induction on the complexity of the term u. Assume

that f(c, d) ∈ W ({x1}). We have to consider the letters used in the term w =

S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]). If u ∈ X, then σ̂f(c,d)[u] = u ∈ X. Since f(c, d) ∈
W ({x1}), σ̂f(c,d)[u] ∈ X and w = S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]), thus w ∈ W ({x1}) ∪
W ({x2})∪WG. Let u = f(p, q) and σ̂f(c,d)[p] ∈ W ({x1})∪W ({x2})∪WG. So σ̂f(c,d)[u] =
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S2(f(c, d), σ̂f(c,d)[p], σ̂f(c,d)[q]) ∈ W ({x1}) ∪ W ({x2}) ∪ WG. Since f(c, d) ∈ W ({x1}),
σ̂f(c,d)[u] ∈ W ({x1}) ∪ W ({x2}) ∪ WG and w = S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]), thus

w ∈ W ({x1})∪W ({x2})∪WG. By the same way we can show that if f(c, d) ∈ W ({x2}),
then w ∈ W ({x1}) ∪ W ({x2}) ∪ WG. If f(c, d) ∈ WG, then w = f(c, d) ∈ WG.

Proposition 4.4.15. The following statements hold:

(i) (σf(x1,x1))i = I := {σt ∈ HypG(2)|t ∈ WG
(2)({x1})∪WG

(2)({x2}) or x1, x2 /∈ var(t)}.

(ii) If σ ∈ I where σ /∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

, then (σ)i � I.

(iii) The J -class of σf(x1,x1) is equal to its D-class, EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

.

Proof. (i) Assume that σs ∈ (σf(x1,x1))i. Then there exist δ, ρ ∈ HypG(2) such

that δ ◦G σf(x1,x1) ◦G ρ = σs. If δ or ρ ∈ PG(2), then by Lemma 4.1.4 (i), (ii) we get

σs = δ ◦G σf(x1,x1) ◦G ρ ∈ PG(2) ⊆ I. Assume that δ, ρ /∈ PG(2). By Lemma 4.4.14,

we get σf(x1,x1) ◦G ρ ∈ I. By Lemma 4.4.6, we get σs = δ ◦G (σf(x1,x1) ◦G ρ) ∈ I.

For the opposite inclusion, suppose that σs ∈ I. If σs ∈ PG(2), then by Lemma

4.1.4 (i) we get σs = σf(x1,x1) ◦G σf(x1,x1) ◦G σs ∈ (σf(x1,x1))i. Let σs /∈ PG(2). If

x1, x2 /∈ var(s), then by Lemma 4.1.4 (iii) we get σs = σs ◦G σf(x1,x1) ◦G σs ∈ (σf(x1,x1))i.

If s ∈ W ({x1}), then σs = σs ◦G σf(x1,x1) ◦G σf(x1,x1) ∈ (σf(x1,x1))i. If s ∈ W ({x2}), then

σs = σs ◦G σf(x1,x1) ◦G σf(x2,x2) ∈ (σf(x1,x1))i.

(ii) Assume that σ ∈ I where σ /∈ EG
x1
∪EG

x2
∪EG

x1
∪EG

x2
. If σ ∈ PG(2), then (σ)i =

HypG(2)σHypG(2) = PG(2) � I. Assume that σ /∈ PG(2) and σ = σf(u,v). Let f(u, v) ∈
W ({x1})∪W ({x2}). Suppose that u, v ∈ X. Since f(u, v) ∈ W ({x1})∪W ({x2}), thus

σf(u,v) ∈ EG
x1
∪EG

x2
∪EG

x1
∪EG

x2
and it is a contradiction. Suppose that u ∈ X and v /∈ X.

If u = x1 or u = x2, then σf(u,v) ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

and it is a contradiction.

