
Chapter 7

Conclusion

In this study, we found that

7.1 Complexity of Terms, Generalized Superpositions and

Generalized Hypersubstitutions

(1) Let s, t1, . . . , tm ∈ Wτ (X). Then,

(i) mindepth(Sm(s, t1, . . . , tm)) = min{mindepthj(s) + mindepth(tj),

mindepthk(s)|1 ≤ j ≤ m, k > m, xj, xk ∈
var(s)}.

(ii) maxdepth(Sm(s, t1, . . . , tm)) = max{maxdepthj(s) + maxdepth(tj),

maxdepthk(s)|1 ≤ j ≤ m, k > m, xj, xk ∈
var(s)}.

(iii) vb(Sm(s, t1, . . . , tm)) =
m∑

j=1

vbj(s)vb(tj) +
∑

j>m

vbj(s).

(iv) op(Sm(s, t1, . . . , tm)) =
m∑

j=1

vbj(s)op(tj) + op(s).

(2) Let τ = (ni)i∈I be a type and let t be a compound term of the form t =

fi(t1, . . . , tni
) where fi is an ni-ary operation symbol. Let σ be a generalized

hypersubstitution of type τ . Then,

(i) mindepth(σ̂[t]) = min{mindepthj(σ(fi)) + mindepth(σ̂[tj]),

mindepthk(σ(fi))|1 ≤ j ≤ ni, k > ni, xj, xk ∈ var(σ(fi))}.

(ii) maxdepth(σ̂[t]) = max{maxdepthj(σ(fi)) + maxdepth(σ̂[t
j
]),

maxdepthk(σ(fi))|1 ≤ j ≤ ni, k > ni, xj, xk ∈ var(σ(fi))}.
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(iii) vb(σ̂[t]) =
ni∑

j=1

vbj(σ(fi))vb(σ̂[tj]) +
∑

j>ni

vbj(σ(fi)).

(iv) op(σ̂[t]) =
ni∑

j=1

vbj(σ(fi))op(σ̂[tj]) + op(σ(fi)).

(3) Let τ = (ni)i∈I be a type, t ∈ Wτ (X) be a term, and σ ∈ HypG(τ) be a generalized

hypersubstitution of type τ . Then the following statements hold:

(i) If σ is a regular generalized hypersubstitution and ni > 1 for all i ∈ I, then

maxdepth(σ̂[t]) ≥ maxdepth(t).

(ii) If σ is a regular generalized hypersubstitution, then vb(σ̂[t]) ≥ vb(t).

(iii) If σ is a regular generalized hypersubstitution and ni > 1 for all i ∈ I, then

op(σ̂[t]) ≥ op(t).

(4) Let τ = (ni)i∈I be a type and V be a non-trivial M -strongly solid variety of type

τ . Let k ≥ 1. Then the following statements hold:

(i) For the maximum depth c, if ni > 1 for all i ∈ I, then each N c
k(V ) is

(M ∩ Reg)-strongly solid.

(ii) For the variable count c, each N c
k(V ) is (M ∩ Reg)-strongly solid.

(iii) For the operation count c, if ni > 1 for all i ∈ I, then each N c
k(V ) is

(M ∩ Reg)-strongly solid.

7.2 Monoids of Generalized Hypersubstitutions of Type

τ = (2)

(1) PG(2) ∪ EG
x1

∪ EG
x2

∪ G ∪ {σid} is the set of all idempotent elements in HypG(2).

(2) The order of any generalized hypersubstitution of type τ = (2) is 1,2 or infinite.

(3) PG(2)∪EG
x1
∪EG

x2
∪EG

x1
∪EG

x2
∪G∪{σid, σf(x2,x1)} is the set of all regular elements

in HypG(2).

(4) For any σt ∈ HypG(2) \ PG(2), we have σtRσt, σtLσt′ and σtDσtDσt′Dσt′ .
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(5) Any σxi
∈ PG(2) is L-related only to itself, but is R-related, D-related and

J -related to all elements of PG(2), and not related to any other generalized

hypersubstitutions. Moreover, the set PG(2) forms an R-, D- and J - class.

(6) All of R-, L- and D-class of σid are equal to {σid, σf(x2,x1)}.

(7) (σid)i = HypG(2) = (σf(x2,x1))i, and if σ ∈ HypG(2) and (σ)i = HypG(2), then

σ is one of σid or σf(x2,x1). Moreover, the J -class of σid is equal to its D-class,

{σid, σf(x2,x1)}.

(8) Any σt ∈ G is R-related only to itself, but is L-related, D-related and J -related

to all elements of G, and not related to any other generalized hypersubstitutions.

Moreover, the set G forms an L-, D- and J - class.

