Chapter 5
Idempotent Pre-Generalized Hypersubstitutions

of Type 7 = (2,2)

In this chapter, we characterize all idempotent pre-generalized hypersubstitutions

of type 7 = (2,2).

5.1 Pre-Generalized Hypersubstitutions of Type 7 = (2, 2)

In [14], K. Denecke and S. L. Wismath studied M-hyperidentities and M-solid
varieties based on submonoids M of the monoid Hyp(7). They defined a number of

natural such monoids based on various properties of hypersubstitutions. In the similar

way, we can define these monoids for generalized hypersubstitutions of type 7 = (2, 2).

Definition 5.1.1. Let 7 = (2,2) be a type with the binary operation symbols f and
g. Any generalized hypersubstitution o of type 7 = (2,2) is determined by the terms
t1,t2 in Wig2)(X) to which its maps the binary operation symbols f and g, denoted by

Oty o

(i) A generalized hypersubstitution o of type 7 = (2, 2) is called a projection general-
ized hypersubstitution if the terms o(f) and o(g) are variables, i.e. {o(f),0(g)} C
X. We denote the set of all projection generalized hypersubstitutions of type
T=(2,2) by P5(2,2),ie Pg(2,2) = {04q;|2i,7; € X}.

(ii) A generalized hypersubstitution o of type 7 = (2,2) is called a weak projection
generalized hypersubstitution if the terms o(f) or o(g) belongs to X. We denote
the set of all weak projection generalized hypersubstitutions of type 7 = (2,2) by
WPs(2,2).

(iii) A generalized hypersubstitution o of type 7 = (2,2) is called a pre-generalized
hypersubstitution if the terms o(f) and o(g) are not belong to X. We denote the
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set of all pre-generalized hypersubstitutions of type 7 = (2,2) by Preg(2,2), i.e.
Preq(2,2) .= Hypa(2,2) \ WP;(2,2).

We introduce some notations. For t € W, 9)(X), we consider :
ops(t) := the set of all operation symbols occurring in ¢,
firstops(t) := the first operation symbol (from the left) which occurs in ¢.
Now, we assume that F' is a variable over the two-element alphabet {f, g}. For an
arbitrary term ¢ of type 7 = (2,2), we define two semigroup words Lp(t) and Rp(t)
over the alphabet {f, g} inductively as follows :

F.

(1) If ¢t = F(SL’l,tg) where t2 € W(Q’Q) ()()7 x; € X, then Lp(t) )

(ii) if t = F(t1, ;) where t; € W5,9)(X), x; € X, then Rp(t) := F.

(111) Ift= F(tl, t2) where tl € W(Q’Q) (X) \ X, then Lp(t) = F(Lp(tl))
(IV) Ift= F(tl, t2) where t2 € W(2’2) (X) \ X, then Rp(t) = F(Rp(tg))

We denote the number of symbols occurring in the semigroup word Lp(t) (Rp(t))
by length(Lp(t)) (length(Rp(t))).

As an example, let t,1,ty € Wio2)(X) where t; = f(1, g(x3,24)), t2 = g(f(21, 22),
f(z1,25)) and t = f(t1,¢2), then Lp(t1) = f, Rp(t1) = fg, Lp(t2) = gf, Rp(t2) = gf,
Lp(t) = ff and Rp(t) = fgf.

In [24], S. Leeratanavalee already proved that for any type 7, the set Pg(7) U {04}
and Preg(7) are submonoids of Hypa(7). It is easy to see that W Pg(7) U {04} is a
submonoid of Hypg(7), and Pg(7) U {0:q} forms a submonoid of W Pg(7) U {0:4}-

5.2 Idempotent Elements in Preg(2,2)

It is obvious that every projection generalized hypersubstitution is idempotent and
0iq 18 also idempotent. In Chapter 4 and [32], the authors characterized all idempotent
elements of the monoid of all generalized hypersubstitutions of type 7 = (2) and S.
Leeratanavalee characterized all idempotent elements of W Pg(2,2) U {04}, see [22].

In this section, we consider the idempotent elements in Preg(2,2). We have the

following propositions.
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Proposition 5.2.1. Let 04, +, be a generalized hypersubstitution of type T = (2,2). Then

Ot .ty 18 idempotent if and only if G4, 1,[t1] = t1 and Gy, 4,[te] = ta.