So u = xi for some i > 2. Suppose that σf(x1,x1) ∈ (σf(u,v))i. Since f(x1, x1) /∈ X and

σf(x1,x1) ∈ (σf(u,v))i, thus there exist p, q, r, s ∈ W(2)(X) such that σf(p,q) ◦G σf(xi,v) ◦G

σf(r,s) = σf(x1,x1). Let w be the term (σf(xi,v) ◦G σf(r,s))(f). So w = f(xi, k) for

some k ∈ W(2)(X) \ X. Then we have σf(p,q) ◦G σf(xi,k) = σf(x1,x1). This implies

f(p, q) = f(x2, x2). Consider (σf(x2,x2) ◦G σf(xi,k))(f) = S2(f(x2, x2), xi, σ̂f(x2,x2)[k]) =

f(σ̂f(x2,x2)[k], σ̂f(x2,x2)[k]) �= f(x1, x1), which is a contradiction. So (σ)i � I. By the

same way we can show that if u /∈ X and v ∈ X, then (σ)i � I. Suppose that u, v /∈ X.

Then vb(f(u, v)) ≥ 4. Suppose that σf(x1,x1) ∈ (σf(u,v))i. Since f(x1, x1) /∈ X and
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σf(x1,x1) ∈ (σf(u,v))i, thus there exist p, q, r, s ∈ W(2)(X) such that σf(p,q) ◦G σf(u,v) ◦G

σf(r,s) = σf(x1,x1). Let w be the term (σf(u,v) ◦G σf(r,s))(f). Then vb(w) ≥ 4. By Lemma

4.1.4 (iii), we get x1 ∈ var(f(p, q)) or x2 ∈ var(f(p, q)). Suppose that f(p, q) ∈
WG

(2)({x1, x2}). If f(p, q) = f(x1, x2) or f(p, q) = f(x2, x1), then σw = σf(x1,x1) or

σw′ = σf(x1,x1) and it is a contradiction. Suppose that f(p, q) �= f(x1, x2), f(x2, x1).

By Lemma 4.4.13, we get vb(f(x1, x1)) > vb(w), which is a contradiction. Suppose

that f(p, q) ∈ W ({x1}) ∪ W ({x2}). Then the equation σf(p,q) ◦G σw = σf(x1,x1) does

not fit any of E(1) to E(16), so by Lemma 4.2.1 we must have f(x1, x1) is longer

than f(p, q) and it is a contradiction. So (σ)i � I. Let f(u, v) ∈ WG. Suppose that

σf(x1,x1) ∈ (σf(u,v))i. Since f(x1, x1) /∈ X and σf(x1,x1) ∈ (σf(u,v))i, thus there exist

p, q, r, s ∈ W(2)(X) such that σf(p,q) ◦G σf(u,v) ◦G σf(r,s) = σf(x1,x1). By Lemma 4.1.4

(iii), we get σf(u,v) ◦G σf(r,s) = σf(u,v). By Lemma 4.4.6, we get x1, x2 are not variables

occurring in the term (σf(p,q) ◦G σf(u,v))(f) = (σf(p,q) ◦G σf(u,v) ◦G σf(r,s))(f), which is a

contradiction. So (σ)i � I.

(iii) Since D ⊆ J , thus we must have EG
x1
∪EG

x2
∪EG

x1
∪EG

x2
contained in the J -class

of σf(x1,x1). Assume that σ ∈ HypG(2) where σJ σf(x1,x1). Then (σ)i = (σf(x1,x1))i = I.

So σ ∈ I. By (ii), we get σ ∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

.

Proposition 4.4.16. For any σt ∈ EG({x1, x2}), the elements which are L-related to σt

are only σt itself and σt′.

Proof. Let t = f(u, v). Assume that σs ∈ HypG(2) where σsLσt. By Proposi-

tion 4.4.2, we get s /∈ X. Then s = f(a, b) for some a, b ∈ W(2)(X). Since s, t /∈ X

and σsLσt, thus there exist c, d, e, g ∈ W(2)(X) such that σf(c,d) ◦G σf(u,v) = σf(a,b)

and σf(e,g) ◦G σf(a,b) = σf(u,v). Since x1, x2 ∈ var(f(u, v)), then by Lemma 4.4.14 and

