
Chapter 6

Monoids of Generalized Hypersubstitutions of

Type τ = (n)

In this chapter, we study the semigroup properties of HypG(n). In particular, we

characterize the idempotent and regular elements of this monoid and describe some

classes under Green’s relations of this monoid.

6.1 Projection and Dual Generalized Hypersubstitutions

of Type τ = (n)

We assume that from now on the type τ = (n), for some n ∈ N, i.e. we have only

one n-ary operation symbol, say f . By σt we denote the generalized hypersubstitution

which maps f to the term t in W(n)(X). A generalized hypersubstitution σt of type

τ = (n) is called a projection generalized hypersubstitution if t is a variable. We denoted

the set of all projection generalized hypersubstitutions of type τ = (n) by PG(n), i.e.

PG(n) = {σxi
|xi ∈ X}.

Lemma 6.1.1. For any σt ∈ HypG(n) and σxi
∈ PG(n), we have

(i) σt ◦G σxi
= σxi

.

(ii) σxi
◦G σt ∈ PG(n) (σ̂xi

[t] ∈ X).

Proof. The proof is similar to the proof of Lemma 4.1.4.

Corollary 6.1.2. The following statements hold:

(i) PG(n) is the smallest two-sided ideal of HypG(n), called the kernel of HypG(n).

Thus, HypG(n) is not simple.
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(ii) PG(n) is the set of all right-zero elements of HypG(n), so that PG(n) itself is a

right-zero band.

(iii) HypG(n) contains no left-zero elements.

Proof. These follow immediately from Lemma 6.1.1.

Another special kind of generalized hypersubstitutions in HypG(n) are dual general-

ized hypersubstitutions, which are defined using permutations of the set J := {1, . . . , n}.
For any such permutation π, we let σπ = σf(xπ(1),...,xπ(n)). We let DG be the set of all

such dual generalized hypersubstitutions.

Lemma 6.1.3. The following statements hold:

(i) For any two permutations π and ρ, σρ ◦G σπ = σπ◦ρ.

(ii) For any permutation π with the inverse permutation π−1, the generalized hyper-

substitutions σπ and σπ−1 are inverse of each other.

Proof. (i) We have (σρ ◦G σπ)(f) = σ̂ρ[f(xπ(1), . . . , xπ(n))] = Sn(f(xρ(1), . . . , xρ(n)),

xπ(1), . . . , xπ(n)) = f(xπ(ρ(1)), . . . , xπ(ρ(n))) = σπ◦ρ(f).

(ii) This follows from (i).

Lemma 6.1.4. If σ ◦G ρ ∈ DG, then both σ and ρ are in DG.

Proof. Let σ(f) = f(u1, . . . , un) and ρ(f) = f(v1, . . . , vn). Since σ ◦G ρ ∈ DG,

thus there exists a permutation π such that (σ ◦G ρ)(f) = f(xπ(1), . . . , xπ(n)). So

f(xπ(1), . . . , xπ(n)) = (σ ◦G ρ)(f) = Sn(f(u1, . . . , un), σ̂[v1], . . . , σ̂[vn]). Since π is a

permutation, thus this forces all the ui’s to be distinct variables in Xn, and all the vi’s

to be distinct variables in Xn. It follows that both σ and ρ are in DG.

Corollary 6.1.5. DG is a submonoid of HypG(n) which forms a group, and no other

elements of HypG(n) have inverses in HypG(n). Thus, DG is a maximal subgroup of

HypG(n).

Proof. These follow immediately from Lemma 6.1.3 and 6.1.4.

Lemma 6.1.6. Let F be the set of generalized hypersubstitutions of the form σf(xi,...,xi)

for i ∈ N. Let M = PG(n) ∪ DG ∪ F . Then M is a submonoid of HypG(n).

Proof. It is straightforward to check that any product of two elements in M is also

in M .
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6.2 Idempotent and Regular Elements in HypG(n)

All idempotent elements of the monoid of all generalized hypersubstitutions of type

τ = (2) were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [32]

and all regular elements of the monoid of all generalized hypersubstitutions of type

τ = (2) were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [27].

In this section, we characterize the idempotent and regular elements of HypG(n).