Proof. Assume that oy, is idempotent, ie. 07, , = 044. Then Gy 4,[t] =

Gtr,12 (001,02 (F)] = 0%, 4, (f) = 04,1, (f) = t. Similarly, we get 6y, 4, [to] = 64, 12[00,12(9)] =
07 1,(9) = 01,4,(9) = to. Conversely, let 6y, 4,[t1] = t1 and 6y, 4,[to] = to. Since
Oty 1o [t1] = t, then (o1, 4, 0G 01y 1,)(f) = Oty 121004 (f)] = Oty 0[t1] = t1 = 04,1, ().
Similarly, since 6y, 1,[ta] = ta, then (04,4, G T4,.6,)(9) = Gty 15[04 1,(9)] = Gy 15 [t2] =
ty = 04,4,(9). Thus o7, ,, = 04, 4, ]

Now, we assume that t1,t, € W92 (X) where op(t1) = 1, op(ta) = 1, 64, 4,[t1] =
t1, firstops(t;) = g and firstops(ty) = f. Then t; and ¢, have the forms t; =
g(xi,xj), t2 = f(ag, x;) where i,j,k,Il € N. Since t; = Gy, 4,[t1] = S*(04,.1,(9), Tiy Tj) =
S2(ta, i, ), it follows that firstops(t;) = f. This is a contradiction and implies that if
04, 1, 18 idempotent, then the case firstops(t,) = g and firstops(ts) = f is impossible.

Then we will consider the following cases:

Case 1: firstops(t,) = f and firstops(ts) = f.

Case 2: firstops(t1) = g and firstops(ts) = g.

Case 3: firstops(t1) = f and firstops(ts) = g.

For the three possible cases, we have the following results:

Proposition 5.2.2. Let t1 = f(z;, ;) and to = f(xg, 1) with i,j,k,1 € N. Then oy, 4,
1s idempotent if and only if the following conditions hold:

(i) If z1 € var(t1), then x; = 1 and if xo € var(ty), then x; = x,.
(ii) If x; =x; =21 or x; = x; = To, then x), = ;.
(ili) If z; = x1 and j > 2, then x; = x;.
(iv) Ifi > 2 and x; = x4, then x), = ;.
(v) Ifi,j > 2, then x), = x; and x; = x;.

Proof. Assume that oy, 4, is idempotent, thus dy, 4, [t1] = t1 and 6y, 4, [ta] = t2. Then

we obtain the equations S*(t1, z;, x;) = t; and S*(ty, z, 1)) = ta.
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(i) Assume that x; € var(t;). Suppose that z; # x;. Then we have to replace x; in
the term ¢; by x; and then we conclude that 52(151, x;, x;) # t1. Hence x; = z1. By the
same way we can prove that if o € var(t;), then z; = w,.

(ii) Assume that z; = x; = x1. From S*(t1, zx, 2;) = ta, thus S*(f(x1, 1), 2, 1)) =
f(zx, x;) and then f(xy, xx) = f(xg, ;). Hence x, = ;. By the same way we can prove
that if x; = x; = 29, then z; = a.

(iii) Assume that x; = z7 and j > 2. From S?(t1, zy, 1)) = to, thus S*(f(z1, x;), x,
x;) = f(xy, z;) and then f(zy,x;) = f(vg, ;). Hence z; = ;.

(iv) Assume that ¢ > 2 and z; = x5. From S?(¢, x4, 1) = ta, thus S?(f(x;, x2), T,
x;) = f(zk, z;) and then f(z;, x;) = f(xx, ;). Hence xy = x;.

(v) Assume that i,j > 2. From S?(t1,zy,2) = to, thus S*(f(x, x;), v, 1) =
f(zg, ;) and then f(x;,x;) = f(zg, ;). Hence z = x; and x; = x;. Conversely, assume
that (i), (ii), (iii), (iv) and (v) hold. Hence 0y, 1, € {0 (w1 ,21).f(xr.00)> O F(x1,22),f (zp,21)
Uf(xlﬂfj)vf(kaj)’Uf(mvwz)?f(wkwk)?Uf(l‘z'vff»‘z),f(ff»‘ivwl)vOf(xm?j)vf(xz‘ﬂ»‘j)“vjv kleN,i,j>2} Itis
easy to check that all these generalized hypersubstituitions are idempotent. |

From Proposition 5.2.2, we obtain a similar result which solves the Case 2.

