

Chapter 6

Monoids of Generalized Hypersubstitutions of Type $\tau = (n)$

In this chapter, we study the semigroup properties of $Hyp_G(n)$. In particular, we characterize the idempotent and regular elements of this monoid and describe some classes under Green's relations of this monoid.

6.1 Projection and Dual Generalized Hypersubstitutions of Type $\tau = (n)$

We assume that from now on the type $\tau = (n)$, for some $n \in \mathbb{N}$, i.e. we have only one n -ary operation symbol, say f . By σ_t we denote the generalized hypersubstitution which maps f to the term t in $W_{(n)}(X)$. A generalized hypersubstitution σ_t of type $\tau = (n)$ is called a *projection generalized hypersubstitution* if t is a variable. We denote the set of all projection generalized hypersubstitutions of type $\tau = (n)$ by $P_G(n)$, i.e. $P_G(n) = \{\sigma_{x_i} | x_i \in X\}$.

Lemma 6.1.1. *For any $\sigma_t \in Hyp_G(n)$ and $\sigma_{x_i} \in P_G(n)$, we have*

- (i) $\sigma_t \circ_G \sigma_{x_i} = \sigma_{x_i}$.
- (ii) $\sigma_{x_i} \circ_G \sigma_t \in P_G(n)$ ($\hat{\sigma}_{x_i}[t] \in X$).

Proof. The proof is similar to the proof of Lemma 4.1.4. ■

Corollary 6.1.2. *The following statements hold:*

- (i) $P_G(n)$ is the smallest two-sided ideal of $Hyp_G(n)$, called the *kernel* of $Hyp_G(n)$.
Thus, $Hyp_G(n)$ is not simple.

(ii) $P_G(n)$ is the set of all right-zero elements of $Hyp_G(n)$, so that $P_G(n)$ itself is a right-zero band.

(iii) $Hyp_G(n)$ contains no left-zero elements.

Proof. These follow immediately from Lemma 6.1.1. ■

Another special kind of generalized hypersubstitutions in $Hyp_G(n)$ are *dual generalized hypersubstitutions*, which are defined using permutations of the set $J := \{1, \dots, n\}$. For any such permutation π , we let $\sigma_\pi = \sigma_{f(x_{\pi(1)}, \dots, x_{\pi(n)})}$. We let D_G be the set of all such dual generalized hypersubstitutions.

Lemma 6.1.3. *The following statements hold:*

(i) *For any two permutations π and ρ , $\sigma_\rho \circ_G \sigma_\pi = \sigma_{\pi \circ \rho}$.*

(ii) *For any permutation π with the inverse permutation π^{-1} , the generalized hypersubstitutions σ_π and $\sigma_{\pi^{-1}}$ are inverse of each other.*

Proof. (i) We have $(\sigma_\rho \circ_G \sigma_\pi)(f) = \hat{\sigma}_\rho[f(x_{\pi(1)}, \dots, x_{\pi(n)})] = S^n(f(x_{\rho(1)}, \dots, x_{\rho(n)}), x_{\pi(1)}, \dots, x_{\pi(n)}) = f(x_{\pi(\rho(1))}, \dots, x_{\pi(\rho(n))}) = \sigma_{\pi \circ \rho}(f)$.

(ii) This follows from (i). ■

Lemma 6.1.4. *If $\sigma \circ_G \rho \in D_G$, then both σ and ρ are in D_G .*

Proof. Let $\sigma(f) = f(u_1, \dots, u_n)$ and $\rho(f) = f(v_1, \dots, v_n)$. Since $\sigma \circ_G \rho \in D_G$, thus there exists a permutation π such that $(\sigma \circ_G \rho)(f) = f(x_{\pi(1)}, \dots, x_{\pi(n)})$. So $f(x_{\pi(1)}, \dots, x_{\pi(n)}) = (\sigma \circ_G \rho)(f) = S^n(f(u_1, \dots, u_n), \hat{\sigma}[v_1], \dots, \hat{\sigma}[v_n])$. Since π is a permutation, thus this forces all the u_i 's to be distinct variables in X_n , and all the v_i 's to be distinct variables in X_n . It follows that both σ and ρ are in D_G . ■

Corollary 6.1.5. D_G is a submonoid of $Hyp_G(n)$ which forms a group, and no other elements of $Hyp_G(n)$ have inverses in $Hyp_G(n)$. Thus, D_G is a maximal subgroup of $Hyp_G(n)$. ■

Proof. These follow immediately from Lemma 6.1.3 and 6.1.4. ■

Lemma 6.1.6. *Let F be the set of generalized hypersubstitutions of the form $\sigma_{f(x_i, \dots, x_i)}$ for $i \in \mathbb{N}$. Let $M = P_G(n) \cup D_G \cup F$. Then M is a submonoid of $Hyp_G(n)$.*

Proof. It is straightforward to check that any product of two elements in M is also in M . ■

6.2 Idempotent and Regular Elements in $Hyp_G(n)$

All idempotent elements of the monoid of all generalized hypersubstitutions of type $\tau = (2)$ were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [32] and all regular elements of the monoid of all generalized hypersubstitutions of type $\tau = (2)$ were studied by W. Puninagool and S. Leeratanavalee in Chapter 4 and [27]. In this section, we characterize the idempotent and regular elements of $Hyp_G(n)$.

Proposition 6.2.1. *Let σ_t be a generalized hypersubstitution of type $\tau = (n)$. Then σ_t is idempotent if and only if $\hat{\sigma}_t[t] = t$.*

Proof. The proof is similar to the proof of Proposition 4.1.1. ■

Proposition 6.2.2. *For every $x_i \in X$, σ_{x_i} and σ_{id} are idempotent.*

Proof. The proof is similar to the proof of Proposition 4.1.2. ■

We let $G(n) := \{\sigma_t \mid t \notin X, \text{var}(t) \cap X_n = \emptyset\}$.