Proposition 6.2.1. Let σt be a generalized hypersubstitution of type τ = (n). Then σt

is idempotent if and only if σ̂t[t] = t.

Proof. The proof is similar to the proof of Proposition 4.1.1

Proposition 6.2.2. For every xi ∈ X, σxi
and σid are idempotent.

Proof. The proof is similar to the proof of Proposition 4.1.2

We let G(n) := {σt|t /∈ X, var(t) ∩ Xn = ∅}.

Proposition 6.2.3. If σt ∈ G(n) and σs ∈ HypG(n) \ PG(n), then σt ◦G σs = σt, i.e.

G(n) itself is a left zero band.

Proof. The proof is similar to the proof of Lemma 4.1.4 (iii).

Then we consider only the case σt ∈ HypG(n) \ PG(n) and var(t) ∩ Xn �= ∅.

Theorem 6.2.4. Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ �= var(t)∩Xn = {xi1 , . . . , xim}.
Then σt is idempotent if and only tik = xik for all k ∈ {1, . . . , m}.

Proof. Assume that σf(t1,...,tn) is idempotent. Then Sn(f(t1, . . . , tn), σ̂f(t1,...,tn)[t1], . . . ,

σ̂f(t1,...,tn)[tn]) = σ2
f(t1,...,tn)(f) = σf(t1,...,tn)(f) = f(t1, . . . , tn). Suppose that there exists

k ∈ {1, . . . , m} such that tik �= xik . If tik ∈ X, then σ̂f(t1,...,tn)[tik ] = tik �= xik . So

Sn(f(t1, . . . , tn), σ̂f(t1,...,tn)[t1], . . . , σ̂f(t1,...,tn)[tn]) �= f(t1, . . . , tn) and we have a contra-

diction. If tik /∈ X, then σ̂f(t1,...,tn)[tik ] /∈ X. We obtain op(t) = op(Sn(f(t1, . . . , tn),

σ̂f(t1,...,tn)[t1], . . . , σ̂f(t1,...,tn)[tn])) > op(t). This is a contradiction.

The proof of the converse direction is straightforward.

Now, we characterize the generalized hypersubstitutions of type τ = (n) which are

regular.

Lemma 6.2.5. Let t ∈ W(n)(X) and ∅ �= var(t) ∩ Xn = {xi1 , . . . , xim} and let a =

f(a1, . . . , an) ∈ W(n)(X). If σ̂t[a] = t, then al = xl for all l = i1, . . . , im.
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Proof. Assume that σ̂t[a] = t. Then t = σ̂t[a] = Sn(t, σ̂t[a1], . . . , σ̂t[an]). We will

show that al = xl for all l = i1, . . . , im. Suppose that there exists j ∈ {i1, . . . , im}
such that aj �= xj. If aj = xk ∈ X where xk �= xj, then σ̂t[aj] = xk. It follows

that t �= Sn(t, σ̂t[a1], . . . , σ̂t[an]). This is a contradiction. If aj /∈ X, then σ̂t[aj] /∈ X.

It follows that op(t) = op(σ̂t[a]) = Sn(t, σ̂t[a1], . . . , σ̂t[an])) > op(t) and we have a

contradiction.

Theorem 6.2.6. Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ �= var(t)∩Xn = {xi1 , . . . , xim}.
Then σt is regular if and only if there exist j1, . . . , jm ∈ {1, . . . , n} such that tj1 =

xi1 , . . . , tjm = xim.

Proof. Assume that σt is regular. Then there exists σs ∈ HypG(n) such that

σt ◦G σs ◦G σt = σt. Since t /∈ X, thus s /∈ X. Then s = f(s1, . . . , sn) for some

s1, . . . , sn ∈ W(n)(X). From σt ◦G σs ◦G σt = σt, thus σ̂t[σ̂s[t]] = t. By Lemma 6.2.5,

σ̂s[t] = f(u1, . . . , un) for some u1, . . . , un ∈ W(n)(X) where ui1 = xi1 , . . . , uim = xim .

From σ̂s[t] = f(u1, . . . , un), thus Sn(f(s1, . . . , sn), σ̂s[t1], . . . , σ̂s[tn]) = f(u1, . . . , un).