Proposition 5.2.3. Let t; = g(x;,x;) and ty = g(xy, x;) with i,j,k,l € N. Then oy, 4, is
idempotent if and only if the following conditions hold:

(i) If 1 € var(ty), then x = x1 and if x5 € var(ty), then x; = xo.
(i) If op, = & = x1 or o = x; = T, then x; = x;.
(ili) If zx = 21 and l > 2, then z; = ;.
(iv) If k> 2 and x; = x4, then x; = xy.
(v) If k,1 > 2, then z; =z, and x; = ;.

Proof. The proof is similar to the proof of Proposition 5.2.2. |

For the Case 3 we have the following result:

Proposition 5.2.4. Let t; = f(x;,x;) and ty = g(xg, ;) with i, j, k,l € N. Then oy, 4, is
idempotent if and only if the following conditions hold:

(1) If x; = xq, then x; = .
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(i) If ) = xo, then x; = .
(iii) Ifi > 2, then x; # .
(iv) If k> 2, then x; # x;.

Proof. Assume that oy, 4, is idempotent, thus dy, 4,[t1] = t1 and 6y, 4, [ta] = t2. Then
we obtain the equations S?(t1, z;, x;) = t; and S?(ta, z, 1)) = ta.

(1) Assume that z; = 2. From S?*(t1,x;,2;) = t1, thus S*(f(z2,x)), 22, 2;) =
f(x2,x;). Hence x; = x,.

(ii) The proof is similar to the proof of (i).

(iii) Assume that ¢ > 2 and suppose that x; = x1. Thus S*(t, z;, ;) = S*(f (s, 21),
z;, x1) = f(z;,2;) # f(x;, x1) = t1, which is a contradiction. Hence z; # ;.

(iv) The proof is similar to the proof of (iii).
Conversely, assume that (i), (ii), (iii) and (iv) hold. Hence
trts € {01 (01,0),9(1,20)) O F(@1,05).9(02,02)> O f(21,05),9@rsm) s O f (52,02),9(w1,21) » O f(w2,02) g(w2,02)
T f(w2,02).9(wkwm) 1 O @i,29)01,00)1 O f(@i,0p).9(w2,02)1 O f(wisep) g(anem) [T Jo Ky Lo p € Nyt ko>
2,m,p # 1}. Tt is easy to check that all these generalized hypersubstituitions are
idempotent. |

To consider the next cases, we first give the following definitions and some lemmas.
Definition 5.2.5. (i) ng)({xl}) = {t € W (X)|z1 € var(t),zs ¢ var(t)}.
(ii) W(§72)({x2}) = {t € W) (X)|z2 € var(t), z, ¢ var(t)}.
Definition 5.2.6. Let ¢ € ng)({:cl}) ort e W(gQ)({xQ}). Then we define
(i) t':=t.
(ii) ™ = S%(t,t" ") if n > 1.
(iil) 7 = S*(t", @, x;) if v, € X, n e N.

Lemma 5.2.7. Let t,t,ty € Wi9)(X) and x; € X for all i € N. Then the following

statements hold:

(i) If t1 = f(x1,t) € ng)({xl}), then 6y, 4, [t7] = 7 and 6y, 4,[t1]] = ti}, for all

n € N.
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(i) If t1 = f(t,x2) € ng)({l'g}), then G4, 4, [t7] = 7 and 64, 4, [t1},] = ti}, for all

n € N.

(iii) If ty = g(xq,t) € Wg’z)({xl}), then 6y, 4,[t5] =ty and Gy, 4,[ta).] = taf, for all

n € N.

(iv) If to = g(t, xe) € ng)({xg}), then 6y, 4,[t5] = ty and Gy, 4,[ta}.] = tof, for all

n € N.

Proof. (i) Assume that t; = f(z1,t) € W(C;,Q)({xl}). We first show that dy, 4, [t7]

t7 by induction on n € N. For n = 1, since t; € W&Q)({xl}), thus 6y, 1, [t1] = 61, 1, [t1]
G105 f (21, 8)] = S%(t1, 21, 64, 1,[t]) = t1 = 1. Assume that 64, 4,[t}] = t§. By Proposi-
tion 2.2.10 (i), we get 64, 4, [ti ] = 64,0, [S2(t1, 15, 18)] = S2(64, 1, [t1], Gyt [1], 5ty 1o [tH]) =
S2(ty, th k) = 51 Hence 6y, 4,[t7] = t7 for all n € N. Let n € N. From 6, ,[t7] = 7,
thus 6y, 4, [t17 ] = 64,4, [S* (. i, @3)] = S (G4 4, [11], @, 1) = SP(H], @5, 23) = 112
The proof of (ii), (iii) and (iv) are similar to the proof of (i). ]
If (op(t1) =1 and op(te) > 1) or (op(t1) > 1 and op(t2) = 1), then we have

