Chapter 6
Monoids of Generalized Hypersubstitutions of

Type 7 = (n)

In this chapter, we study the semigroup properties of Hypg(n). In particular, we
characterize the idempotent and regular elements of this monoid and describe some

classes under Green’s relations of this monoid.

6.1 Projection and Dual Generalized Hypersubstitutions
of Type 7 = (n)

We assume that from now on the type 7 = (n), for some n € N, i.e. we have only
one n-ary operation symbol, say f. By o; we denote the generalized hypersubstitution
which maps f to the term ¢ in W(,)(X). A generalized hypersubstitution o, of type
7 = (n) is called a projection generalized hypersubstitution if t is a variable. We denoted
the set of all projection generalized hypersubstitutions of type 7 = (n) by Pg(n), i.e.
Pg(n) = {o,,|z; € X}.

Lemma 6.1.1. For any o, € Hype(n) and o,, € Pg(n), we have
(i) oy 0g Oy, = Oy,
(i) o4, og o € Pg(n) (64[t] € X).
Proof. The proof is similar to the proof of Lemma 4.1.4. |
Corollary 6.1.2. The following statements hold:

(i) Pg(n) is the smallest two-sided ideal of Hypg(n), called the kernel of Hypg(n).

Thus, Hypg(n) is not simple.
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(ii) Pg(n) is the set of all right-zero elements of Hypg(n), so that Pg(n) itself is a

right-zero band.

(iii) Hypg(n) contains no left-zero elements.

Proof. These follow immediately from Lemma 6.1.1. |
Another special kind of generalized hypersubstitutions in Hypg(n) are dual general-
ized hypersubstitutions, which are defined using permutations of the set J := {1,...,n}.

For any such permutation 7, we let o, = O F(w) We let Dg be the set of all

----- zw(n)) :

such dual generalized hypersubstitutions.

Lemma 6.1.3. The following statements hold:

(i) For any two permutations ™ and p, 0, oG Or = Orop-

(i) For any permutation m with the inverse permutation 7=1, the generalized hyper-

substitutions o, and o.-1 are inverse of each other.

Proof. (i) We have (0,06 0x)(f) = 0,[f (Tr)s - Tam))] = S"(f (@), - - - Tpm))
Tr(1) - - Tan)) = S(Tr(o0))s - -5 Tripm)) = Orop(f)-

(i) This follows from (i). [
Lemma 6.1.4. If o og p € Dg, then both o and p are in Dg.

Proof. Let o(f) = f(u1,...,u,) and p(f) = f(v1,...,v,). Since o og p € Dg,
thus there exists a permutation 7 such that (o og p)(f) = f(Tx@),- -, Ta@m)). S0
[(@rq), - Tam)) = (0 0q p)(f) = S™"(f(ur,...,un),0v1],...,6[v,]). Since 7 is a
permutation, thus this forces all the u;’s to be distinct variables in X,,, and all the v;’s

to be distinct variables in X,,. It follows that both ¢ and p are in Dg. |

Corollary 6.1.5. D¢ is a submonoid of Hypa(n) which forms a group, and no other

elements of Hypa(n) have inverses in Hypa(n). Thus, Dg is a mazimal subgroup of
Hypg(n).
Proof. These follow immediately from Lemma 6.1.3 and 6.1.4. |

Lemma 6.1.6. Let I be the set of generalized hypersubstitutions of the form o (x,.... .z,
fori e N. Let M = Pg(n)U Dg U F. Then M is a submonoid of Hypg(n).

Proof. It is straightforward to check that any product of two elements in M is also

in M. [
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6.2 Idempotent and Regular Elements in Hyp;(n)

All idempotent elements of the monoid of all generalized hypersubstitutions of type
T = (2) were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [32]
and all regular elements of the monoid of all generalized hypersubstitutions of type
T = (2) were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [27].

In this section, we characterize the idempotent and regular elements of Hypg(n).

Proposition 6.2.1. Let oy be a generalized hypersubstitution of type T = (n). Then oy
is idempotent if and only if 6,[t] = t.
Proof. The proof is similar to the proof of Proposition 4.1.1 |

Proposition 6.2.2. For every z; € X, 0,, and 0,4 are idempotent.