Proposition 6.2.3. *If $\sigma_t \in G(n)$ and $\sigma_s \in Hyp_G(n) \setminus P_G(n)$, then $\sigma_t \circ_G \sigma_s = \sigma_t$, i.e. $G(n)$ itself is a left zero band.*

Proof. The proof is similar to the proof of Lemma 4.1.4 (iii). ■

Then we consider only the case $\sigma_t \in Hyp_G(n) \setminus P_G(n)$ and $\text{var}(t) \cap X_n \neq \emptyset$.

Theorem 6.2.4. *Let $t = f(t_1, \dots, t_n) \in W_{(n)}(X)$ and $\emptyset \neq \text{var}(t) \cap X_n = \{x_{i_1}, \dots, x_{i_m}\}$. Then σ_t is idempotent if and only $t_{i_k} = x_{i_k}$ for all $k \in \{1, \dots, m\}$.*

Proof. Assume that $\sigma_{f(t_1, \dots, t_n)}$ is idempotent. Then $S^n(f(t_1, \dots, t_n), \hat{\sigma}_{f(t_1, \dots, t_n)}[t_1], \dots, \hat{\sigma}_{f(t_1, \dots, t_n)}[t_n]) = \sigma_{f(t_1, \dots, t_n)}^2(f) = \sigma_{f(t_1, \dots, t_n)}(f) = f(t_1, \dots, t_n)$. Suppose that there exists $k \in \{1, \dots, m\}$ such that $t_{i_k} \neq x_{i_k}$. If $t_{i_k} \in X$, then $\hat{\sigma}_{f(t_1, \dots, t_n)}[t_{i_k}] = t_{i_k} \neq x_{i_k}$. So $S^n(f(t_1, \dots, t_n), \hat{\sigma}_{f(t_1, \dots, t_n)}[t_1], \dots, \hat{\sigma}_{f(t_1, \dots, t_n)}[t_n]) \neq f(t_1, \dots, t_n)$ and we have a contradiction. If $t_{i_k} \notin X$, then $\hat{\sigma}_{f(t_1, \dots, t_n)}[t_{i_k}] \notin X$. We obtain $op(t) = op(S^n(f(t_1, \dots, t_n), \hat{\sigma}_{f(t_1, \dots, t_n)}[t_1], \dots, \hat{\sigma}_{f(t_1, \dots, t_n)}[t_n])) > op(t)$. This is a contradiction.

The proof of the converse direction is straightforward. ■

Now, we characterize the generalized hypersubstitutions of type $\tau = (n)$ which are regular.

Lemma 6.2.5. *Let $t \in W_{(n)}(X)$ and $\emptyset \neq \text{var}(t) \cap X_n = \{x_{i_1}, \dots, x_{i_m}\}$ and let $a = f(a_1, \dots, a_n) \in W_{(n)}(X)$. If $\hat{\sigma}_t[a] = t$, then $a_l = x_l$ for all $l = i_1, \dots, i_m$.*

Proof. Assume that $\hat{\sigma}_t[a] = t$. Then $t = \hat{\sigma}_t[a] = S^n(t, \hat{\sigma}_t[a_1], \dots, \hat{\sigma}_t[a_n])$. We will show that $a_l = x_l$ for all $l = i_1, \dots, i_m$. Suppose that there exists $j \in \{i_1, \dots, i_m\}$ such that $a_j \neq x_j$. If $a_j = x_k \in X$ where $x_k \neq x_j$, then $\hat{\sigma}_t[a_j] = x_k$. It follows that $t \neq S^n(t, \hat{\sigma}_t[a_1], \dots, \hat{\sigma}_t[a_n])$. This is a contradiction. If $a_j \notin X$, then $\hat{\sigma}_t[a_j] \notin X$. It follows that $op(t) = op(\hat{\sigma}_t[a]) = S^n(t, \hat{\sigma}_t[a_1], \dots, \hat{\sigma}_t[a_n])) > op(t)$ and we have a contradiction. ■

Theorem 6.2.6. Let $t = f(t_1, \dots, t_n) \in W_{(n)}(X)$ and $\emptyset \neq var(t) \cap X_n = \{x_{i_1}, \dots, x_{i_m}\}$. Then σ_t is regular if and only if there exist $j_1, \dots, j_m \in \{1, \dots, n\}$ such that $t_{j_1} = x_{i_1}, \dots, t_{j_m} = x_{i_m}$.

Proof. Assume that σ_t is regular. Then there exists $\sigma_s \in Hyp_G(n)$ such that $\sigma_t \circ_G \sigma_s \circ_G \sigma_t = \sigma_t$. Since $t \notin X$, thus $s \notin X$. Then $s = f(s_1, \dots, s_n)$ for some $s_1, \dots, s_n \in W_{(n)}(X)$. From $\sigma_t \circ_G \sigma_s \circ_G \sigma_t = \sigma_t$, thus $\hat{\sigma}_t[\hat{\sigma}_s[t]] = t$. By Lemma 6.2.5, $\hat{\sigma}_s[t] = f(u_1, \dots, u_n)$ for some $u_1, \dots, u_n \in W_{(n)}(X)$ where $u_{i_1} = x_{i_1}, \dots, u_{i_m} = x_{i_m}$. From $\hat{\sigma}_s[t] = f(u_1, \dots, u_n)$, thus $S^n(f(s_1, \dots, s_n), \hat{\sigma}_s[t_1], \dots, \hat{\sigma}_s[t_n]) = f(u_1, \dots, u_n)$. Since $u_{i_1} = x_{i_1}, \dots, u_{i_m} = x_{i_m}$ thus $s_{i_1}, \dots, s_{i_m} \in X_n$. Let $s_{i_1} = x_{j_1}, \dots, s_{i_m} = x_{j_m}$. Hence $t_{j_1} = x_{i_1}, \dots, t_{j_m} = x_{i_m}$. Conversely, assume the condition holds. Let $s = f(s_1, \dots, s_n) \in W_{(n)}(X)$ where $s_1, \dots, s_n \in W_{(n)}(X)$ such that $s_{i_1} = x_{j_1}, \dots, s_{i_m} = x_{j_m}$. Then $(\sigma_t \circ_G \sigma_s \circ_G \sigma_t)(f) = \hat{\sigma}_t[\hat{\sigma}_s[t]] = \hat{\sigma}_t[S^n(f(s_1, \dots, s_n), \hat{\sigma}_s[t_1], \dots, \hat{\sigma}_s[t_n])] = \hat{\sigma}_t[f(k_1, \dots, k_n)]$ (where $k_{i_1} = x_{i_1}, \dots, k_{i_m} = x_{i_m}$) $= S^n(t, \hat{\sigma}_t[k_1], \dots, \hat{\sigma}_t[k_n]) = t$. Hence $\sigma_t \circ_G \sigma_s \circ_G \sigma_t = \sigma_t$. ■