Lemma 5.2.8. Let 0y, 4, be a generalized hypersubstitution of type T = (2,2). Then the

following statements hold:

(i) Ifop(t1) =1 and op(ta) > 1, then Gy, 1,[t1] = t1 if and only if t, € {f(x1, x;:),
f(l'g,[[‘g),f(xj,l'k)w,j,k € Na] > 27k 7é 1}

(i) If op(t1) > 1 and op(tz) = 1, then 6y, 1,[ta] = ta if and only if to € {g(z1, x;),
g(l'g,xg),g(ﬂfj,l’k)ﬁ,j,k € Na] > 27k 7£ 1}

Proof. (i) Let op(t;) = 1 and op(t2) > 1 and assume that 6y, 4, [t1] = t1. If
t1 = g(wi, z;) where i,j € N, then &y, 4,[t1] = S%(ta, 24, x;) # t1 because of op(ty) > 1,
which is a contradiction. If t; = f(zq, 1), then 6y, 4,[t1] = S*(t1, 22, 71) = f(x1,22) #
t1, which is a contradiction. If ¢t; = f(x;, 1) where i € N,i > 2, then 6y, 4,[t1] =
S%(ty, i, 1) = f(zi, ;) # ti, which is a contradiction. If #; = f(xg,2;) where
i € Nyi > 2, then 6y, 4,[t1] = S*(t1, 72, 2;) = f(x;,2;) # 1, which is a contra-
diction. Thus t1 € {f(z1,2:), f(z2,22), f(zj,zp)|i, j,k € N,j > 2,k # 1}. Con-
versely, we can check easily that all of generalized hypersubstitutions oy, ;, where

251 S {f(xlami)af($27x2)af($jaxk)|i7jak € N?] > Qak 7& 1} we have &tl,tZ[tl] = tl‘
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(ii) The proof is similar to the proof of (i). ]

Lemma 5.2.8 shows that we have to consider the following cases if op(t;) = 1 or
op(ty) = 1:

Case 1: op(t1) =1 and op(t2) > 1.
Case 1.1: firstops(ts

(
) =
Case 1.2: firstops(ts)
(
)

>
f
g.

Case 2: op(ty) > 1 and op(ts

~—

Case 2.1: firstops(ty

Case 2.2: firstops(t;) =
It is clear that Case 1.1 and Case 2.2 as well as Case 1.2 and Case 2.1 are similar.

We consider at first the Case 1.2 and obtain:

Proposition 5.2.9. Let 04,1, be a generalized hypersubstitution of type T = (2,2). If
op(ti) = 1, op(ty) > 1 and ty = g(ki,ks), then oy, 4, is idempotent if and only if
ty € {f(x1, @), f(z2, 22), f(x;,20)|i, 4,k € N, j > 2k # 1} and the following conditions
hold:

(i) @1 & var(ty) or xe & var(ty).
(ii) If x1 ¢ var(tz) and xo € var(ty), then ty = g(k1, z2).
(iii) If wy ¢ var(te) and xy € var(ts), then to = g(x1, k2).

Proof. Assume that oy, 4, is idempotent. Since 6y, 4,[t1] = t1, thus by Lemma
5.2.8 we have t1 € {f(x1, ), f(wa, x2), f(xj, xp)|t, 5,k € N,j > 2)k # 1}. Sup-
pose that 1,29 € var(ty). Since 6y, 4,[ta] = t2, thus we obtain the equation t, =
S%(tg, 64y 4, [k1], Oty tn ko)) Since op(ty) > 1, thus k; ¢ X or ko ¢ X. This im-
plies that oy, 4, (k1] ¢ X or 6, 4,[ke] ¢ X. Since xy1,x9 € var(te) and 6y, 4,[k1] ¢ X
or Gy, 1,|ke] ¢ X, thus op(ta) < op(S%(t2, 64, .4,[k1], 01y 45[k2])) which contradicts to
ty = S%(ta, 64, 1,[k1], Oty 15 [k2]). Hence z; ¢ var(ty) or zo ¢ var(ts). If z1 & var(tz)
and xq € var(ty), then from ty = S?(tg, 64, 4, [k1], 01, 1,[k2]) there follows to = g(ky, x3).
Similarly, for zo ¢ var(ts) and z; € var(ty) we have ty = g(x1, k). Conversely, we
can check that all these generalized hypersubstitutions which satisfy the conditions of
being idempotent by using Lemma 5.2.7. |