Since ui1 = xi1 , . . . , uim = xim thus si1 , . . . , sim ∈ Xn. Let si1 = xj1 , . . . , sim = xjm .

Hence tj1 = xi1 , . . . , tjm = xim . Conversely, assume the condition holds. Let s =

f(s1, . . . , sn) ∈ W(n)(X) where s1, . . . , sn ∈ W(n)(X) such that si1 = xj1 , . . . , sim =

xjm . Then (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]] = σ̂t[S
n(f(s1, . . . , sn), σ̂s[t1], . . . , σ̂s[tn])] =

σ̂t[f(k1, . . . , kn)](where ki1 = xi1 , . . . , kim = xim) = Sn(t, σ̂t[k1], . . . , σ̂t[kn]) = t. Hence

σt ◦G σs ◦G σt = σt.

6.3 Term Properties of the Composition Operation

We need to know more about the result of the composing two generalized hypersub-

stitutions in HypG(n). In particular, we want to know how long the term corresponding

to σs ◦G σt is and what variables it uses, compared to the lengths of the terms s and t

and the variables they use. We begin with the necessary definition.

Definition 6.3.1. Let t ∈ W(n)(X). We define some new terms, related to t, as follows.

Recall that J := {1, . . . , n}.

(i) Let α be any function from J to J . Cα[t] is the term formed from t by replacing

each occurrence in t of a variable xi ∈ Xn by the variable xα(i) i.e, Cα[t] =
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Sn(t, xα(1), . . . , xα(n)).

(ii) Let π be any permutation of J . π[t] is the term defined inductively by π[xi] = xi

for any variable xi, and π[f(u1, . . . , un)] = f(π[uπ(1)], . . . , π[uπ(n)]).

The previous length results for the type τ = (2) were found by W. Puninagool and

S. Leeratanavalee in Chapter 4 and [29] and S.L. Wismath in [34]. The next lemmas

show how these results can be generalized to the type τ = (n).

Lemma 6.3.2. Let n ∈ N with n > 1 and σf(u1,...,un) ◦G σf(v1,...,vn) = σw. Then w is a

longer term than f(u1, . . . , un), unless the terms f(u1, . . . , un) and f(v1, . . . , vn) satisfy

the following condition (Q):

(Q) If a variable xi ∈ Xn is used anywhere in the term f(u1, . . . , un), then the

entry vi in f(v1, . . . , vn) is a variable.

Proof. If var(f(u1, . . . , un)) ∩ Xn = ∅, then f(u1, . . . , un) and f(v1, . . . , vn) satisfy

the condition (Q). Let var(f(u1, . . . , un)) ∩ Xn = {xi1 , . . . , xik}. If vij ∈ X for all j ∈
{1, . . . , k}, then f(u1, . . . , un) and f(v1, . . . , vn) satisfy the condition (Q). If there exists

j ∈ {1, . . . , k} where vij /∈ X, then σ̂f(u1,...,un)[vij ] /∈ X. Since n > 1 and σ̂f(u1,...,un)[vij ] /∈
X, thus vb(σ̂f(u1,...,un)[vij ]) > 1. So vb(w) = vb(Sn(f(u1, . . . , un), σ̂f(u1,...,un)[v1], . . . ,

σ̂f(u1,...,un)[vn])) > vb(f(u1, . . . , un)).

Lemma 6.3.3. Let σt ∈ HypG(n) \ PG(n) and x1, . . . , xn ∈ var(t). Then for any

s ∈ W(n)(X), vb(σ̂t[s]) ≥ vb(s).

Proof. We will prove by induction on the complexity of the term s. If s ∈ X,

then vb(σ̂t[s]) = vb(s). Assume that s = f(u1, . . . , un) and vb(σ̂t[ui]) ≥ vb(ui) for

all 1 ≤ i ≤ n. Then vb(σ̂t[s]) = vb(Sn(t, σ̂t[u1], . . . , σ̂t[un])) ≥ vb(f(u1, . . . , un)) since

x1, . . . , xn ∈ var(t) and vb(σ̂t[ui]) ≥ vb(ui) for all 1 ≤ i ≤ n.