σf(e,g) ◦G σf(a,b) = σf(u,v) we get x1, x2 ∈ var(f(e, g)). Since x1, x2 ∈ var(f(u, v)),

then by Lemma 4.4.6 and σf(e,g) ◦G σf(a,b) = σf(u,v) we get x1, x2 ∈ var(f(a, b)). Since

x1, x2 ∈ var(f(a, b)), thus by Lemma 4.4.14 and σf(c,d) ◦G σf(u,v) = σf(a,b) we get

x1, x2 ∈ var(f(c, d)). Suppose that f(c, d), f(e, g) /∈ {f(x1, x2), f(x2, x1)}. Since

x1, x2 ∈ var(f(e, g)) and x1, x2 ∈ var(f(c, d)), thus by Proposition 4.4.13 we get

vb(f(a, b)) > vb(f(u, v)) and vb(f(u, v)) > vb(f(a, b)), which is a contradiction. So

f(c, d) ∈ {f(x1, x2), f(x2, x1)} or f(e, g) ∈ {f(x1, x2), f(x2, x1)}. This implies σs = σt

or σs = σt′ .
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Corollary 4.4.17. For σt ∈ EG({x1, x2}), Dσt = {σt, σt′ , σt, σt′}.

Proof. By Theorem 4.4.9 and Proposition 4.4.16.

Proposition 4.4.18. For σt ∈ EG({x1, x2}), the J -class of σt is equal to its D-class,

{σt, σt′ , σt, σt′}.

Proof. If σt = σid or σt = σf(x2,x1), then by Proposition 4.4.5 we get Dσid
= Jσid

.

Let σt �= σid, σf(x2,x1) and σs ∈ HypG(2) where σsJ σt. By Proposition 4.4.2, we get

s /∈ X. Then there exist σu, σv, σp, σq ∈ HypG(2) such that σu ◦G σt ◦G σv = σs and

σp ◦G σs ◦G σq = σt. This implies σp ◦G σu ◦G σt ◦G σv ◦G σq = σt. Since t /∈ X, thus

by Lemma 4.1.4 (i),(ii) we get u, v, p, q /∈ X. Since t ∈ WG
(2)({x1, x2}), thus by Lemma

4.4.6 and Lemma 4.4.14 we get u, v, p, q ∈ WG
(2)({x1, x2}) and terms corresponding to

the intermediate products are in WG
(2)({x1, x2}). We consider into three cases.

Case 1: σp ◦G σu = σid. Then by Lemma 4.4.3, we get σp = σu = σid or σp = σu =

σf(x2,x1). If σp = σu = σid, then from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we

get σt ◦G σv = σs and σs ◦G σq = σt. So σsRσt. By Theorem 4.4.9, we get σs = σt or

σs = σt. If σp = σu = σf(x2,x1), then from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt

we get σt′ ◦G σv = σs and σs ◦G σq = σt′ . So σsRσt′ . By Theorem 4.4.9, we get σs = σt′

or σs = σt′ .

Case 2: σp◦G σu = σf(x2,x1). Then by Lemma 4.4.3, we get σp = σid, σu = σf(x2,x1) or

σp = σf(x2,x1), σu = σid. Then σt = σp◦Gσu◦Gσt◦Gσv ◦Gσq = σf(x2,x1)◦Gσt◦Gσv ◦Gσq =

σt′ ◦G (σv ◦G σq). By Lemma 4.2.1, we get t is longer than t′, unless the product

σt′ ◦G (σv ◦G σq) fits one of E(1) to E(16). But vb(t) = vb(t′), thus the product

σt′ ◦G (σv ◦G σq) fits one of E(1) to E(16). We see that the cases E(1) − E(3), E(5),

E(7) − E(16) are impossible. Assume that E(4) holds. We have σv ◦G σq = σid. By

Lemma 4.4.3, we get σv = σq = σid or σv = σq = σf(x2,x1). If σv = σq = σid, then from

σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we get σu ◦G σt = σs and σp ◦G σs = σt.

So σsLσt. By Proposition 4.4.16, we get σs = σt or σs = σt′ . If σv = σq = σf(x2,x1),

then from σu ◦G σt ◦G σv = σs and σp ◦G σs ◦G σq = σt we get σu ◦G σt ◦G σf(x2,x1) = σs

and σp ◦G σs ◦G σf(x2,x1) = σt. This implies σu ◦G σt = σs and σp ◦G σs = σt. So σsLσt.