6.3 Term Properties of the Composition Operation

We need to know more about the result of the composing two generalized hypersubstitutions in $Hyp_G(n)$. In particular, we want to know how long the term corresponding to $\sigma_s \circ_G \sigma_t$ is and what variables it uses, compared to the lengths of the terms s and t and the variables they use. We begin with the necessary definition.

Definition 6.3.1. Let $t \in W_{(n)}(X)$. We define some new terms, related to t , as follows. Recall that $J := \{1, \dots, n\}$.

- (i) Let α be any function from J to J . $C_\alpha[t]$ is the term formed from t by replacing each occurrence in t of a variable $x_i \in X_n$ by the variable $x_{\alpha(i)}$ i.e, $C_\alpha[t] =$

$$S^n(t, x_{\alpha(1)}, \dots, x_{\alpha(n)}).$$

(ii) Let π be any permutation of J . $\pi[t]$ is the term defined inductively by $\pi[x_i] = x_i$ for any variable x_i , and $\pi[f(u_1, \dots, u_n)] = f(\pi[u_{\pi(1)}], \dots, \pi[u_{\pi(n)}])$.

The previous length results for the type $\tau = (2)$ were found by W. Puninagool and S. Leeratanavalee in Chapter 4 and [29] and S.L. Wismath in [34]. The next lemmas show how these results can be generalized to the type $\tau = (n)$.

Lemma 6.3.2. *Let $n \in \mathbb{N}$ with $n > 1$ and $\sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} = \sigma_w$. Then w is a longer term than $f(u_1, \dots, u_n)$, unless the terms $f(u_1, \dots, u_n)$ and $f(v_1, \dots, v_n)$ satisfy the following condition (Q):*

(Q) *If a variable $x_i \in X_n$ is used anywhere in the term $f(u_1, \dots, u_n)$, then the entry v_i in $f(v_1, \dots, v_n)$ is a variable.*

Proof. If $\text{var}(f(u_1, \dots, u_n)) \cap X_n = \emptyset$, then $f(u_1, \dots, u_n)$ and $f(v_1, \dots, v_n)$ satisfy the condition (Q). Let $\text{var}(f(u_1, \dots, u_n)) \cap X_n = \{x_{i_1}, \dots, x_{i_k}\}$. If $v_{i_j} \in X$ for all $j \in \{1, \dots, k\}$, then $f(u_1, \dots, u_n)$ and $f(v_1, \dots, v_n)$ satisfy the condition (Q). If there exists $j \in \{1, \dots, k\}$ where $v_{i_j} \notin X$, then $\hat{\sigma}_{f(u_1, \dots, u_n)}[v_{i_j}] \notin X$. Since $n > 1$ and $\hat{\sigma}_{f(u_1, \dots, u_n)}[v_{i_j}] \notin X$, thus $\text{vb}(\hat{\sigma}_{f(u_1, \dots, u_n)}[v_{i_j}]) > 1$. So $\text{vb}(w) = \text{vb}(S^n(f(u_1, \dots, u_n), \hat{\sigma}_{f(u_1, \dots, u_n)}[v_1], \dots, \hat{\sigma}_{f(u_1, \dots, u_n)}[v_n])) > \text{vb}(f(u_1, \dots, u_n))$. ■

Lemma 6.3.3. *Let $\sigma_t \in \text{Hyp}_G(n) \setminus P_G(n)$ and $x_1, \dots, x_n \in \text{var}(t)$. Then for any $s \in W_{(n)}(X)$, $\text{vb}(\hat{\sigma}_t[s]) \geq \text{vb}(s)$.*

Proof. We will prove by induction on the complexity of the term s . If $s \in X$, then $\text{vb}(\hat{\sigma}_t[s]) = \text{vb}(s)$. Assume that $s = f(u_1, \dots, u_n)$ and $\text{vb}(\hat{\sigma}_t[u_i]) \geq \text{vb}(u_i)$ for all $1 \leq i \leq n$. Then $\text{vb}(\hat{\sigma}_t[s]) = \text{vb}(S^n(t, \hat{\sigma}_t[u_1], \dots, \hat{\sigma}_t[u_n])) \geq \text{vb}(f(u_1, \dots, u_n))$ since $x_1, \dots, x_n \in \text{var}(t)$ and $\text{vb}(\hat{\sigma}_t[u_i]) \geq \text{vb}(u_i)$ for all $1 \leq i \leq n$. ■

Lemma 6.3.4. *Let $\sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} = \sigma_w$ where $\text{vb}(f(u_1, \dots, u_n)) > n$. If $x_1, \dots, x_n \in \text{var}(f(u_1, \dots, u_n))$, then w is a longer term than $f(v_1, \dots, v_n)$.*