Lemma 6.3.4. Let σf(u1,...,un) ◦G σf(v1,...,vn) = σw where vb(f(u1, . . . , un)) > n. If

x1, . . . , xn ∈ var(f(u1, . . . , un)), then w is a longer term than f(v1, . . . , vn).

Proof. We write σ = σf(u1,...,un). From σf(u1,...,un) ◦G σf(v1,...,vn) = σw, thus we

get w = Sn(f(u1, . . . , un), σ̂[v1], . . . , σ̂[vn]). Since x1, . . . , xn ∈ var(f(u1, . . . , un)), thus

σ̂[vi] is used in w for all 1 ≤ i ≤ n. We will prove by induction on the complexity

of the term f(v1, . . . , vn). If v1, . . . , vn ∈ X, then vb(w) = vb(f(u1, . . . , un)) > n =
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vb(f(v1, . . . , vn)). Assume that the claim holds for any term of length not less than n

but less than k, and f(v1, . . . , vn) has length k. Since vb(f(v1, . . . , vn)) = k > n, thus

there exists i ∈ {1, . . . , n} such that vb(vi) ≥ n. By induction, we get vb(σ̂[vi]) > vb(vi).

By Lemma 6.3.3, we get any other vj has vb(σ̂[vj]) ≥ vb(vj). Since all the σ̂[vi] are

used in w for all 1 ≤ i ≤ n, thus w is longer than f(v1, . . . , vn).

Lemma 6.3.5. Let σs, σt ∈ HypG(n).

(i) var((σs ◦G σt)(f)) ∩ Xn ⊆ var(t) ∩ Xn.

(ii) If s uses only one variable, then the term for σs ◦G σt uses only one variable (not

necessarily the same variable as s).

Proof. We will prove by induction on the complexity of the term t.

(i) If t ∈ X, then (σs ◦G σt)(f) = t. So var((σs ◦G σt)(f)) ∩ Xn ⊆ var(t) ∩ Xn.

Assume that t = f(t1, . . . , tn) and var(σ̂s[ti])∩Xn ⊆ var(ti)∩Xn for all 1 ≤ i ≤ n. So

var((σs ◦G σt)(f)) ∩ Xn = var(Sn(s, σ̂s[t1], . . . , σ̂s[tn])) ∩ Xn ⊆ n∪
i=1

(var(σ̂s[ti])) ∩ Xn =
n∪

i=1
(var(σ̂s[ti]) ∩ Xn) ⊆ n∪

i=1
(var(ti) ∩ Xn) =

n∪
i=1

var(ti) ∩ Xn = var(t) ∩ Xn.

(ii) If t ∈ X, then (σs ◦G σt)(f) = t. So the term for σs ◦G σt uses only one variable.

Assume that t = f(t1, . . . , tn) and σ̂s[ti] uses only one variable for all 1 ≤ i ≤ n.

So (σs ◦G σt)(f) = Sn(s, σ̂s[t1], . . . , σ̂s[tn]). If var(s) = {xi} for some xi ∈ Xn, then

var(σs ◦G σt)(f) = var(σ̂s[ti]). If var(s) = {xi} where i > n, then var((σs ◦G σt)(f)) =

var(s).

We conclude this section by extending the results from [34] to the case of HypG(n)

on properties of the composition operation with a lemma describing the special role of

the terms π[t] and Cα[t] from Definition 6.3.1.

Lemma 6.3.6. For t ∈ W(n)(X).

(i) Let π be any permutation on J . Then σπ ◦G σt = σπ[t].

(ii) Let α be any function on J . Define the generalized hypersubstitution σα by

mapping the fundemental f to the term f(xα(1), . . . , xα(n)). Then σt◦Gσα = σCα[t]
.

Proof. (i) We will prove by induction on the complexity of the term t. If t ∈ X, then

by Lemma 6.1.1 (i), σπ ◦G σt = σt = σπ[t]. Assume that t = f(t1, . . . , tn) and σ̂π[ti] =
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π[ti] for all 1 ≤ i ≤ n. So (σπ ◦G σt)(f) = Sn(f(xπ(1), . . . , xπ(n)), σ̂π[t1], . . . , σ̂π[tn]) =

f(σ̂π[tπ(1)], . . . , σ̂π[tπ(n)]) = f(π[tπ(1)], . . . , π[tπ(n)]) = π[f(t1, . . . , tn)] = π[t].