(9) Let τ = (ni)i∈I be a type and σ1, σ2 ∈ HypG(τ). Then σ1Rσ2 if and only if

Imσ̂1 = Imσ̂2.

(10) For any σs, σt ∈ HypG(2), σsRσt if and only if the following conditions hold:

(i) If s ∈ X, then t ∈ X.

(ii) If s /∈ X, then s = t or s = t.

(11) The L-class of the element σf(x1,x1) is precisely the set EG
x1

∪ EG
x2

.

(12) The D-class of the element σf(x1,x1) is precisely the set EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

.

(13) The following statements hold:

(i) (σf(x1,x1))i = I := {σt ∈ HypG(2)|t ∈ WG
(2)({x1}) ∪ WG

(2)({x2}) or x1, x2 /∈
var(t)}.

(ii) If σ ∈ I where σ /∈ EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

, then (σ)i � I.

(iii) The J -class of σf(x1,x1) is equal to its D-class, EG
x1

∪ EG
x2

∪ EG
x1

∪ EG
x2

.

(14) For any σt ∈ EG({x1, x2}), the elements which are L-related to σt are only σt

itself and σt′ .

(15) For σt ∈ EG({x1, x2}), Dσt = {σt, σt′ , σt, σt′}.
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(16) For σt ∈ EG({x1, x2}), the J -class of σt is equal to its D-class, {σt, σt′ , σt, σt′}.

(17) Let t ∈ W(2)(X)\X and x1 ∈ var(t) or x2 ∈ var(t). Then the following statements

are equivalent:

(i) σt has an H-class of size 2,

(ii) t′ = t,

(iii) t = f(u, v) for some u, v ∈ W(2)(X) with v = u′.

(18) For all xi ∈ X, σxi
is primitive.

(19) Let σt be an idempotent element with t /∈ X. Then σt is not primitive.

(20) Let σt be an idempotent element. Then σx1 ≤ σt if and only if leftmost(t) = x1.

(21) Let σt be an idempotent element. Then σx2 ≤ σt if and only if rightmost(t) = x2.

(22) Let xi ∈ X where i > 2 and σt be an idempotent element. Then σxi
≤ σt if and

only if t = xi or t /∈ X.

(23) Let t ∈ W(2)(X) with x2 /∈ var(t) and σs be an idempotent element. Then

σf(x1,t) ≤ σs if and only if s = f(x1, x2) or s = f(x1, t).

(24) Let t ∈ W(2)(X) with x1 /∈ var(t) and σs be an idempotent element. Then

σf(t,x2) ≤ σs if and only if s = f(x1, x2) or s = f(t, x2).

(25) Let t ∈ W(2)(X) with x2 /∈ var(t) and σs be an idempotent element with f(x1, t) �=
s /∈ X. Then σs ≤ σf(x1,t) if and only if s = f(x1, t)

length(Lp(s))
xi where xi =

leftmost(s) with i > 2.

(26) Let t ∈ W(2)(X) with x1 /∈ var(t) and σs be an idempotent element with f(t, x2) �=
s /∈ X. Then σs ≤ σf(t,x2) if and only if s = f(t, x2)

length(Rp(s))
xi where xi =

rightmost(s) with i > 2.

(27) Let s ∈ W(2)(X) \ X and σt ∈ G. If σs ≤ σt, then s = t.
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7.3 Idempotent Elements in PreG(2, 2)

(1) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2). Then σt1,t2 is

idempotent if and only if σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2.

(2) Let t1 = f(xi, xj) and t2 = f(xk, xl) with i, j, k, l ∈ N. Then σt1,t2 is idempotent

if and only if the following conditions hold:

(i) If x1 ∈ var(t1), then xi = x1 and if x2 ∈ var(t1), then xj = x2.

(ii) If xi = xj = x1 or xi = xj = x2, then xk = xl.

(iii) If xi = x1 and j > 2, then xl = xj.

(iv) If i > 2 and xj = x2, then xk = xi.

(v) If i, j > 2, then xk = xi and xl = xj.

(3) Let t1 = g(xi, xj) and t2 = g(xk, xl) with i, j, k, l ∈ N. Then σt1,t2 is idempotent

if and only if the following conditions hold:

(i) If x1 ∈ var(t2), then xk = x1 and if x2 ∈ var(t2), then xl = x2.

(ii) If xk = xl = x1 or xk = xl = x2, then xi = xj.

(iii) If xk = x1 and l > 2, then xj = xl.

(iv) If k > 2 and xl = x2, then xi = xk.

(v) If k, l > 2, then xi = xk and xj = xl.

(4) Let t1 = f(xi, xj) and t2 = g(xk, xl) with i, j, k, l ∈ N. Then σt1,t2 is idempotent

if and only if the following conditions hold:

(i) If xi = x2, then xj = x2.