Proof. We write $\sigma = \sigma_{f(u_1, \dots, u_n)}$. From $\sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} = \sigma_w$, thus we get $w = S^n(f(u_1, \dots, u_n), \hat{\sigma}[v_1], \dots, \hat{\sigma}[v_n])$. Since $x_1, \dots, x_n \in \text{var}(f(u_1, \dots, u_n))$, thus $\hat{\sigma}[v_i]$ is used in w for all $1 \leq i \leq n$. We will prove by induction on the complexity of the term $f(v_1, \dots, v_n)$. If $v_1, \dots, v_n \in X$, then $\text{vb}(w) = \text{vb}(f(u_1, \dots, u_n)) > n =$

$vb(f(v_1, \dots, v_n))$. Assume that the claim holds for any term of length not less than n but less than k , and $f(v_1, \dots, v_n)$ has length k . Since $vb(f(v_1, \dots, v_n)) = k > n$, thus there exists $i \in \{1, \dots, n\}$ such that $vb(v_i) \geq n$. By induction, we get $vb(\hat{\sigma}[v_i]) > vb(v_i)$. By Lemma 6.3.3, we get any other v_j has $vb(\hat{\sigma}[v_j]) \geq vb(v_j)$. Since all the $\hat{\sigma}[v_i]$ are used in w for all $1 \leq i \leq n$, thus w is longer than $f(v_1, \dots, v_n)$. \blacksquare

Lemma 6.3.5. *Let $\sigma_s, \sigma_t \in Hyp_G(n)$.*

- (i) $var((\sigma_s \circ_G \sigma_t)(f)) \cap X_n \subseteq var(t) \cap X_n$.
- (ii) *If s uses only one variable, then the term for $\sigma_s \circ_G \sigma_t$ uses only one variable (not necessarily the same variable as s).*

Proof. We will prove by induction on the complexity of the term t .

(i) If $t \in X$, then $(\sigma_s \circ_G \sigma_t)(f) = t$. So $var((\sigma_s \circ_G \sigma_t)(f)) \cap X_n \subseteq var(t) \cap X_n$. Assume that $t = f(t_1, \dots, t_n)$ and $var(\hat{\sigma}_s[t_i]) \cap X_n \subseteq var(t_i) \cap X_n$ for all $1 \leq i \leq n$. So $var((\sigma_s \circ_G \sigma_t)(f)) \cap X_n = var(S^n(s, \hat{\sigma}_s[t_1], \dots, \hat{\sigma}_s[t_n])) \cap X_n \subseteq \bigcup_{i=1}^n (var(\hat{\sigma}_s[t_i])) \cap X_n = \bigcup_{i=1}^n (var(\hat{\sigma}_s[t_i]) \cap X_n) \subseteq \bigcup_{i=1}^n (var(t_i) \cap X_n) = \bigcup_{i=1}^n var(t_i) \cap X_n = var(t) \cap X_n$.

(ii) If $t \in X$, then $(\sigma_s \circ_G \sigma_t)(f) = t$. So the term for $\sigma_s \circ_G \sigma_t$ uses only one variable. Assume that $t = f(t_1, \dots, t_n)$ and $\hat{\sigma}_s[t_i]$ uses only one variable for all $1 \leq i \leq n$. So $(\sigma_s \circ_G \sigma_t)(f) = S^n(s, \hat{\sigma}_s[t_1], \dots, \hat{\sigma}_s[t_n])$. If $var(s) = \{x_i\}$ for some $x_i \in X_n$, then $var(\sigma_s \circ_G \sigma_t)(f) = var(\hat{\sigma}_s[t_i])$. If $var(s) = \{x_i\}$ where $i > n$, then $var((\sigma_s \circ_G \sigma_t)(f)) = var(s)$. \blacksquare

We conclude this section by extending the results from [34] to the case of $Hyp_G(n)$ on properties of the composition operation with a lemma describing the special role of the terms $\pi[t]$ and $C_{\alpha[t]}$ from Definition 6.3.1.

Lemma 6.3.6. *For $t \in W_{(n)}(X)$.*

- (i) *Let π be any permutation on J . Then $\sigma_\pi \circ_G \sigma_t = \sigma_{\pi[t]}$.*
- (ii) *Let α be any function on J . Define the generalized hypersubstitution σ_α by mapping the fundamental f to the term $f(x_{\alpha(1)}, \dots, x_{\alpha(n)})$. Then $\sigma_t \circ_G \sigma_\alpha = \sigma_{C_{\alpha[t]}}$.*

Proof. (i) We will prove by induction on the complexity of the term t . If $t \in X$, then by Lemma 6.1.1 (i), $\sigma_\pi \circ_G \sigma_t = \sigma_t = \sigma_{\pi[t]}$. Assume that $t = f(t_1, \dots, t_n)$ and $\hat{\sigma}_\pi[t_i] =$

$\pi[t_i]$ for all $1 \leq i \leq n$. So $(\sigma_\pi \circ_G \sigma_t)(f) = S^n(f(x_{\pi(1)}, \dots, x_{\pi(n)}), \hat{\sigma}_\pi[t_1], \dots, \hat{\sigma}_\pi[t_n]) = f(\hat{\sigma}_\pi[t_{\pi(1)}], \dots, \hat{\sigma}_\pi[t_{\pi(n)}]) = f(\pi[t_{\pi(1)}], \dots, \pi[t_{\pi(n)}]) = \pi[f(t_1, \dots, t_n)] = \pi[t]$.