Proof. The proof is similar to the proof of Proposition 4.1.2 |

We let G(n) := {oy|t ¢ X,var(t)N X, =0}.

Proposition 6.2.3. If 0y € G(n) and o5 € Hypg(n) \ Pg(n), then o, og o5 = oy, i.e.
G(n) itself is a left zero band.

Proof. The proof is similar to the proof of Lemma 4.1.4 (iii). n

Then we consider only the case 0 € Hypa(n) \ Pe(n) and var(t) N X, # 0.

Theorem 6.2.4. Lett = f(t1,...,t,) € Wiy(X) and O #var(t)N X, = {z;,..., 2, }.
Then oy is idempotent if and only t;, = x;, for all k € {1,...,m}.

Proof. Assume that o, . ¢,)is idempotent. Then S™(f(t1,...,tn), Oy, t1], - - -,

i) =051, (f) = f(t1, ... ta). Suppose that there exists

.....

k€ {1,...,m} such that t;, # x;,. Ift;, € X, then G4, 1,)[ti] = tin # i,
SM(f(tr, - tn)s O, ti)s s Op ) tn]) # f(t1,...,t,) and we have a contra-
diction. If t;, ¢ X, then Gf¢,,. +[ti] € X. We obtain op(t) = op(S™(f(t1, ..., tn),
Gptr,t)ti]s o3 O, ) [tn])) > op(t). This is a contradiction.

The proof of the converse direction is straightforward. |

Now, we characterize the generalized hypersubstitutions of type 7 = (n) which are

regular.

Lemma 6.2.5. Let t € W,)(X) and 0 # var(t) N X, = {zi,,...,2;,} and let a =
flar, ... an) € Wiy (X). If 6ia] =1, then ay = x; for alll =iy, ... iy,
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Proof. Assume that 6;(a] = t. Then t = 64[a] = S™(t, 6¢[aq],. .., 0¢[ay]). We will

show that a; = z; for all [ = 4y,...,i,. Suppose that there exists j € {iy,...,0in}

such that a; # z;. If a;j = zp € X where z;, # x;, then 6,]a;| = x. It follows
that t # S"(t, 6[a1], ..., d¢[an]). This is a contradiction. If a; ¢ X, then d6;]a;] ¢ X.
It follows that op(t) = op(6ifa]) = S™(t,¢]a1], ..., 0¢{as])) > op(t) and we have a
contradiction. n

Theorem 6.2.6. Lett = f(t1,...,t,) € Wiy (X) and 0 # var(t)NX,, = {z;,,..., 2, }.
Then oy is reqular if and only if there exist ji,...,Jjm € {1,...,n} such that t; =

J,’Z‘l,...,tj =Z;

m m*

Proof. Assume that o, is regular. Then there exists o5 € Hypg(n) such that

01 0g 05 0g 0y = oy. Since t ¢ X, thus s ¢ X. Then s = f(s1,...,s,) for some
S$1,...,5, € Wiy (X). From o0y og 05 0 0y = 0y, thus 64[0,[t]] = t. By Lemma 6.2.5,
oslt] = f(ua,...,uy,) for some uy,...,u, € Wy (X) where w;, = x;,,...,u;,, = 4,
From 6,[t] = f(ui,...,u,), thus S™(f(s1,...,8n),0st1],- ... 0s[tn]) = flur,... u).
Since u;, = T;y,..., U, = T;, thus s;,...,s, € X,. Let s;;, = xj,,...,8,, = xj,.
Hence t;, = x;,,...,t;,, = x;,. Conversely, assume the condition holds. Let s =

f(s1,...,80) € Winy(X) where sq,...,5, € W) (X) such that s;, = zj,...,s;, =

m

z;,,. Then (0, oq 05 oc 01)(f) = 6¢[os[t]] = a[S"(f(s1,--.,8n),0s[t1], ..., 0s[tn])] =
o[ f(k1, ... kn)](where by = xyy, ..o ki, = @) = S"™(t,64[k1], . .., 6¢[kn]) = t. Hence
0t 0Gq 05 O O = Oy. |

6.3 Term Properties of the Composition Operation

We need to know more about the result of the composing two generalized hypersub-
stitutions in Hypg(n). In particular, we want to know how long the term corresponding
to o5 og 0, is and what variables it uses, compared to the lengths of the terms s and ¢

and the variables they use. We begin with the necessary definition.