By Proposition 4.4.16, we get σs = σt or σs = σt
′ = σt′ . Assume that E(6) holds.

We have σv ◦G σq = σf(x2,x1). By Lemma 4.4.3, we get σq = σid or σq = σf(x2,x1). If

σp = σq = σf(x1,x2), then from σp ◦G σs ◦G σq = σt we get σs = σt. If σp = σq = σf(x2,x1),
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then from σp ◦G σs ◦G σq = σt we get σs = σt′ . If σp = σid, σq = σf(x2,x1), then from

σp◦Gσs◦Gσq = σt we get σs = σt. If σp = σf(x2,x1), σq = σid, then from σp◦Gσs◦Gσq = σt

we get σs = σt′ .

Case 3: σp ◦G σu �= σid, σf(x2,x1). By Lemma 4.4.13, we get t is longer than the

term w = (σt ◦G σv ◦G σq)(f). By Lemma 4.2.1 , we get w is longer than t, unless the

product σt ◦G (σv ◦G σq) fits one of E(1) to E(16). But the case w is longer than t is

impossible. We see that the cases E(1) − E(3), E(5), E(7) − E(16) are impossible.

Assume that E(4) holds. We must have σv ◦G σq = σid. By Lemma 4.4.3, we get

σv = σq = σid or σv = σq = σf(x2,x1). If σv = σq = σid, then from σu ◦G σt ◦G σv = σs

and σp◦Gσs◦Gσq = σt we get σu◦Gσt = σs and σp◦Gσs = σt. So σsLσt. By Proposition

4.4.16, we get σs = σt or σs = σt′ . If σv = σq = σf(x2,x1), then from σu ◦G σt ◦G σv = σs

and σp ◦G σs ◦G σq = σt we get σu ◦G σt ◦G σf(x2,x1) = σs and σp ◦G σs ◦G σf(x2,x1) = σt.

This implies σu ◦G σt = σs and σp ◦G σs = σt. So σsLσt. By Proposition 4.4.16, we get

σs = σt or σs = σt
′ = σt′ . Assume that E(6) holds. We must have σv ◦G σq = σf(x2,x1).

Then σt = σp ◦G σu ◦G σt ◦G σv ◦G σq = σp ◦G σu ◦G σt ◦G σf(x2,x1) = (σp ◦G σu) ◦G σt.

Since σp ◦G σu �= σid, σf(x2,x1), thus by Lemma 4.4.13 we get t is longer than t and it is

a contradiction.

Proposition 4.4.19. Let t ∈ W(2)(X) \ X and x1 ∈ var(t) or x2 ∈ var(t). Then the

following statements are equivalent:

(i) σt has an H-class of size 2.

(ii) t′ = t.

(iii) t = f(u, v) for some u, v ∈ W(2)(X) with v = u′.

Proof. (i)=⇒(ii) Assume that (i) holds. By Theorem 4.4.9, we get Rσt = {σt, σt}.
Since Hσt ⊆ Rσt and |Hσt | = 2, thus Hσt = {σt, σt}. So σtLσt. By Proposition 4.4.1,

we get σtLσt′ . So σtLσt′ . If t ∈ WG
(2)({x1, x2}), then by Proposition 4.4.16, we get

t′ = t. If t ∈ W ({x1}), then by Lemma 4.4.6, we get x2 is not a variable occurring

in the term (σ ◦G σt)(f) for all σ ∈ HypG(2). So σ ◦G σt �= σt for all σ ∈ HypG(2).

Thus it is impossible that σt is L-related to σt. By the same way we can show that if

t ∈ W ({x2}), then σt and σt are not related.
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(ii)=⇒ (i) Assume that t′ = t. By Proposition 4.4.1, we get σtLσt. So Rσt =

{σt, σt} ⊆ Lσt . Thus Hσt = Lσt ∩ Rσt = Rσt = {σt, σt}. So |Hσt | = 2.