(ii) We have $(\sigma_t \circ_G \sigma_\alpha)(f) = S^n(t, x_{\alpha(1)}, \dots, x_{\alpha(n)}) = C_\alpha[t]$. So $\sigma_t \circ_G \sigma_\alpha = \sigma_{C_\alpha[t]}$. \blacksquare

6.4 Green's Relations on $Hyp_G(n)$

Green's relations on $Hyp(n)$ have been studied by S.L. Wismath [34], and Green's relations on $Hyp_G(2)$ were study by W. Puninagool and S. Leeratanavalee in Chapter 4 and [29]. In this section, we describe some classes of the monoid of generalized hypersubstitutions of type $\tau = (n)$ with $n > 1$.

Proposition 6.4.1. *Any $\sigma_{x_i} \in P_G(n)$ is \mathcal{L} -related only to itself, but is \mathcal{R} -related, \mathcal{D} -related and \mathcal{J} -related to all elements of $P_G(n)$, and not related to any other generalized hypersubstitutions. Moreover, the set $P_G(n)$ forms an \mathcal{R} -, \mathcal{D} - and \mathcal{J} -class.*

Proof. The proof is similar to the proof of Proposition 4.4.2. \blacksquare

Proposition 6.4.2. *Any $\sigma_t \in G(n)$ is \mathcal{R} -related only to itself, but is \mathcal{L} -related, \mathcal{D} -related and \mathcal{J} -related to all elements of $G(n)$, and not related to any other generalized hypersubstitutions. Moreover, the set $G(n)$ forms an \mathcal{L} -, \mathcal{D} - and \mathcal{J} -class.*

Proof. The proof is similar to the proof of Proposition 4.4.7. \blacksquare

Theorem 6.4.3. *Let $\sigma_s, \sigma_t \in Hyp_G(n)$. Then $\sigma_s \mathcal{R} \sigma_t$ if and only if the following conditions hold:*

(i) *If $s \in X$, then $t \in X$.*

(ii) *If $s \notin X$, then $s = C_{\alpha[t]}$ for some bijection α on J .*

Proof. Assume that $\sigma_s \mathcal{R} \sigma_t$. If $s \in X$, then by Proposition 6.4.1 we get $t \in X$. Let $s \notin X$. Then by Proposition 6.4.1 we get $t \notin X$. Then there exist $p, q \in W_{(n)}(X) \setminus X$ such that $\sigma_s \circ_G \sigma_p = \sigma_t$ and $\sigma_t \circ_G \sigma_q = \sigma_s$. If $var(t) \cap X_n = \emptyset$, then from $\sigma_t \circ_G \sigma_q = \sigma_s$ we get $s = t$ and $s = C_{\alpha[t]}$ for all bijection α on J . Assume that $var(t) \cap X_n \neq \emptyset$. Let $p = f(p_1, \dots, p_n)$ and $q = f(q_1, \dots, q_n)$. So we have two equations

$$S^n(s, \hat{\sigma}_s[p_1], \dots, \hat{\sigma}_s[p_n]) = t \quad (1)$$

$$S^n(t, \hat{\sigma}_t[q_1], \dots, \hat{\sigma}_t[q_n]) = s \quad (2).$$

Now, if neither of these equations satisfies the condition (Q) of Lemma 6.3.2, we would have the length of the term t is longer than the length of the term s and also the length of s is longer than the length of t , which is clearly impossible. Thus, at least one of two equations must fit the condition (Q). But if one equation fits the condition (Q), Lemma 6.3.2 tells us that s and t have the same length, and therefore, the second equation also fits the condition (Q). By Lemma 6.3.2, if $x_i \in \text{var}(t) \cap X_n$, then $q_i \in X$. If such $q_i \notin X_n$, then from (2) we get $q_i \in \text{var}(s)$. So $S^n(s, \hat{\sigma}_s[p_1], \dots, \hat{\sigma}_s[p_n]) \neq t$ which contradicts to (1). Thus such $q_i \in X_n$. Let $\alpha(i) = j$ if $x_i \in \text{var}(t) \cap X_n$ and $q_i = x_j$. This defines a partial function on J . It is clear that α is injective. Extending this map to a bijection on J , which we shall also call α . So $s = C_{\alpha[t]}$. Conversely, assume that the conditions hold. Then $s, t \in X$ or $s \notin X$ and $s = C_{\alpha[t]}$ for some bijection α on J . If $s, t \in X$, then by Proposition 6.4.1 we get $\sigma_s \mathcal{R} \sigma_t$. If $s \notin X$ and $s = C_{\alpha[t]}$ for some bijection α on J , then σ_α and $\sigma_{\alpha^{-1}}$ are inverse generalized hypersubstitutions. By Lemma 6.3.6 (ii), we get $\sigma_t \circ_G \sigma_\alpha = \sigma_{C_{\alpha[t]}} = \sigma_s$ and $\sigma_s \circ_G \sigma_{\alpha^{-1}} = \sigma_t$. Thus $\sigma_s \mathcal{R} \sigma_t$. ■

Lemma 6.4.4. *Let $t \in W_{(n)}(X)$ and π be a permutation on J . Then $\pi^{-1}[\pi[t]] = t$.*

Proof. We will prove by induction on the complexity of the term t . If $t \in X$ then $\pi^{-1}[\pi[t]] = \pi^{-1}[t] = t$. Assume that $t = f(t_1, \dots, t_n)$ and $\pi^{-1}[\pi[t_i]] = t_i$ for all $1 \leq i \leq n$. So

$$\begin{aligned} \pi^{-1}[\pi[t]] &= \pi^{-1}[\pi[f(t_1, \dots, t_n)]] \\ &= \pi^{-1}[f(\pi[t_{\pi(1)}], \dots, \pi[t_{\pi(n)}])] \\ &= f(\pi^{-1}[\pi[t_{\pi(\pi^{-1}(1))}]], \dots, \pi^{-1}[\pi[t_{\pi(\pi^{-1}(n))}]]) \\ &= f(\pi^{-1}[\pi[t_1]], \dots, \pi^{-1}[\pi[t_n]]) \\ &= f(t_1, \dots, t_n) \\ &= t. \end{aligned}$$