From Proposition 5.2.9 we obtain a similar result which solves the Case 2.1.
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Proposition 5.2.10. Let oy, 4, be a generalized hypersubstitution of type T = (2,2). If
op(ti) > 1, op(ta) = 1 and t1 = f(ki, k), then oy, 4, is idempotent if and only if
ty € {g(z1,2:), g(z2, 22), g(xj, xp)|i, j, k € N, j > 2k # 1} and the following conditions
hold:

(i) x1 & var(ty) or xe & var(ty).
(i) If z1 ¢ var(ty) and x5 € var(ty), then t; = f(ki, x2).
(ili) If o ¢ var(ty) and xy € var(ty), then ty = f(x1, k2).

Proof. The proof is similar to the proof of Proposition 5.2.9. |
For the Cases 1.1 and 2.2 we obtain the following necessary condition for the idem-

potency of oy, 4,:

Lemma 5.2.11. Let 04,4, be an idempotent generalized hypersubstitution of type T =
(2,2) and op(ty) > 1, op(ta) > 1 and ty = f(k1,ke). Then the following statements
hold:

(1) If x1 € var(ty), then firstops(ky) = f ork, € X.
(i) If xo € var(ty), then firstops(ks) = f or ks € X.

Proof. (i) Assume that x; € var(ty). Since 6y, 4,[t2] = t2, thus we obtain the equa-
tion ty = S%(t1, 6y 4, (K1), Oty iy [K2]). Let ky = g(ks, ky). Thus 64, 4, [k1] = S?(t2, 64, 1, [k3),
Oty 15 [Ka]). From to = S2(t1, 64, 1, [k1], Oty 15 k2]) thus to = S2(t1, S*(ta, 01,y 1, ks3], 61, 12 [Ka)),
Oty 15ka]). Since z1 € var(t1),thus op(ty) < op(S%(t1, S*(t2, 64y .1 (k3]s Oty 4sKa])s Oy 10 [K2])),
which contradicts to to = S?(t1, S?(ta, 01, 4, [k3], 04y 43 [ka]), Gty 1 [ka]). Hence firstops(ky)
=fork €X.

(ii) The proof is similar to the proof of (i). m

Lemma 5.2.12. Let 0,4, be an idempotent generalized hypersubstitution of type T =
(2,2) and op(ty) > 1, op(ts) > 1 and t; = g(ki,ke). Then the following statements
hold:

(i) If x1 € var(ty), then firstops(ky) =g ork, € X.

(i) If zo € var(ta), then firstops(ks) =g or ko € X.
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Proof. The proof is similar to the proof of Lemma 5.2.11. |

For the Cases 1.1 and 2.2 we have the following results:

Proposition 5.2.13. Let 0,4, be a generalized hypersubstitution of type T = (2,2). If
op(ti) = 1, op(ta) > 1 and ta = f(ki, k), then oy, 4, is idempotent if and only if
ty € {f(x1,x:), f(xe,x2), f(zj,22)|1, 7 € N, j > 2} and the following conditions hold:

(i) If tr = f(z1,32), then ops(tz) = {f}.
(i) If t1 = f(21, ;) with i # 2, then ty = ty,, 9" EPE) where x), = le ftmost ().
(iii) If t1 = f(xj,m2) with j # 1, then ty = t1,, 9hE() where x;, = rightmost(ts).

Proof. Assume that o, ¢, is idempotent, thus 6, +,[t1] = t1 and &y, 4, [t2] = 2. Then
we obtain the equation ty = S?(t1, 04, 4, k1], 64, 1 [k2]). Let t1 = f(xi, z;) where 4,5 > 2.
Thus ty = S*(f (x4, 2;), 01y 4 [k, Ouy 1 [Ka2]) = f (24, 2;), which contradicts to op(t2) > 1.
Hence t; # f(x;,x;) where 4, j > 2. Since t; # f(z;, ;) where ¢,j > 2 and by Lemma
5.2.8, thus t1 € {f(z1,2:), f(22, z2), f(x;,22)|i,5 € N, j > 2}.