(ii)=⇒(iii) Assume that t = f(u, v) for some u, v ∈ W(2)(X) with t′ = t. So

f(u, v) = f(u, v)′

⇒ f(u, v) = f(v′, u′)

⇒ u = v′

⇒ v = (v′)′ = u′ = u′.

(iii)=⇒(ii) Assume that t = f(u, v) for some u, v ∈ W(2)(X) with v = u′. So

t′ = f(u, v)′ = f(u, u′)′ = f(u′′, u′) = f(u, u′) = f(u, u′) = f(u, u′) = f(u, v) = t.

4.5 Natural Partial Ordering on the Set of All Idempotent

Elements of HypG(2)

In this section, we characterize all primitive idempotent elements of HypG(2)

and characterize the natural partial ordering on the set of all idempotent elements

of HypG(2).

Proposition 4.5.1. For all xi ∈ X, σxi
is primitive.

Proof. Let σt be an idempotent element with σt ≤ σxi
. Then σt ◦G σxi

= σxi
◦G σt =

σt. By Lemma 4.1.4 (i), we get σt ◦G σxi
= σxi

. So σt = σxi
.

Proposition 4.5.2. Let σt be an idempotent element with t /∈ X. Then σt is not primi-

tive.

Proof. By Lemma 4.1.4 (i), we get σt ◦G σx3 = σx3 . It is clear that σx3 ◦G σt = σx3 .

So σx3 ≤ σt and thus σt is not primitive.

By the previous two propositions, we get PG(2) is the set of all primitive idempotent

elements.

Lemma 4.5.3. Let σt ∈ HypG(2). Then σx1 ◦G σt = σleftmost(t) (σ̂x1 [t] = leftmost(t))

and σx2 ◦G σt = σrightmost(t) (σ̂x2 [t] = rightmost(t)).
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Proof. We will show that σx1 ◦G σt = σleftmost(t). To do this we will prove by

induction on the complexity of the term t. If t ∈ X, then leftmost(t) = t and σx1◦Gσt =

σt = σleftmost(t). Assume that t = f(t1, t2) and σx1 ◦G σt1 = σleftmost(t1) i.e. σ̂x1 [t1] =

leftmost(t1). Consider (σx1 ◦G σt)(f) = (σx1 ◦G σf(t1,t2))(f) = S2(x1, σ̂x1 [t1], σ̂x1 [t2]) =

σ̂x1 [t1] = leftmost(t1) = leftmost(t). So σx1 ◦G σt = σleftmost(t). By the same way we

can show that σx2 ◦G σt = σrightmost(t).

Proposition 4.5.4. Let σt be an idempotent element. Then σx1 ≤ σt if and only if

leftmost(t) = x1.

Proof. Assume that σx1 ≤ σt. Then σx1 ◦G σt = σt ◦G σx1 = σx1 . By Lemma 4.5.3,

σx1 ◦G σt = σleftmost(t). So leftmost(t) = x1.

The proof of the converse direction is straightforward.

Proposition 4.5.5. Let σt be an idempotent element. Then σx2 ≤ σt if and only if

rightmost(t) = x2.

Proof. The proof is similar to the proof of Proposition 4.5.4.

Proposition 4.5.6. Let xi ∈ X where i > 2 and σt be an idempotent element. Then

σxi
≤ σt if and only if t = xi or t /∈ X.

Proof. Assume that σxi
≤ σt. Then σxi

◦G σt = σt ◦G σxi
= σxi

. Suppose that

t ∈ X. If t �= xi, then σxi
◦G σt = σt �= σxi

and it is a contradiction. So t = xi.

The proof of the converse direction is straightforward.

Proposition 4.5.7. Let t ∈ W(2)(X) with x2 /∈ var(t) and σs be an idempotent element.

Then σf(x1,t) ≤ σs if and only if s = f(x1, x2) or s = f(x1, t).

Proof. Assume that σf(x1,t) ≤ σs. Then σf(x1,t) ◦G σs = σs ◦G σf(x1,t) = σf(x1,t). By

Lemma 4.1.4 (i),(ii), we get s /∈ X. Let s = f(s1, s2). Suppose that s �= f(x1, x2).