Lemma 6.4.5. *Let $\sigma_t \in \text{Hyp}_G(n) \setminus P_G(n)$. Then, for any permutation π on J , σ_t is \mathcal{L} -related to the generalized hypersubstitution $\sigma_{\pi[t]}$.*

Proof. We know from Lemma 6.3.6(i) that $\sigma_\pi \circ_G \sigma_t = \sigma_{\pi[t]}$. From Lemma 6.3.6(i) and Lemma 6.4.4, we get $\sigma_{\pi^{-1}} \circ_G \sigma_{\pi[t]} = \sigma_{\pi^{-1}[\pi[t]]} = \sigma_t$. So $\sigma_t \mathcal{L} \sigma_{\pi[t]}$. ■

Proposition 6.4.6. *Two idempotent elements σ_s and σ_t in $\text{Hyp}_G(n) \setminus P_G(n)$ are \mathcal{L} -related if and only if $\text{var}(s) \cap X_n = \text{var}(t) \cap X_n$.*

Proof. Assume that $\sigma_s \mathcal{L} \sigma_t$. Then there exist $u, v \in W_{(n)}(X)$ such that $\sigma_u \circ_G \sigma_t = \sigma_s$ and $\sigma_v \circ_G \sigma_s = \sigma_t$. By Lemma 6.3.5 (i), we get $\text{var}(s) \cap X_n \subseteq \text{var}(t) \cap X_n$ and $\text{var}(t) \cap X_n \subseteq \text{var}(s) \cap X_n$. So $\text{var}(s) \cap X_n = \text{var}(t) \cap X_n$. Conversely, we use the fact that for any two idempotent elements e and f in any semigroup, $e \mathcal{L} f$ if and only if $ef = e$ and $fe = f$. Since $\text{var}(s) \cap X_n = \text{var}(t) \cap X_n$, by Theorem 6.2.4 we can prove that $\sigma_t \circ_G \sigma_s = \sigma_t$ and $\sigma_s \circ_G \sigma_t = \sigma_s$. \blacksquare

Theorem 6.4.7. *Let σ_t be an idempotent element in $\text{Hyp}_G(n) \setminus (P_G(n) \cup G(n))$. Then $L_{\sigma_t} = \{\sigma_{\pi[w]} \mid \pi \text{ is a permutation of } J, w \notin X, \text{var}(w) \cap X_n = \text{var}(t) \cap X_n \text{ and } \sigma_w \text{ is an idempotent element}\}$.*

Proof. Let $\sigma_{\pi[w]} \in \text{Hyp}_G(n)$ where π is a permutation of J , $w \notin X$, $\text{var}(w) \cap X_n = \text{var}(t) \cap X_n$ and σ_w is an idempotent element. By Proposition 6.4.6, we get $\sigma_w \mathcal{L} \sigma_t$. By Lemma 6.4.5, $\sigma_w \mathcal{L} \sigma_{\pi[w]}$. So $\sigma_{\pi[w]} \mathcal{L} \sigma_t$. Let $t = f(u_1, \dots, u_n)$ and $s = f(v_1, \dots, v_n)$ with $\sigma_s \mathcal{L} \sigma_t$. Then there exists $f(b_1, \dots, b_n) \in W_{(n)}(X)$ such that $\sigma_{f(b_1, \dots, b_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} = \sigma_{f(u_1, \dots, u_n)}$. We write $\sigma = \sigma_{f(b_1, \dots, b_n)}$. From $\sigma_{f(b_1, \dots, b_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} = \sigma_{f(u_1, \dots, u_n)}$, we get $S^n(f(b_1, \dots, b_n), \hat{\sigma}[v_1], \dots, \hat{\sigma}[v_n]) = f(u_1, \dots, u_n)$. If $x_i \in \text{var}(t) \cap X_n$, then $u_i = x_i$ since σ_t is an idempotent element. So $b_i = x_j$ for some $x_j \in X_n$. This implies $\hat{\sigma}[v_j] = x_i$ and then $v_j = x_i$. Let β be a partial function on J defined by $\beta(i) = j$ if $x_i \in \text{var}(t) \cap X_n$ and $v_j = x_i$. If $\beta(i) = \beta(k) = j$, then $v_j = x_i = x_k$. So $i = k$ and β is injective. So β can be extended to a permutation α on J . Let $w = f(p_1, \dots, p_n)$ where $p_i = x_i$ if $x_i \in \text{var}(t) \cap X_n$ and $p_i = \alpha[v_{\alpha(i)}]$ if $x_i \notin \text{var}(t) \cap X_n$. We will show that $\text{var}(w) \cap X_n = \text{var}(t) \cap X_n$, σ_w is an idempotent element and $s = f(v_1, \dots, v_n) = \pi[w]$ where $\pi = \alpha^{-1}$. We show first that $\text{var}(w) \cap X_n = \text{var}(t) \cap X_n$. Since $\sigma_s \mathcal{L} \sigma_t$, thus by Proposition 6.4.6, $\text{var}(s) \cap X_n = \text{var}(t) \cap X_n$. Let $x_j \in \text{var}(w) \cap X_n$. Then $x_j \in \text{var}(p_i)$ for some $i \in J$ and $x_j \in X_n$. If $p_i = x_i$ where $x_i \in \text{var}(t) \cap X_n$, then $x_j = x_i \in \text{var}(t)$. If $p_i = \alpha[v_{\alpha(i)}]$, then $x_j \in \text{var}(p_i) = \text{var}(\alpha[v_{\alpha(i)}]) = \text{var}(v_{\alpha(i)}) \subseteq \text{var}(s)$. But $\text{var}(s) \cap X_n = \text{var}(t) \cap X_n$, so $x_j \in \text{var}(t)$. Let $x_j \in \text{var}(t) \cap X_n$. Then $p_j = x_j$ and so $x_j \in \text{var}(s) \cap X_n$. Next, we show that σ_w is an idempotent element. Let $x_i \in \text{var}(w) \cap X_n$. Then $x_i \in \text{var}(t) \cap X_n$. So $p_i = x_i$. Thus σ_w is an idempotent element. Finally, we show that $s = f(v_1, \dots, v_n) = \pi[w]$ where $\pi = \alpha^{-1}$. To do this we will show that for all $1 \leq k \leq n$, $v_k = \pi[p_{\pi(k)}]$. Let $1 \leq k \leq n$. If there exists $i \in J$ such that $\beta(i) = k$, then $\alpha(i) = k$ and $\pi(k) = \alpha^{-1}(k) = i$. So $p_i = x_i = v_k$. Thus $\pi[p_{\pi(k)}] = \pi[p_i] = \pi[x_i] = x_i = v_k$. If no such index i exists, then