(ii) If xk = x2, then xl = x2.

(iii) If i > 2, then xj �= x1.

(iv) If k > 2, then xl �= x1.

(5) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2). If op(t1) = 1,

op(t2) > 1 and t2 = g(k1, k2), then σt1,t2 is idempotent if and only if t1 ∈
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{f(x1, xi), f(x2, x2), f(xj, xk)|i, j, k ∈ N, j > 2, k �= 1} and the following con-

ditions hold:

(i) x1 /∈ var(t2) or x2 /∈ var(t2).

(ii) If x1 /∈ var(t2) and x2 ∈ var(t2), then t2 = g(k1, x2).

(iii) If x2 /∈ var(t2) and x1 ∈ var(t2), then t2 = g(x1, k2).

(6) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2). If op(t1) > 1,

op(t2) = 1 and t1 = f(k1, k2), then σt1,t2 is idempotent if and only if t2 ∈
{g(x1, xi), g(x2, x2), g(xj, xk)|i, j, k ∈ N, j > 2, k �= 1} and the following condi-

tions hold:

(i) x1 /∈ var(t1) or x2 /∈ var(t1).

(ii) If x1 /∈ var(t1) and x2 ∈ var(t1), then t1 = f(k1, x2).

(iii) If x2 /∈ var(t1) and x1 ∈ var(t1), then t2 = f(x1, k2).

(7) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2). If op(t1) =

1, op(t2) > 1 and t2 = f(k1, k2), then σt1,t2 is idempotent if and only if t1 ∈
{f(x1, xi), f(x2, x2), f(xj, x2)|i, j ∈ N, j > 2} and the following conditions hold:

(i) If t1 = f(x1, x2), then ops(t2) = {f}.

(ii) If t1 = f(x1, xi) with i �= 2, then t2 = t1xk

length(Lp(t2)) where

xk = leftmost(t2).

(iii) If t1 = f(xj, x2) with j �= 1, then t2 = t1xk

length(Rp(t2)) where

xk = rightmost(t2).

(8) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2). If op(t1) >

1, op(t2) = 1 and t1 = g(k1, k2), then σt1,t2 is idempotent if and only if t2 ∈
{g(x1, xi), g(x2, x2), g(xj, x2)|i, j ∈ N, j > 2} and the following conditions hold:

(i) If t2 = g(x1, x2), then ops(t1) = {g}.

(ii) If t2 = g(x1, xi) with i �= 2, then t1 = t2xk

length(Lp(t1)) where

xk = leftmost(t1).
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(iii) If t2 = g(xj, x2) with j �= 1, then t1 = t2xk

length(Rp(t1)) where

xk = rightmost(t1).

(9) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2), op(t1) > 1,

op(t2) > 1 and t1 = f(k1, k2), t2 = f(k3, k4), then σt1,t2 is idempotent if and

only if (x1 /∈ var(t1) or x2 /∈ var(t1)) and (x1 /∈ var(t2) or x2 /∈ var(t2)) and the

following conditions hold:

(i) If t1, t2 ∈ WG
(2,2)({x1}), then t1 = f(x1, k2) and t2 = t

length(Lp(t2))
1 .

(ii) If t1, t2 ∈ WG
(2,2)({x2}), then t1 = f(k1, x2) and t2 = t

length(Rp(t2))
1 .

(iii) If t1 ∈ WG
(2,2)({x1}), t2 ∈ WG

(2,2)({x2}), then t1 = f(x1, k2) and

t2 = t1x2

length(Lp(t2)).

(iv) If t1 ∈ WG
(2,2)({x2}), t2 ∈ WG

(2,2)({x1}), then t1 = f(k1, x2) and

t2 = t1x1

length(Rp(t2)).

(v) If t1 ∈ WG
(2,2)({x1}) and x1, x2 /∈ var(t2), then t1 = f(x1, k2) and t2 =

t1xk

length(Lp(t2)) where xk = leftmost(t2).

(vi) If t1 ∈ WG
(2,2)({x2}) and x1, x2 /∈ var(t2), then t1 = f(k1, x2) and t2 =

t1xk

length(Rp(t2)) where xk = rightmost(t2).

(vii) If x1, x2 /∈ var(t1), then t2 = t1.

(10) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2), op(t1) > 1,

op(t2) > 1 and t1 = g(k1, k2), t2 = g(k3, k4), then σt1,t2 is idempotent if and

only if (x1 /∈ var(t1) or x2 /∈ var(t1)) and (x1 /∈ var(t2) or x2 /∈ var(t2)) and the

following conditions hold:

(i) If t1, t2 ∈ WG
(2,2)({x1}), then t2 = g(x1, k4) and t1 = t

length(Lp(t1))
2 .