Definition 6.3.1. Let ¢t € W(,)(X). We define some new terms, related to ¢, as follows.
Recall that J :={1,...,n}.

(i) Let o be any function from J to J. C,t] is the term formed from ¢ by replacing

each occurrence in ¢ of a variable z; € X, by the variable z,(; i.e, Cyolt] =
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S™(t, Ta(l)s--- ,xa(n)).

(ii) Let 7 be any permutation of J. 7[t] is the term defined inductively by =[x;] = z;

for any variable z;, and m[f(u1, ..., un)] = f(7[uz)], .-, Ttrmm)])-

The previous length results for the type 7 = (2) were found by W. Puninagool and
S. Leeratanavalee in Chapter 4 and [29] and S.L. Wismath in [34]. The next lemmas

show how these results can be generalized to the type 7 = (n).

Lemma 6.3.2. Let n € N withn > 1 and oy, .. u,) ©G Of(vy,....on) = Ow- Then w is a
longer term than f(uy, ..., uy,), unless the terms f(uq,...,u,) and f(vy,...,v,) satisfy
the following condition (Q):

(Q) If a variable z; € X, is used anywhere in the term f(us,...,u,), then the

entry v; in f(vy,...,v,) is a variable.

Proof. If var(f(uy,...,u,)) N X, =0, then f(uy,...,u,) and f(vy,...,v,) satisfy
the condition (Q). Let var(f(ui,...,u,)) N Xy = {4y, ..., 25 }. o, € X forall j €
{1,...,k}, then f(uq,...,u,) and f(vy,...,v,) satisfy the condition (Q). If there exists

..........

.....

O f(ur,min) [Un])) > 0b(f (- - ). =

Lemma 6.3.3. Let 0y € Hypa(n) \ Pa(n) and z1,...,x, € var(t). Then for any
s € Winy(X),vb(6¢[s]) > vb(s).

Proof. We will prove by induction on the complexity of the term s. If s € X,
then vb(d,[s|]) = vb(s). Assume that s = f(uq,...,u,) and vb(o,[w;]) > vb(u;) for

all 1 <i < n. Then vb(d,[s]) = vb(S™(t, 6¢[ui], ..., 0¢[un])) > vb(f(uy,...,u,)) since
T, ..., T, €var(t) and vb(d,]u;)) > vb(w;) for all 1 <7 < n. ]
Lemma 6.3.4. Let 0. un) G Of(oy,.vn) = Ow Where vb(f(ur,...,uy)) > n. If
T1, ..., @y €var(f(uy, ..., uy,)), then w is a longer term than f(vy, ..., v,).

Proof. We write 00 = 0f(u,.un)- From ofeu,, un) ©G Of(wr,vn) = Ow, thus we
get w = S"(f(u1,...,u,),0lv1],...,0[vy]). Since xq, ..., 2, € var(f(uy,...,u,)), thus

dlv;] is used in w for all 1 < ¢ < n. We will prove by induction on the complexity

of the term f(vy,...,v,). If v1,... v, € X, then vb(w) = vb(f(u1,...,u,)) > n =
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vb(f(v1,...,v,)). Assume that the claim holds for any term of length not less than n
but less than k, and f(vy,...,v,) has length k. Since vb(f(v1,...,v,)) =k > n, thus
there exists i € {1,...,n} such that vb(v;) > n. By induction, we get vb(d[v;]) > vb(v;).
By Lemma 6.3.3, we get any other v; has vb(é[v,]) > vb(v;). Since all the o[v;] are

used in w for all 1 <4 <mn, thus w is longer than f(vy,...,v,). n

Lemma 6.3.5. Let 04,0, € Hypg(n).
(i) var((osoq ov)(f)) N X, Cwvar(t) N X,.

(ii) If s uses only one variable, then the term for ogoq o, uses only one variable (not

necessarily the same variable as s).