$$\pi[p_{\pi(k)}] = \pi[\alpha[v_{\alpha(\pi(k))}]] = \pi[\alpha[v_{\alpha(\alpha^{-1}(k))}]] = \pi[\alpha[v_k]] = \alpha^{-1}[\alpha[v_k]] = v_k. \blacksquare$$

Corollary 6.4.8. *Let σ_t be an idempotent element in $Hyp_G(n) \setminus (P_G(n) \cup G(n))$. Then $D_{\sigma_t} = \{\sigma_w | w = C_{\alpha[\pi[s]]}$ for some α bijection on J , π a permutation on $J, s \notin X$, and σ_s an idempotent element with $var(s) \cap X_n = var(t) \cap X_n\}$.*

Proof. Put $K = \{\sigma_w | w = C_{\alpha[\pi[s]]}$ for some α bijection on J , π a permutation on $J, s \notin X$, and σ_s an idempotent element with $var(s) \cap X_n = var(t) \cap X_n\}$. Assume that $\sigma_s \in D_{\sigma_t}$. Then there exists $\sigma_u \in Hyp_G(n)$ such that $\sigma_s \mathcal{R} \sigma_u$ and $\sigma_u \mathcal{L} \sigma_t$. By Theorem 6.4.7, we get $u = \pi[v]$ for some a permutation π on J , an idempotent element σ_v with $v \notin X$ and $var(v) \cap X_n = var(t) \cap X_n$. By Theorem 6.4.3, we get $s = C_{\alpha}[u]$ for some a bijection α on J . So $\sigma_s \in K$. Assume that $\sigma_{C_{\alpha[\pi[s]]}} \in K$. By Theorem 6.4.3, we get $\sigma_{C_{\alpha[\pi[s]]}} \mathcal{R} \sigma_{\pi[s]}$. By Theorem 6.4.7, we get $\sigma_{\pi[s]} \mathcal{L} \sigma_t$. So $\sigma_{C_{\alpha[\pi[s]]}} \in D_{\sigma_t}$. \blacksquare

Theorem 6.4.9. *Let σ_t be an idempotent element in $Hyp_G(n) \setminus (P_G(n) \cup G(n))$. Then its \mathcal{J} -class is equal to its \mathcal{D} -class.*

Proof. Let $t = f(u_1, \dots, u_n)$ and let c be the number of distinct variables in X_n which occur in t . Let $s = f(v_1, \dots, v_n)$ with $\sigma_s \mathcal{J} \sigma_t$. Then there exist $f(a_1, \dots, a_n)$, $f(b_1, \dots, b_n)$, $f(p_1, \dots, p_n)$, $f(r_1, \dots, r_n) \in W_{(n)}(X)$ such that

$$\sigma_{f(a_1, \dots, a_n)} \circ_G \sigma_{f(v_1, \dots, v_n)} \circ_G \sigma_{f(b_1, \dots, b_n)} = \sigma_{f(u_1, \dots, u_n)} \quad (1)$$

$$\sigma_{f(p_1, \dots, p_n)} \circ_G \sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(r_1, \dots, r_n)} = \sigma_{f(v_1, \dots, v_n)}. \quad (2)$$

Let $f(q_1, \dots, q_n)$ be the term for $\sigma_{f(v_1, \dots, v_n)} \circ_G \sigma_{f(b_1, \dots, b_n)}$. We write $\sigma = \sigma_{f(a_1, \dots, a_n)}$. From (1), we get $S^n(f(a_1, \dots, a_n), \hat{\sigma}[q_1], \dots, \hat{\sigma}[q_n]) = f(u_1, \dots, u_n)$. If $x_k \in var(t) \cap X_n$, then $u_k = x_k$ since σ_t is an idempotent element. So $a_k = x_j$ for some $x_j \in X_n$. This implies $\hat{\sigma}[q_j] = x_k$ and then $q_j = x_k$. Let α be a function from $J(t)$ to J defined by $\alpha(k) = j$ if $x_k \in var(t) \cap X_n$ and $a_k = x_j$ where $J(t) = \{k \in J | x_k \in var(t)\}$. So α can be extended to a permutation on J . We write $\sigma_1 = \sigma_{f(v_1, \dots, v_n)}$. Since $f(q_1, \dots, q_n)$ is the term for $\sigma_{f(v_1, \dots, v_n)} \circ_G \sigma_{f(b_1, \dots, b_n)}$, thus $S^n(f(v_1, \dots, v_n), \hat{\sigma}_1[b_1], \dots, \hat{\sigma}_1[b_n]) = f(q_1, \dots, q_n)$. For each $k \in J(t)$, $q_{\alpha(k)} = x_k$. So $v_{\alpha(k)} = x_l$ for some $x_l \in X_n$. So $\hat{\sigma}_1[b_l] = x_k$ and then $b_l = x_k$. Let $\beta : \alpha(J(t)) \rightarrow J$ defined by $\beta(\alpha(k)) = l$ where $k \in J(t)$ and $v_{\alpha(k)} = x_l$. So β can be extended to a permutation on J . Since α and β are injective, thus at least c distinct variables in X_n occur as v_i in entries of $s = f(v_1, \dots, v_n)$. We claim that the only variables in X_n which occur in s are those c variables. Let $f(c_1, \dots, c_n)$ be the term for $\sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(r_1, \dots, r_n)}$. We write $\sigma_2 = \sigma_{f(p_1, \dots, p_n)}$. From (2), we get