(i) Let t; = f(z1,x2). From toy = S%(t1, 04, 1,k1], 01y 1 [k2)), We get ta = f(64, 45K,
Oty 1, [k2]). We consider the following three possible cases:

Case 1: k1 ¢ X, ko € X.

Case 2: k1 € X, ky ¢ X.

Case 3: ki, ko ¢ X.

Case 1: ki ¢ X,ky € X. From ty = f(0t,1,[k1], 0ty 15[k2]) there follows to =
f (G4, 4,[k1], k2). Then by Lemma 5.2.11 implies firstops(k;) = f. We will show by
induction on the complexity of k; occurring in to = f(ki, ks), that ops(6y, 1,[k1]) =
{f}. If ky = f(zy,2;) where i,j € N, then &y, 4, [k1] = S*(f(z122), xi,25) = f(wi, x5).
Hence ops(6y, 1,[k1]) = {f}. Let ky = f(ks, k4) and assume that ops(6y, 4,[ks]) = {f}
and ops(6y,.4,[ka])) = {f}. Then ops(6y, ,1k1]) = ops(f(G4, 1,[ks], Oty 1,[k4])). Hence
ops(ts) = {1}

In the second case we obtain the result in a similar way.

Case 3: k1, ko ¢ X. By Lemma 5.2.11, we have firstops(k,) = f and firstops(ky) =
f. Then using ty = f(6¢, 1, k1], 0,4, [k2]) by induction on the complexities of k; and ko,
respectively, we can show that ops(t2) = {f}.
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(i) Assume that t; = f(zy,71). From ty = S2(t1, 64, 4,[k1), 01y 10[ka]) We have
to = f(04,.45[K1], Gty 1, [K1]). By Lemma 5.2.11, we get firstops(ki) = f or ky € X. The
last case is impossible since op(ts) > 1. Then we can show that ops(ts) = {f}. Let ky =
fks, k). We get to = f(f(01,151ks]s 011 1a[k3]), (Gt 1a[k3], Oty 1a[K5])). Now we set kz =
f(ks, ke). Weobtainty = f(f(f(Guta[ks]s Oty o ks))s £t 10 [R5, 1t [R5]))s £ (S (01 10 [K5],
Oty .45 [K5))s (Ot 15 [K5], Gty 2,1K5]))). This procedure stops with a variable and then we

length(Lp(t2)) wwhere x), = le ftmost(ty). Similarly, for t; = f(z1,2;) where

have ty = t1,,
i € N with ¢ > 2 we have t, = tlxklength(Lp(tQ)) where x, = leftmost(ts).

(iii) The proof is similar to the proof of (ii).
Conversely, we can check that all these generalized hypersubstitutions which satisfy

the conditions are idempotent by using Lemma 5.2.7. |

From Proposition 5.2.13, we obtain a similar result which solves the Case 2.2.

Proposition 5.2.14. Let 0,4, be a generalized hypersubstitution of type T = (2,2). If
op(ti) > 1, op(ta) = 1 and t1 = g(ki,ks), then oy, 4, is idempotent if and only if
ty € {g(z1,2:), g(z2, 22), g(x}, x2)|i, 5 € N, j > 2} and the following conditions hold:

(i) If t2 = g(z1,22), then ops(ti) = {g}.
(i) If to = g(w1, ;) with i # 2, then ty = to,, "9 EPO) where x;, = le ftmost ().
(iil) If to = g(zj, x2) with j # 1, then t; = to,, 9t BO) where z = rightmost(t;).

Proof. The proof is similar to the proof of Proposition 5.2.13. |

Now, we assume that op(t;) > 1 and op(t2) > 1. We can prove that if oy, 4, is
idempotent, then the case firstops(t;) = g and firstops(tz) = f is impossible.

Then we will consider the following cases:

Case 1: firstops(t,) = f and firstops(ts) = f.

Case 2: firstops(t1) = g and firstops(ts) = g.

Case 3: firstops(t;) = f and firstops(ts) = g.