(ii) If t1, t2 ∈ WG
(2,2)({x2}), then t2 = g(k3, x2) and t1 = t

length(Rp(t1))
2 .

(iii) If t1 ∈ WG
(2,2)({x1}), t2 ∈ WG

(2,2)({x2}), then t2 = g(k3, x2) and

t1 = t2x1

length(Rp(t1)).

(iv) If t1 ∈ WG
(2,2)({x2}), t2 ∈ WG

(2,2)({x1}), then t2 = g(x1, k4) and

t1 = t2x2

length(Lp(t1)).
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(v) If t2 ∈ WG
(2,2)({x1}) and x1, x2 /∈ var(t1), then t2 = g(x1, k4) and

t1 = t2xk

length(Lp(t1)) where xk = leftmost(t1).

(vi) If t2 ∈ WG
(2,2)({x2}) and x1, x2 /∈ var(t1), then t2 = g(k3, x2) and

t1 = t2xk

length(Rp(t1)) where xk = rightmost(t1).

(vii) If x1, x2 /∈ var(t2), then t1 = t2.

(11) Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2), op(t1) > 1,

op(t2) > 1 and t1 = f(k1, k2), t2 = g(k3, k4), then σt1,t2 is idempotent if and

only if (x1 /∈ var(t1) or x2 /∈ var(t1)) and (x1 /∈ var(t2) or x2 /∈ var(t2)) and the

following conditions hold:

(i) If t1 ∈ WG
(2,2)({x1}), then t1 = f(x1, k2).

(ii) If t1 ∈ WG
(2,2)({x2}), then t1 = f(k1, x2).

(iii) If t2 ∈ WG
(2,2)({x1}), then t2 = g(x1, k4).

(iv) If t2 ∈ WG
(2,2)({x2}), then t2 = g(k3, x2).

7.4 Monoids of Generalized Hypersubstitutions of Type

τ = (n)

(1) Let σt be a generalized hypersubstitution of type τ = (n). Then σt is idempotent

if and only if σ̂t[t] = t.

(2) For every xi ∈ X, σxi
and σid are idempotent.

(3) If σt ∈ G(n) and σs ∈ HypG(n) \ PG(n), then σt ◦G σs = σt, i.e. G(n) itself is a

left zero band.

(4) Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ �= var(t) ∩ Xn = {xi1 , . . . , xim}. Then σt

is idempotent if and only tik = xik for all k ∈ {1, . . . , m}.

(5) Let t = f(t1, . . . , tn) ∈ W(n)(X) and ∅ �= var(t) ∩ Xn = {xi1 , . . . , xim}. Then

σt is regular if and only if there exist j1, . . . , jm ∈ {1, . . . , n} such that tj1 =

xi1 , . . . , tjm = xim .
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(6) Any σxi
∈ PG(n) is L-related only to itself, but is R-related, D-related and

J -related to all elements of PG(n), and not related to any other generalized

hypersubstitutions. Moreover, the set PG(n) forms an R-, D- and J -class.

(7) Any σt ∈ G(n) is R-related only to itself, but is L-related, D-related and J -

related to all elements of G(n), and not related to any other generalized hyper-

substitutions. Moreover, the set G(n) forms an L-, D- and J -class.

(8) Let σs, σt ∈ HypG(n). Then σsRσt if and only if the following conditions hold:

(i) If s ∈ X, then t ∈ X.

(ii) If s /∈ X, then s = Cα[t] for some bijection α on J .

(9) Let σt ∈ HypG(n) \ PG(n). Then, for any permutation π on J , σt is L-related to

the generalized hypersubstitution σπ[t].

(10) Two idempotent elements σs and σt in HypG(n)\PG(n) are L-related if and only

if var(s) ∩ Xn = var(t) ∩ Xn.

(11) Let σt be an idempotent element in HypG(n) \ (PG(n) ∪ G(n)). Then Lσt =

{σπ[w]|π is a permutation of J, w /∈ X, var(w) ∩ Xn = var(t) ∩ Xn and σw is an

idempotent element}.

(12) Let σt be an idempotent element in HypG(n) \ (PG(n) ∪ G(n)). Then Dσt =

{σw|w = Cα[π[s]] for some α bijection on J , π a permutation on J, s /∈ X, and σs

an idempotent element with var(s) ∩ Xn = var(t) ∩ Xn}.

(13) Let σt be an idempotent element in HypG(n) \ (PG(n)∪G(n)). Then its J -class

is equal to its D-class.

(14) Let σs, σt be idempotent elements in HypG(n) \ (PG(n)∪G(n)). Then σs and σt

are J - or D-related if and only if the number of distinct variables in Xn which

occur in s and t are equal.