$S^n(f(p_1, \dots, p_n), \hat{\sigma}_2[c_1], \dots, \hat{\sigma}_2[c_n]) = f(v_1, \dots, v_n)$. Since at least c distinct variables in X_n occur as v_i in entries $s = f(v_1, \dots, v_n)$, thus at least c distinct variables in X_n occur as p_i in entries $s = f(p_1, \dots, p_n)$ and then at least c distinct variables in X_n occur as c_i in entries $f(c_1, \dots, c_n)$. We write $\sigma_3 = \sigma_{f(u_1, \dots, u_n)}$. Since $f(c_1, \dots, c_n)$ is the term for $\sigma_{f(u_1, \dots, u_n)} \circ_G \sigma_{f(r_1, \dots, r_n)}$, thus $S^n(f(u_1, \dots, u_n), \hat{\sigma}_3[r_1], \dots, \hat{\sigma}_3[r_n]) = f(c_1, \dots, c_n)$. But $f(u_1, \dots, u_n)$ has only c distinct variables in X_n . Thus all the r'_j s used in the composition in (2) are variables in X_n . So the number of distinct variables in X_n which occur in $f(v_1, \dots, v_n)$ is at most c . Thus the number of distinct variables in X_n which occur in $f(v_1, \dots, v_n)$ is c and every variable in X_n which occurs in it occurs as a v_i . Let $w_1 = C_{(\beta \circ \alpha)^{-1}}[f(v_1, \dots, v_n)]$. So $\text{var}(w_1) \cap X_n = \text{var}(t) \cap X_n$. From Theorem 6.4.3, we get $\sigma_{w_1} \mathcal{R} \sigma_s$. Let $w_2 = \alpha[w_1]$. From Lemma 6.4.5, $\sigma_{w_1} \mathcal{L} \sigma_{w_2}$. We will show that σ_{w_2} is an idempotent element. Let $w_1 = C_{(\beta \circ \alpha)^{-1}}[f(v_1, \dots, v_n)] = f(d_1, \dots, d_n)$. For each $x_k \in \text{var}(t) \cap X_n$, $v_{\alpha(k)} = x_{\beta(\alpha(k))}$. So $d_{\alpha(k)} = x_k$. From $w_2 = \alpha[w_1]$, we get $w_2 = \alpha[f(d_1, \dots, d_n)] = f(\alpha[d_{\alpha(1)}], \dots, \alpha[d_{\alpha(n)}])$ and $\text{var}(w_2) \cap X_n = \text{var}(t) \cap X_n$. Let $x_j \in \text{var}(w_2) \cap X_n$. Then $x_j \in \text{var}(t) \cap X_n$. So $\alpha[d_{\alpha(j)}] = \alpha[x_j] = x_j$. So σ_{w_2} is an idempotent element. By Proposition 6.4.6, we get $\sigma_{w_2} \mathcal{L} \sigma_t$. So $\sigma_{w_1} \mathcal{L} \sigma_t$. Thus $\sigma_s \mathcal{D} \sigma_t$. ■

Corollary 6.4.10. *Let σ_s, σ_t be idempotent elements in $\text{Hyp}_G(n) \setminus (P_G(n) \cup G(n))$. Then σ_s and σ_t are \mathcal{J} - or \mathcal{D} -related if and only if the number of distinct variables in X_n which occur in s and t are equal.*

Proof. One direction follows immediately from Corollary 6.4.8. Conversely, let $s = f(u_1, \dots, u_n), t = f(v_1, \dots, v_n), \text{var}(s) \cap X_n = \{x_{k_1}, \dots, x_{k_c}\}$ and $\text{var}(t) \cap X_n = \{x_{l_1}, \dots, x_{l_c}\}$. Since σ_s, σ_t are idempotent elements, thus $u_{k_j} = x_{k_j}$ and $v_{l_j} = x_{l_j}$ for all $1 \leq j \leq c$. Let $s' = f(u'_1, \dots, u'_n), t' = f(v'_1, \dots, v'_n)$ where $u'_{k_j} = x_{k_j}$ and $v'_{l_j} = x_{l_j}$ for all $1 \leq j \leq c$ and other $u'_j = x_{k_1}, v'_j = x_{l_1}$. By Proposition 6.4.6, we get $\sigma_s \mathcal{L} \sigma_{s'}$ and $\sigma_t \mathcal{L} \sigma_{t'}$. Let $\pi(l_j) = k_j$ for all $1 \leq j \leq c$. Then π is injective. So π can be extended to a permutation on J , which we will also call π . So $\pi[s'] = f(p_1, \dots, p_n)$ where $p_{l_j} = x_{k_j}$ for all $1 \leq j \leq c$ and other $p_j = x_{k_1}$. Let $\alpha(k_j) = l_j$ for all $1 \leq j \leq c$. So α can be extended to a bijection on J , which we will also call α . So $C_{\alpha[\pi[s']]} = t'$. Thus $\sigma_s \mathcal{J} \sigma_{s'} \mathcal{J} \sigma_{C_{\alpha[\pi[s']]} = t'} \mathcal{J} \sigma_t$. ■