We obtain the following necessary condition for the idempotency of oy, 4,:

Lemma 5.2.15. Let o4, ,, be a generalized hypersubstitution of type T = (2,2) and
op(t1) > 1, op(ty) > 1. If 0y, 4, is idempotent, then (xy ¢ var(t) or xo ¢ var(ty)) and

(x1 ¢ var(ty) or xo ¢ var(ts)).
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Proof. Assume that oy, ¢, is idempotent, thus dy, 4,[t1] = t; and 6y, 4, [t2] = t2. We
consider into three cases :

Case 1. In this case we have t; = f(ki, ko) and ty = f(ks, ky). If 21,29 € var(ty)
from op(t1) > 1, then we obtain op(t1) = op(S?(t1, 61, 1,1k1], 64,15 [k2])) > op(t1). This
is a contradiction. Thus z; & var(ty) or xo & var(ty).

In the case z1,x2 ¢ var(ty) we have ty = S*(ty, 64, 1,k3], 64,15 [ka]) = t1. Thus
x1 ¢ var(ty) and xs & var(ty).

In the case t; € WG, ({x1}) we have ty = S*(t1, 64, 1,[ks], G4 o[ka]). By Lemma
5.2.11 (i), we get firstops(ks) = for ks € X. If ks € X, then from ty = S%(ty, 64, 1, k3],
ﬁZ?fZgifg;” and so x1 ¢ var(ty) or xe & var(ty). Let firstops(ks)
= f and k3 = f(ks,ke). This gives to = S%(t1, S*(t1, 04115 [Ks)s Oty 15 K6])s Oty 10 [Ka])

Z?f::o(i?gi)) Therefore z; ¢ var(ty) or xy ¢

length(Rp(t2)
rightmost(t2)

a-t17t2 [k4]) we get t2 = tl

Continuing in this way, we get to = t;
var(ty). For t; € ng)({m}), we have ty = t; ) and so z; ¢ wvar(ty) or
Ty & var(ts).

Case 2 can be proved in a similar way.

Case 3. In this case t; and t5 have the form t; = f(kq, ko) and to = g(ks, k4) and if
x1, 9 € var(ty), then op(ty) < op(S2(t1, 64, 4, [k1), 64, 1,[k2])). Therefore xy ¢ var(ty) or
xo & var(ty). In the same way we can show that zy ¢ var(ts) or xo & var(ts). n

For the three possible cases of the first operation symbol in ¢; and t, we have the

following results:

Proposition 5.2.16. Let 0,4, be a generalized hypersubstitution of type T = (2,2),
op(t1) > 1, op(t2) > 1 and t1 = f(ki,ka), to = f(ks, ks), then oy, 4, is idempotent if
and only if (x1 & var(ty) or xo ¢ var(ty)) and (x1 & var(ty) or xo ¢ var(ty)) and the

following conditions hold:
(i) Ifti,te € W(%Q)({xl}), then ty = f(x1, k) and ty = tllength(Lp(tz))_
(i) If tr,ts € WGy ({xa}), then ty = f(ky, x5) and ty = lenath(Rp(t2))
(i) Iftr € WGo ({z1}), to € WG4 ({22}), thenty = f(x1, ko) and ty = ty,, ' ro(Er(12)),
(iv) Ifty € WGy ({a2}), ts € WGy ({21}), thenty = f(ki,23) and ty = ty,,lenoth(r(e2))

(v) Ift; € ng)({xl}) and 1, x5 ¢ var(ty), then ty = f(x1, ke) and

ty = tlxklength(’:p(m) where xy = leftmost(t).
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(Vi) Ift, € W&Q)({:Eg}) and x1, Ty & var(ts), then ty = f(ky,z2) and

ty = tlxklmgthm”(t?)) where xy = rightmost(ty).
(vii) If z1, 29 & var(ty), then ty = t;.

Proof. Assume that oy, 4, is idempotent, thus 6y, 4,[t1] = t1 and 6y, 4,[t2] = t2. By
Lemma 5.2.15, we get (z1 € var(t;) or x5 ¢ var(ty)) and (x1 & var(ts) or xe & var(ty)).