Proof. We will prove by induction on the complexity of the term ¢.

(i) If t € X, then (05 o¢ 0¢)(f) = t. So var((os og 0)(f)) N X, C var(t) N X,.
Assume that t = f(tq,...,t,) and var(o4[t;]) N X,, Cwvar(t;) N X, forall 1 <i<n. So
var((osog o) (f)) N X, = var(S™(s,4t1], ..., 0s[ta])) N X, C ig(var(@[ti])) NnX, =
ig(var(ﬁs t]) N X,) C igl(var(ti) NX,) = iglvar(ti) N X, = var(t) N X,.

(i) If t € X, then (o506 04)(f) = t. So the term for o, oG 0, uses only one variable.
Assume that ¢ = f(t1,...,t,) and 4[t;] uses only one variable for all 1 < i < n.
So (05 og o) (f) = S™(s,0s[t1], ..., 0s[ta]). If var(s) = {z;} for some z; € X,,, then
var(csog oy)(f) = var(cs(t;]). If var(s) = {z;} where i > n, then var((osoq0:)(f)) =
var(s). ]

We conclude this section by extending the results from [34] to the case of Hypg(n)

on properties of the composition operation with a lemma describing the special role of

the terms m[t] and C,p) from Definition 6.3.1.

Lemma 6.3.6. Fort c W, (X).
(i) Let m be any permutation on J. Then or og 0y = Ox[y.

(ii) Let o be any function on J. Define the generalized hypersubstitution o, by

mapping the fundemental f to the term f(za), ..., Taw)). Then oyogo, =00,
Proof. (i) We will prove by induction on the complexity of the term ¢. If ¢ € X, then
by Lemma 6.1.1 (i), 0z 0¢ 0y = 04 = 0. Assume that t = f(ty,...,t,) and 6[t;| =
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mlt;] for all 1 < i < n. So (0 o 0r)(f) = S"(f(Zr1),- - Tr)): Ox[t1], - -, Oxltn]) =
f(&,r[tﬁ(l)], .. ,&ﬂ[tﬁ(n)]) = f(ﬂ'[tw(l)], e ,W[tw(n)]) = W[f(tl, c ,tn)} = 71'[15].

(ii) We have (0 og 0a)(f) = S™(t, Ta(1)s - - - Tam)) = Calt]. So 0y 0q 0 = 0C,,y- ™

6.4 Green’s Ralations on Hypg(n)

Green’s relations on Hyp(n) have been studied by S.L. Wismath [34], and Green’s
relations on Hypg(2) were study by W. Puninagool and S. Leeratanavalee in Chapter
4 and [29]. In this section, we describe some classes of the monoid of generalized

hypersubstitutions of type 7 = (n) with n > 1.

Proposition 6.4.1. Any o,, € Pg(n) is L-related only to itself, but is R-related, D-
related and J -related to all elements of Pg(n), and not related to any other generalized

hypersubstitutions. Moreover, the set Pg(n) forms an R-, D- and J-class.
Proof. The proof is similar to the proof of Proposition 4.4.2. |

Proposition 6.4.2. Any o, € G(n) is R-related only to itself, but is L-related, D-
related and J -related to all elements of G(n), and not related to any other generalized

hypersubstitutions. Moreover, the set G(n) forms an L-, D- and J-class.
Proof. The proof is similar to the proof of Proposition 4.4.7. |

Theorem 6.4.3. Let 0,0, € Hypg(n). Then osRoy if and only if the following condi-
tions hold:

(i) If se€ X, thent € X.
(ii) If s ¢ X, then s = Cyp for some bijection o on J.