(ii) We have (σt ◦G σα)(f) = Sn(t, xα(1), . . . , xα(n)) = Cα[t]. So σt ◦G σα = σCα[t]
.

6.4 Green’s Ralations on HypG(n)

Green’s relations on Hyp(n) have been studied by S.L. Wismath [34], and Green’s

relations on HypG(2) were study by W. Puninagool and S. Leeratanavalee in Chapter

4 and [29]. In this section, we describe some classes of the monoid of generalized

hypersubstitutions of type τ = (n) with n > 1.

Proposition 6.4.1. Any σxi
∈ PG(n) is L-related only to itself, but is R-related, D-

related and J -related to all elements of PG(n), and not related to any other generalized

hypersubstitutions. Moreover, the set PG(n) forms an R-, D- and J -class.

Proof. The proof is similar to the proof of Proposition 4.4.2.

Proposition 6.4.2. Any σt ∈ G(n) is R-related only to itself, but is L-related, D-

related and J -related to all elements of G(n), and not related to any other generalized

hypersubstitutions. Moreover, the set G(n) forms an L-, D- and J -class.

Proof. The proof is similar to the proof of Proposition 4.4.7.

Theorem 6.4.3. Let σs, σt ∈ HypG(n). Then σsRσt if and only if the following condi-

tions hold:

(i) If s ∈ X, then t ∈ X.

(ii) If s /∈ X, then s = Cα[t] for some bijection α on J .

Proof. Assume that σsRσt. If s ∈ X, then by Proposition 6.4.1 we get t ∈ X. Let

s /∈ X. Then by Proposition 6.4.1 we get t /∈ X. Then there exist p, q ∈ W(n)(X) \ X

such that σs ◦G σp = σt and σt ◦G σq = σs. If var(t) ∩ Xn = ∅, then from σt ◦G σq = σs

we get s = t and s = Cα[t] for all bijection α on J . Assume that var(t) ∩ Xn �= ∅. Let

p = f(p1, . . . , pn) and q = f(q1, . . . , qn). So we have two equations

Sn(s, σ̂s[p1], . . . , σ̂s[pn]) = t (1)

Sn(t, σ̂t[q1], . . . , σ̂t[qn]) = s (2).
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Now, if neither of these equations satisfies the condition (Q) of Lemma 6.3.2, we would

have the length of the term t is longer than the length of the term s and also the

length of s is longer than the length of t, which is clearly impossible. Thus, at least

one of two equations must fit the condition (Q). But if one equation fits the condition

(Q), Lemma 6.3.2 tells us that s and t have the same length, and therefore, the second

equation also fits the condition (Q). By Lemma 6.3.2, if xi ∈ var(t)∩Xn, then qi ∈ X.

If such qi /∈ Xn, then from (2) we get qi ∈ var(s). So Sn(s, σ̂s[p1], . . . , σ̂s[pn]) �= t which

contradicts to (1). Thus such qi ∈ Xn. Let α(i) = j if xi ∈ var(t) ∩ Xn and qi = xj.

This defines a partial function on J . It is clear that α is injective. Extending this map

to a bijection on J , which we shall also call α. So s = Cα[t]. Conversely, assume that

the conditions hold. Then s, t ∈ X or s /∈ X and s = Cα[t] for some bijection α on

J . If s, t ∈ X, then by Proposition 6.4.1 we get σsRσt. If s /∈ X and s = Cα[t] for

some bijection α on J , then σα and σα−1 are inverse generalized hypersubstitutions.

By Lemma 6.3.6 (ii), we get σt ◦G σα = σCα[t]
= σs and σs ◦G σα−1 = σt. Thus σsRσt.

Lemma 6.4.4. Let t ∈ W(n)(X) and π be a permutation on J . Then π−1[π[t]] = t.