From σf(x1,t) ◦G σs = σf(x1,t), thus f(x1, t) = S2(f(x1, t), σ̂f(x1,t)[s1], σ̂f(x1,t)[s2]). Hence

σ̂f(x1,t)[s1] = x1 and then s1 = x1. Since σs is an idempotent element and f(x1, x2) �=
s = f(x1, s2), thus x2 /∈ var(s2). From σs ◦G σf(x1,t) = σf(x1,t), thus f(x1, t) =

S2(f(x1, s2), x1, σ̂s[t]). From x2 /∈ var(s2) and f(x1, t) = S2(f(x1, s2), x1, σ̂s[t]), thus

s2 = t.

The proof of the converse direction is straightforward.
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Proposition 4.5.8. Let t ∈ W(2)(X) with x1 /∈ var(t) and σs be an idempotent element.

Then σf(t,x2) ≤ σs if and only if s = f(x1, x2) or s = f(t, x2).

Proof. The proof is similar to the proof of Proposition 4.5.7.

Now, we assume that for an arbitrary term t of type τ = (2), we define two semi-

group words Lp(t) and Rp(t) over the alphabet {f} inductively as follows :

(i) If t = f(xi, t2) where t2 ∈ W(2)(X), xi ∈ X, then Lp(t) := f .

(ii) If t = f(t1, xi) where t1 ∈ W(2)(X), xi ∈ X, then Rp(t) := f .

(iii) if t = f(t1, t2) where t1 ∈ W(2)(X) \ X, then Lp(t) := f(Lp(t1)).

(iv) If t = f(t1, t2) where t2 ∈ W(2)(X) \ X, then Rp(t) := f(Rp(t2)).

We denote the number of symbols occurring in the semigroup word Lp(t) (Rp(t))

by length(Lp(t)) (length(Rp(t))).

As an example, let t, t1, t2 ∈ W(2)(X) where t1 = f(x1, f(x3, x4)),

t2 = f(f(x1, x2), f(x1, x5)) and t = f(t1, t2), then Lp(t1) = f , Rp(t1) = ff , Lp(t2) =

ff , Rp(t2) = ff , Lp(t) = ff , Rp(t) = fff , length(Lp(t)) = 2 and length(Rp(t)) = 3.

For any term t ∈ W(2)(X) with x1 /∈ var(t) or x2 /∈ var(t). Then we define

(i) t1 := t.

(ii) tn := S2(t, tn−1, tn−1) if n > 1.

(iii) tnxi
:= S2(tn, xi, xi) if xi ∈ X, n ∈ N.

Proposition 4.5.9. Let t ∈ W(2)(X) with x2 /∈ var(t) and σs be an idempotent element

with f(x1, t) �= s /∈ X. Then σs ≤ σf(x1,t) if and only if s = f(x1, t)
length(Lp(s))
xi where

xi = leftmost(s) with i > 2.

Proof. Assume that σs ≤ σf(x1,t). Then σs ◦G σf(x1,t) = σf(x1,t) ◦G σs = σs. Let

s = f(s1, s2). So we have two equations

S2(f(x1, t), σ̂f(x1,t)[s1], σ̂f(x1,t)[s2]) = f(s1, s2) (1)

S2(f(s1, s2), x1, σ̂s[t]) = f(s1, s2) (2).

It is clear that σ̂s[t] �= x2. If s1 = x1, then σ̂f(x1,t)[s1] = x1. By (1), we get f(x1, t) =

f(s1, s2) and it is a contradiction. If s1 = x2, thus s2 = x2 since σs is an idempotent
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element. By (2), we get σ̂s[t] = x2 and it is a contradiction. If s1 = xi where i > 2, then

σ̂f(x1,t)[s1] = xi, leftmost(s) = xi and length(Lp(s)) = 1. By (1), we get f(x1, t)
1
xi