(i) Assume that ti,t, € W&Q)({xl}). From 6y, 4,[t1] = t1 and 6y, 4,[te] = t2, we
obtain the equations t; = S%(t1, 64, 1,[k1], 04,1, [k1]) and to = S2(t1, Gy, 1, [k3), 51y 10 [K3])-
Since x1 € war(ty) and ¢, = S?(t1, 64, 4, [k1], 64y 15 [k1]), thus 64, 4,[k1] = x1. Since
op(t1) > 1, op(t2) > 1, thus ky = z1. So t; = f(z1, ke). By Lemma 5.2.11 (i), we get
firstops(ks) = f or ks € X. If k3 € X, then from ty = S%(t1, 64, 1,[k3], G, .1 [K3))
we get ty = tlﬁz}lf::o(ifg;)). Let firstops(ks) = f and k3 = f(ks,ks), we obtain

ty = S%(t1, S?(t1, 04,10 k5), Oty 4ol ks])s S2(t1, G4y 4 [K5), Oty 45[Ks])).  This procedure stops

length(Lp(t2))

leftmost(ta) -~ But the

after finitely many steps with the leftmost(ty). Hence ty = t;
le ftmost(ts) must be x1. Hence t, = ¢m9!m(Iv(2)),

The cases (ii), (iii), (iv), (v) and (vi) can be proved in the same manner.

(vii) Assume that zy, 29 € var(ty). From 6y, 4, [ta] = to, thus to = S*(ty, 64, 1,[ks],
Gty i [Fa]) = 1.
Conversely, we can check that all these generalized hypersubstitutions which satisfy

the conditions are idempotent by using Lemma 5.2.7. |

If firstops(t;) = firstops(ty) = g we have a similar result:

Proposition 5.2.17. Let 04,4, be a generalized hypersubstitution of type T = (2,2),
op(t1) > 1, op(ta) > 1 and t; = g(k1,ks), to = g(ks, ks), then o, +, is idempotent if
and only if (x1 & var(ty) or xo ¢ var(ty)) and (xy ¢ var(ta) or xo ¢ var(ty)) and the

following conditions hold:
(i) If tr,ts € WG ({m1}), then to = g(wy, ki) and t; = ty "),
(i) Ifty,ty € W&Q)({xg}), then ty = g(ks, x2) and t; = tl;ngth(Rp(tl)).
(i) Ift; € W(%Q)({xl}), ty € W(gz)({a:g}), thenty = g(ks, zo) and t, = ty, 'en9th(Eptr)

(iv) Ift; € W(§72)({$2}), ty € W&Q)({xl}), thenty = g(x1, ka) and t; = ty,,len9th(Lr(t)),
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(v) Ifty € W&Q)({:El}) and x1, o & var(ty), then ty = g(x1, ky) and

t1 = tog, ItPLPt)) where x), = le ftmost(t).

(vi) Ifty € ngz)({xg}) and x1, 9 ¢ var(ty), then to = g(ks, x2) and

t = tzxklength(Rp(tl)) where xy = rightmost(ty).

(vii) If z1, 29 & var(ty), then t; = ts.

Proof. The proof is similar to the proof of Proposition 5.2.16. |

In the last case we have:

Proposition 5.2.18. Let oy, 4, be a generalized hypersubstitution of type T = (2,2),
op(ti) > 1, op(ta) > 1 and t1 = f(ki, k), to = g(ks, ka), then oy, 4, is idempotent if
and only if (x1 ¢ var(ty) or xo ¢ var(ty)) and (x1 ¢ var(ty) or xo ¢ var(ty)) and the

following conditions hold:
(i) Ift; € W(§72)<{x1}); then t1 = f(x1, ks).
(i) Ift, € W&z)({xg}), then t1 = f(k1, x2).
(iii) Ifty € W(Cz”Q)({xl}), then to = g(x1, kyq).

(iv) Ifty € W(CZ;’Q)({@}), then ty = g(ks, x2).

Proof. Assume that oy, 4, is idempotent. By Lemma 5.2.15, we get (z1 ¢ var(ty)
or xo ¢ war(ty)) and (xr1 ¢ wvar(ty) or xo & wvar(ty)). Since 6y, 4,[t1] = t1 and
Oty 15[t2] = t2, thus we obtain the equations t; = S%(t1, 64, 1,[k1], G1y.10[k2]) and ty =
S%(tg, 64, 4, k3], Oty 4, [Ka])-

(i) Assume that t; € Wg,g)({fﬁ})- From t; = S2(t1, G4, 1, [k1), 01y 15 [Ka]), we get
Oty.t5 k1] = @1. Since op(t;) > 1, op(ty) > 1, thus ky = 2. Hence t; = f(x1, k2).

The cases (ii), (iii) and (iv) can be proved in the same manner.

Conversely, we can check that all these generalized hypersubstitutions which satisfy

the conditions are idempotent by using Lemma 5.2.7. ]