Proof. We will prove by induction on the complexity of the term t. If t ∈ X

then π−1[π[t]] = π−1[t] = t. Assume that t = f(t1, . . . , tn) and π−1[π[ti]] = ti for all

1 ≤ i ≤ n. So

π−1[π[t]] = π−1[π[f(t1, . . . , tn)]]

= π−1[f(π[tπ(1)], . . . , π[tπ(n)])]

= f(π−1[π[tπ(π−1(1))]], . . . , π
−1[π[tπ(π−1(n))]])

= f(π−1[π[t1]], . . . , π
−1[π[tn]])

= f(t1, . . . , tn)

= t.

Lemma 6.4.5. Let σt ∈ HypG(n) \ PG(n). Then, for any permutation π on J , σt is

L-related to the generalized hypersubstitution σπ[t].

Proof. We know from Lemma 6.3.6(i) that σπ ◦G σt = σπ[t]. From Lemma 6.3.6(i)

and Lemma 6.4.4, we get σπ−1 ◦G σπ[t] = σπ−1[π[t]] = σt. So σtLσπ[t].

Proposition 6.4.6. Two idempotent elements σs and σt in HypG(n)\PG(n) are L-related

if and only if var(s) ∩ Xn = var(t) ∩ Xn.
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Proof. Assume that σsLσt. Then there exist u, v ∈ W(n)(X) such that σu◦G σt = σs

and σv ◦G σs = σt. By Lemma 6.3.5 (i), we get var(s) ∩ Xn ⊆ var(t) ∩ Xn and

var(t)∩Xn ⊆ var(s)∩Xn. So var(s)∩Xn = var(t)∩Xn. Conversely, we use the fact

that for any two idempotent elements e and f in any semigroup, eLf if and only if

ef = e and fe = f . Since var(s) ∩ Xn = var(t) ∩ Xn, by Theorem 6.2.4 we can prove

that σt ◦G σs = σt and σs ◦G σt = σs.

Theorem 6.4.7. Let σt be an idempotent element in HypG(n) \ (PG(n) ∪G(n)). Then

Lσt = {σπ[w]|π is a permutation of J, w /∈ X, var(w) ∩ Xn = var(t) ∩ Xn and σw is an

idempotent element}.

Proof. Let σπ[w] ∈ HypG(n) where π is a permutation of J, w /∈ X, var(w) ∩ Xn =

var(t)∩Xn and σw is an idempotent element. By Proposition 6.4.6, we get σwLσt. By

Lemma 6.4.5, σwLσπ[w]. So σπ[w]Lσt. Let t = f(u1, . . . , un) and s = f(v1, . . . , vn) with

σsLσt. Then there exists f(b1, . . . , bn) ∈ W(n)(X) such that σf(b1,...,bn) ◦G σf(v1,...,vn) =

σf(u1,...,un). We write σ = σf(b1,...,bn). From σf(b1,...,bn) ◦G σf(v1,...,vn) = σf(u1,...,un), we

get Sn(f(b1, . . . , bn), σ̂[v1], . . . , σ̂[vn]) = f(u1, . . . , un). If xi ∈ var(t) ∩ Xn, then ui =

xi since σt is an idempotent element. So bi = xj for some xj ∈ Xn. This implies

σ̂[vj] = xi and then vj = xi. Let β be a partial function on J defined by β(i) = j if

xi ∈ var(t) ∩Xn and vj = xi. If β(i) = β(k) = j, then vj = xi = xk. So i = k and β is

injective. So β can be extended to a permutation α on J . Let w = f(p1, . . . , pn) where

pi = xi if xi ∈ var(t) ∩ Xn and pi = α[vα(i)] if xi /∈ var(t) ∩ Xn. We will show that

var(w) ∩Xn = var(t) ∩Xn, σw is an idempotent element and s = f(v1, . . . , vn) = π[w]

where π = α−1. We show first that var(w) ∩ Xn = var(t) ∩ Xn. Since σsLσt, thus

by Proposition 6.4.6, var(s) ∩ Xn = var(t) ∩ Xn. Let xj ∈ var(w) ∩ Xn. Then

xj ∈ var(pi) for some i ∈ J and xj ∈ Xn. If pi = xi where xi ∈ var(t) ∩ Xn, then

xj = xi ∈ var(t). If pi = α[vα(i)], then xj ∈ var(pi) = var(α[vα(i)]) = var(vα(i)) ⊆
var(s). But var(s) ∩ Xn = var(t) ∩ Xn, so xj ∈ var(t). Let xj ∈ var(t) ∩ Xn.