=

f(s1, s2). Let s1 = f(s3, s4). Then σ̂f(x1,t)[s1] = S2(f(x1, t), σ̂f(x1,t)[s3], σ̂f(x1,t)[s4]). If

s3 = x1, then σ̂f(x1,t)[s3] = x1. From σ̂f(x1,t)[s1] = S2(f(x1, t), σ̂f(x1,t)[s3], σ̂f(x1,t)[s4]),

thus σ̂f(x1,t)[s1] = f(x1, t). From (1), we get s1 /∈ X and x1 ∈ var(s), which con-

tradicts to σs is an idempotent element. If s3 = x2, then σ̂f(x1,t)[s3] = x2. From

σ̂f(x1,t)[s1] = S2(f(x1, t), σ̂f(x1,t)[s3], σ̂f(x1,t)[s4]) and (1), we get x2 ∈ var(s). Since

σs is an idempotent element, thus s2 = x2. By (2), we get σ̂s[t] = x2 and it is a

contradiction. If s3 = xi where i > 2, then σ̂f(x1,t)[s3] = xi, leftmost(s) = xi and

length(Lp(s)) = 2. From σ̂f(x1,t)[s1] = S2(f(x1, t), σ̂f(x1,t)[s3], σ̂f(x1,t)[s4]) and (1), we

get f(x1, t)
2
xi

= f(s1, s2). This procedure stops with a variable and then we have

f(x1, t)
length(Lp(s))
xi = f(s1, s2) where leftmost(s) = xi. Conversely, assume that the

condition holds. We will show that σs ≤ σf(x1,t). To do this we will prove by induction

on length(Lp(s)). If length(Lp(s)) = 1, then s = f(x1, t)
1
xi

. By Lemma 4.1.4 (iii),

we get σs ◦G σf(x1,t) = σs. Consider (σf(x1,t) ◦G σs)(f) = (σf(x1,t) ◦G σf(x1,t)1xi
)(f) =

S2(f(x1, t), xi, xi) = f(x1, t)
1
xi

. So σf(x1,t) ◦G σs = σs. Assume that length(Lp(s)) = k

and σf(x1,t)k
xi

◦G σf(x1,t) = σf(x1,t) ◦G σf(x1,t)k
xi

= σf(x1,t)k
xi

. Then σ̂f(x1,t)[f(x1, t)
k
xi

] =

f(x1, t)
k
xi

. By Lemma 4.1.4 (iii), we get σf(x1,t)k+1
xi

◦G σf(x1,t) = σf(x1,t)k+1
xi

. Consider

(σf(x1,t) ◦G σf(x1,t)k+1
xi

)(f) = σ̂f(x1,t)[f(x1, t)
k+1
xi

]

= σ̂f(x1,t)[S
2(f(x1, t), f(x1, t)

k
xi

, f(x1, t)
k
xi

)]

= S2(σ̂f(x1,t)[f(x1, t)], σ̂f(x1,t)[f(x1, t)
k
xi

], σ̂f(x1,t)[f(x1, t)
k
xi

])

(by Proposition 2.2.10 (i))

= S2(f(x1, t), f(x1, t)
k
xi

, f(x1, t)
k
xi

) (by induction)

= f(x1, t)
k+1
xi

.

So σf(x1,t) ◦G σf(x1,t)k+1
xi

= σf(x1,t)k+1
xi

.

Proposition 4.5.10. Let t ∈ W(2)(X) with x1 /∈ var(t) and σs be an idempotent element

with f(t, x2) �= s /∈ X. Then σs ≤ σf(t,x2) if and only if s = f(t, x2)
length(Rp(s))
xi where

xi = rightmost(s) with i > 2.

Proof. The proof is similar to the proof of Proposition 4.5.9.

Proposition 4.5.11. Let s ∈ W(2)(X) \ X and σt ∈ G. If σs ≤ σt, then s = t.
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Proof. Let σs ≤ σt. Then σt ◦G σs = σs. By Lemma 4.1.4 (iii), we get σt ◦G σs = σt.

So s = t.

The following picture shows the natural partial ordering on the set of all idempotent

elements of HypG(2).
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EG
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G

σx1 σx2σxi
, i > 2

σs σt

A B

σf(f(x7,x8),f(x4,x5))

A = {σu | u = sn
xi

, n, i ∈ N, i > 2},
B = {σu | u = tnxi

, n, i ∈ N, i > 2}.
Figure 2.