Proof. Assume that o,Ro;. If s € X, then by Proposition 6.4.1 we get t € X. Let

s ¢ X. Then by Proposition 6.4.1 we get t ¢ X. Then there exist p,q € W,y (X) \ X

such that o, og 0, = 0y and 0y og 0, = 05. If var(t) N X,, = 0, then from o, o¢ 0, = 0

we get s =t and s = Cyyy for all bijection o on J. Assume that var(t) N X, # 0. Let
p=f(p1,...,pn) and ¢ = f(q1,...,qn). So we have two equations

S"(s,0slp1l, -, 0slpal) =1 (1)

S™(t,0elq, - 0tlgn]) = s (2).
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Now, if neither of these equations satisfies the condition (Q) of Lemma 6.3.2, we would
have the length of the term ¢ is longer than the length of the term s and also the
length of s is longer than the length of ¢, which is clearly impossible. Thus, at least
one of two equations must fit the condition (Q). But if one equation fits the condition
(Q), Lemma 6.3.2 tells us that s and ¢ have the same length, and therefore, the second
equation also fits the condition (Q). By Lemma 6.3.2, if x; € var(t) N X, then ¢; € X.
If such ¢; ¢ X, then from (2) we get ¢; € var(s). So S™(s,ds[p1],-..,0s[ps]) # t which
contradicts to (1). Thus such ¢; € X,,. Let a(i) = j if z; € var(t) N X,, and ¢; = z;.
This defines a partial function on J. It is clear that « is injective. Extending this map
to a bijection on J, which we shall also call a. So s = C,j. Conversely, assume that
the conditions hold. Then s,t € X or s ¢ X and s = C,jy for some bijection o on
J. If s,t € X, then by Proposition 6.4.1 we get o,Ro;. If s ¢ X and s = Cypy for
some bijection o on J, then o, and o,-1 are inverse generalized hypersubstitutions.

By Lemma 6.3.6 (ii), we get 0y oq 04 = 0¢,,, = 05 and 050G 04-1 = 0¢. Thus o,Ro;. ®

(t]

Lemma 6.4.4. Let t € W,y (X) and 7 be a permutation on J. Then 7w '[r[t]] = t.

Proof. We will prove by induction on the complexity of the term ¢. If t € X
then 7 !x[t]] = 7 '[t] = t. Assume that t = f(t1,...,t,) and 7 '[x[t;]] = t; for all

1<i<n. So
w7l = 7w f ()]
= 7 [f@trw) - 7))
= S el - 7 At ap]])
= fG '), A t])
= f(t1,...,tn)
AR n

Lemma 6.4.5. Let 0y € Hypg(n) \ Pg(n). Then, for any permutation m on J, oy is

L-related to the generalized hypersubstitution o).

Proof. We know from Lemma 6.3.6(i) that o, og 0, = 0. From Lemma 6.3.6(i)

and Lemma 6.4.4, we get 0,1 0g Ory) = Or-1[x[] = Ot- S0 01 LOL . |

Proposition 6.4.6. Two idempotent elements s and o in Hypg(n)\ Pa(n) are L-related
if and only if var(s) N X,, = var(t) N X,.
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Proof. Assume that o,Lo;. Then there exist u,v € W,)(X) such that o, 0q 0y = o,
and o, og 05 = o0,. By Lemma 6.3.5 (i), we get var(s) N X,, C wvar(t) N X,, and
var(t) N X, Cwvar(s) N X,. Sovar(s)NX, =wvar(t)NX,. Conversely, we use the fact
that for any two idempotent elements e and f in any semigroup, eLf if and only if
ef =eand fe = f. Since var(s) N X, = var(t) N X, by Theorem 6.2.4 we can prove

that 0, oq 05 = 0y and o, og 0y = 0. [ |

Theorem 6.4.7. Let o, be an idempotent element in Hypa(n) \ (Pe(n) UG(n)). Then
Lo, = {0zp)|m is a permutation of J,w ¢ X, var(w) N X, =var(t) N X, and o, is an

idempotent element}.