Then pj = xj and so xj ∈ var(s) ∩ Xn. Next, we show that σw is an idempotent

element. Let xi ∈ var(w) ∩ Xn. Then xi ∈ var(t) ∩ Xn. So pi = xi. Thus σw is an

idempotent element. Finally, we show that s = f(v1, . . . , vn) = π[w] where π = α−1.

To do this we will show that for all 1 ≤ k ≤ n, vk = π[pπ(k)]. Let 1 ≤ k ≤ n. If

there exists i ∈ J such that β(i) = k, then α(i) = k and π(k) = α−1(k) = i. So

pi = xi = vk. Thus π[pπ(k)] = π[pi] = π[xi] = xi = vk. If no such index i exists, then
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π[pπ(k)] = π[α[vα(π(k))]] = π[α[vα(α−1(k))]] = π[α[vk]] = α−1[α[vk]] = vk.

Corollary 6.4.8. Let σt be an idempotent element in HypG(n) \ (PG(n) ∪ G(n)). Then

Dσt = {σw|w = Cα[π[s]] for some α bijection on J , π a permutation on J, s /∈ X, and

σs an idempotent element with var(s) ∩ Xn = var(t) ∩ Xn}.

Proof. Put K = {σw|w = Cα[π[s]] for some α bijection on J , π a permutation on

J, s /∈ X, and σs an idempotent element with var(s)∩Xn = var(t)∩Xn}. Assume that

σs ∈ Dσt . Then there exists σu ∈ HypG(n) such that σsRσu and σuLσt. By Theorem

6.4.7, we get u = π[v] for some a permutation π on J , an idempotent element σv with

v /∈ X and var(v) ∩ Xn = var(t) ∩ Xn. By Theorem 6.4.3, we get s = Cα[u] for some

a bijection α on J . So σs ∈ K. Assume that σCα[π[s]]
∈ K. By Theorem 6.4.3, we get

σCα[π[s]]
Rσπ[s]. By Theorem 6.4.7, we get σπ[s]Lσt. So σCα[π[s]]

∈ Dσt .

Theorem 6.4.9. Let σt be an idempotent element in HypG(n) \ (PG(n) ∪G(n)). Then

its J -class is equal to its D-class.

Proof. Let t = f(u1, . . . , un) and let c be the number of distinct variables in Xn

which occur in t. Let s = f(v1, . . . , vn) with σsJ σt. Then there exist f(a1, . . . , an),

f(b1, . . . , bn), f(p1, . . . , pn), f(r1, . . . , rn) ∈ W(n)(X) such that

σf(a1,...,an)◦Gσf(v1,...,vn)◦Gσf(b1,...,bn) = σf(u1,...,un) (1)

σf(p1,...,pn)◦Gσf(u1,...,un)◦Gσf(r1,...,rn) = σf(v1,...,vn). (2).

Let f(q1, . . . , qn) be the term for σf(v1,...,vn)◦G σf(b1,...,bn). We write σ = σf(a1,...,an). From

(1), we get Sn(f(a1, . . . , an), σ̂[q1], . . . , σ̂[qn]) = f(u1, . . . , un). If xk ∈ var(t)∩Xn, then

uk = xk since σt is an idempotent element. So ak = xj for some xj ∈ Xn. This implies

σ̂[qj] = xk and then qj = xk. Let α be a function from J(t) to J defined by α(k) = j if

xk ∈ var(t)∩Xn and ak = xj where J(t) = {k ∈ J |xk ∈ var(t)}. So α can be extended

to a permutation on J . We write σ1 = σf(v1,...,vn). Since f(q1, . . . , qn) is the term for

σf(v1,...,vn) ◦G σf(b1,...,bn), thus Sn(f(v1, . . . , vn), σ̂1[b1], . . . , σ̂1[bn]) = f(q1, . . . , qn). For

each k ∈ J(t), qα(k) = xk. So vα(k) = xl for some xl ∈ Xn. So σ̂1[bl] = xk and then

bl = xk. Let β : α(J(t)) → J defined by β(α(k)) = l where k ∈ J(t) and vα(k) = xl.