Proof. Let o1 € Hypg(n) where 7 is a permutation of J,w ¢ X, var(w) N X, =
var(t)N X, and o, is an idempotent element. By Proposition 6.4.6, we get o,,L0;. By
Lemma 6.4.5, 0y L0x[w]. S0 OxpyLoy. Let t = f(uy, ..., u,) and s = f(vy,...,v,) with
osLo;. Then there exists f(by,...,b,) € Wn)(X) such that o, 5,) 06 Of@r,.n) =
O flur,un). W€ WIte 0 = 0@y . py)- FTOM Trp  5,) OG Of(or,on) = Of(ur,un)> WE
get S"(f(by, ..., by),0lv1],...,0[vn]) = flur,...,u,). If z; € var(t) N X, then u; =
z; since o, is an idempotent element. So b; = z; for some z; € X,. This implies
o[v;] = x; and then v; = x;. Let 3 be a partial function on J defined by §(i) = j if
z; € var(t) N X, and v; = z;. If B(i) = B(k) = j, then v; = x; = 2. Soi =k and [ is
injective. So [ can be extended to a permutation a on J. Let w = f(p1,...,pn) where
pi = x; if x; € var(t) N X, and p; = afvaw)] if o5 & var(t) N X,. We will show that
var(w) N X, = var(t) N X, 0, is an idempotent element and s = f(vy,...,v,) = 7[w]
where 7 = a~'. We show first that var(w) N X,, = var(t) N X,. Since o,Lo;, thus
by Proposition 6.4.6, var(s) N X,, = var(t) N X,. Let z; € var(w) N X,. Then
x; € var(p;) for some ¢ € J and z; € X,,. If p; = ; where z; € var(t) N X, then
r; = x; € var(t). If p; = afva), then z; € var(p;) = var(avaw]) = var(vae)) €
var(s). But var(s) N X,, = var(t) N X, so x; € var(t). Let z; € var(t) N X,.
Then p; = z; and so z; € var(s) N X,. Next, we show that o, is an idempotent
element. Let z; € var(w) N X,. Then z; € var(t) N X,. So p; = x;. Thus o, is an
idempotent element. Finally, we show that s = f(vy,...,v,) = w[w] where 7 = o™ .
To do this we will show that for all 1 < k < n, vp = 7[pz]. Let 1 < k < n. If
there exists ¢ € J such that 3(i) = k, then a(i) = k and 7(k) = o (k) = i. So

pi = x; = v, Thus 7[p-] = 7[p;] = 7[2;] = x; = vp. If no such index i exists, then
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TPrky) = T[aVate(ry]] = Tla[Va-1()]] = 7lalvr]] = o Halv]] = vy =

Corollary 6.4.8. Let o, be an idempotent element in Hypg(n) \ (Pg(n) UG(n)). Then
D,, = {ow|w = Cyxs for some a bijection on J, © a permutation on J, s ¢ X, and

os an idempotent element with var(s) N X,, = var(t) N X,}.

Proof. Put K = {o,|w = Cyjr[q for some a bijection on J, 7 a permutation on
J,s ¢ X, and o, an idempotent element with var(s)NX, = var(t)NX,}. Assume that
0s € Dy,. Then there exists o, € Hype(n) such that o,Ro, and o,L0;. By Theorem
6.4.7, we get u = 7[v| for some a permutation w on J, an idempotent element o, with
v ¢ X and var(v) N X,, = var(t) N X,. By Theorem 6.4.3, we get s = C,[u| for some
a bijection a on J. So o; € K. Assume that oc,, € K. By Theorem 6.4.3, we get

OC i ROn(s]- BY Theorem 6.4.7, we get o Lo So OCotmsy € Do ]

Theorem 6.4.9. Let o, be an idempotent element in Hypg(n) \ (Pe(n) UG(n)). Then

its J -class is equal to its D-class.

Proof. Let t = f(uy,...,u,) and let ¢ be the number of distinct variables in X,
which occur in ¢t. Let s = f(vq,...,v,) with 05J0;. Then there exist f(aq,...,a,),
flbr, .o bn), f(0rs - pn)s f(r1, .o, m0) € Wiy (X) such that

T f(ar,san) OGT f(w1,0m) OGO F(br,sbn) = O f(utpsuin) (1)