So β can be extended to a permutation on J . Since α and β are injective, thus at

least c distinct variables in Xn occur as vi in entries of s = f(v1 . . . , vn). We claim

that the only variables in Xn which occur in s are those c variables. Let f(c1, . . . , cn)

be the term for σf(u1,...,un) ◦G σf(r1,...,rn). We write σ2 = σf(p1,...,pn). From (2), we get
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Sn(f(p1, . . . , pn), σ̂2[c1], . . . , σ̂2[cn]) = f(v1, . . . , vn). Since at least c distinct variables

in Xn occur as vi in entries s = f(v1 . . . , vn), thus at least c distinct variables in Xn

occur as pi in entries s = f(p1 . . . , pn) and then at least c distinct variables in Xn occur

as ci in entries f(c1 . . . , cn). We write σ3 = σf(u1,...,un). Since f(c1, . . . , cn) is the term

for σf(u1,...,un) ◦G σf(r1,...,rn), thus Sn(f(u1, . . . , un), σ̂3[r1], . . . , σ̂3[rn]) = f(c1, . . . , cn).

But f(u1, . . . , un) has only c distinct variables in Xn. Thus all the r′js used in the

composition in (2) are variables in Xn. So the number of distinct variables in Xn which

occur in f(v1, . . . , vn) is at most c. Thus the number of distinct variables in Xn which

occur in f(v1, . . . , vn) is c and every variable in Xn which occurs in it occurs as a vi.

Let w1 = C(β◦α)−1 [f(v1, . . . , vn)]. So var(w1)∩Xn = var(t)∩Xn. From Theorem 6.4.3,

we get σw1Rσs. Let w2 = α[w1]. From Lemma 6.4.5, σw1Lσw2 . We will show that

σw2 is an idempotent element. Let w1 = C(β◦α)−1 [f(v1, . . . , vn)] = f(d1, . . . , dn). For

each xk ∈ var(t) ∩ Xn, vα(k) = xβ(α(k)). So dα(k) = xk. From w2 = α[w1], we get

w2 = α[f(d1, . . . , dn)] = f(α[dα(1)], . . . , α[dα(n)]) and var(w2) ∩ Xn = var(t) ∩ Xn. Let

xj ∈ var(w2) ∩ Xn. Then xj ∈ var(t) ∩ Xn. So α[dα(j)] = α[xj] = xj. So σw2 is an

idempotent element. By Proposition 6.4.6, we get σw2Lσt. So σw1Lσt. Thus σsDσt.

Corollary 6.4.10. Let σs, σt be idempotent elements in HypG(n)\(PG(n)∪G(n)). Then

σs and σt are J - or D-related if and only if the number of distinct variables in Xn which

occur in s and t are equal.

Proof. One direction follows immediately from Corollary 6.4.8. Conversely, let

s = f(u1, . . . , un), t = f(v1, . . . , vn), var(s) ∩ Xn = {xk1 , . . . , xkc} and var(t) ∩ Xn =

{xl1 , . . . , xlc}. Since σs, σt are idempotent elements, thus ukj
= xkj

and vlj = xlj for all

1 ≤ j ≤ c. Let s′ = f(u′
1, . . . , u

′
n), t′ = f(v′

1, . . . , v
′
n) where u′

kj
= xkj

and v′
lj

= xlj for

all 1 ≤ j ≤ c and other u′
j = xk1 , v

′
j = xl1 . By Proposition 6.4.6, we get σsLσs′ and

σtLσt′ . Let π(lj) = kj for all 1 ≤ j ≤ c. Then π is injective. So π can be extended to

a permutation on J , which we will also call π. So π[s′] = f(p1, . . . , pn) where plj = xkj

for all 1 ≤ j ≤ c and other pj = xk1 . Let α(kj) = lj for all 1 ≤ j ≤ c. So α can

be extended to a bijection on J , which we will also call α. So Cα[π[s′]] = t′. Thus

σsJ σs′J σCα[π[s′]]=t′J σt.