T f(p1yeespn) OGO f(ueestin) OGO f(r1 eeorn) = O f(1,000m) (2).
Let f(qu, ..., qn) be the term for of(y,, . 0.)0G6T¢(b,,..n)- We Write 0 = 0¢(q,,...a,)- From
(1), we get S™(f(a1,...,an),0lql, -, 0lqn]) = f(ui, ..., u,). If xx € var(t)NX,, then
u = Ty, since oy is an idempotent element. So a; = x; for some z; € X,,. This implies
olgj] = x) and then ¢; = x;. Let a be a function from J(¢) to J defined by a(k) = j if
zy, € var(t) N X, and a, = x; where J(t) = {k € J|z), € var(t)}. So a can be extended
to a permutation on J. We write 01 = 0y, ). Since f(qi,...,¢qn) is the term for
T f(w1,om) OG Tf(br,br)s thus S™(f(v1,...,vn),01[b1],...,01[bn]) = f(q1,...,q,). For
each k € J(t),qay = @k SO Vamy = x; for some x; € X,,. So (b = x;, and then
by = xp. Let B : a(J(t)) — J defined by B(a(k)) = [ where k € J(t) and vom) = 2.
So (8 can be extended to a permutation on J. Since a0 and ( are injective, thus at
least ¢ distinct variables in X, occur as v; in entries of s = f(vy...,v,). We claim
that the only variables in X,, which occur in s are those ¢ variables. Let f(cy,...,¢c,)

be the term for o, . u,) G Tf@r,.rn). We Write 0o = 044y, p,y- From (2), we get
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S™(f(p1y..yon),02[c1], ..., 0a]ca]) = f(vi,...,v,). Since at least ¢ distinct variables
in X,, occur as v; in entries s = f(v;...,v,), thus at least ¢ distinct variables in X,
occur as p; in entries s = f(py ..., p,) and then at least ¢ distinct variables in X,, occur
as ¢; in entries f(ci...,c,). We write 03 = 0p(u,,..u,)- Since f(ci,...,¢,) is the term
for o f(ur,..un) OG Tfrr,rn)s thus S™(f(ur, ..., upn),03(r1],...,03[ra]) = fler, .. ).
But f(uq,...,u,) has only ¢ distinct variables in X,. Thus all the 7’;3 used in the
composition in (2) are variables in X,,. So the number of distinct variables in X,, which
occur in f(vq,...,v,) is at most ¢. Thus the number of distinct variables in X,, which
occur in f(vy,...,v,) is ¢ and every variable in X,, which occurs in it occurs as a v;.
Let w1 = C(goa)-1[f(v1, ..., v,)]. So var(w) N X, =var(t)NX,. From Theorem 6.4.3,
we get 0,,Ros. Let wy = afw;]. From Lemma 6.4.5, 0y, Lo,,. We will show that
0w, is an idempotent element. Let wy = Cgoa)-1[f(v1,...,vn)] = f(di,...,dy). For
each z € var(t) N X,, Vaw) = Taak): S0 daw) = Tk From wy = afwi], we get
wy = alf(di,...,dy)] = f(aldaq)); .., aldam)]) and var(ws) N X, = var(t) N X,. Let
x; € var(wy) N X,. Then z; € var(t) N X,. So a[dyj] = afz;] = z;. So gy, is an

idempotent element. By Proposition 6.4.6, we get o,,L0;. So 0, Lo;. Thus o,Do;. m

Corollary 6.4.10. Let oy, 04 be idempotent elements in Hypa(n)\ (Pg(n)UG(n)). Then
os and o, are J - or D-related if and only if the number of distinct variables in X,, which

occur in s and t are equal.

Proof. One direction follows immediately from Corollary 6.4.8. Conversely, let
s = fur,...,up),t = f(vr,...,00),var(s) N X,, = {xg,,...,x} and var(t) N X,, =

{z1,,..., 2 }. Since oy, 0y are idempotent elements, thus uy; = Ty, and vy, = 1y, for all

1 <j<ec Lets = f(uy,...,u,),t' = f(vi,...,v]) where u}cj = 1y, and vl’j = 1y, for

all 1 < j < ¢ and other v} = y,,v; = x;,. By Proposition 6.4.6, we get 0,Loy and
oLoy. Let 7(l;) = k; for all 1 < j < ¢. Then 7 is injective. So 7 can be extended to

a permutation on .J, which we will also call 7. So 7[s'] = f(p1,...,pn) Where p;, = x4,

for all 1 < j < ¢ and other p; = zy,. Let a(k;) =1 forall 1 < j < c¢. So « can
be extended to a bijection on .J, which we will also call a. So Cyrey = t'. Thus

osJogToc, =T 0t u

s']]



