Chapter 7

Conclusion

In this study, we found that

7.1 Complexity of Terms, Generalized Superpositions and
Generalized Hypersubstitutions
(1) Let s,t1,...,tm € W.(X). Then,

(1) mindepth(S™(s,t1,...,tm)) = min{mindepth;(s) + mindepth(t;),
mindepthi(s)|1 < j <m,k>m,z;,z; €
var(s)}.

(ii) maxdepth(S™(s,t1,...,tm)) = mar{mazdepth;(s) + maxdepth(t;),
mazxdepthy(s)|1 < j <m,k>m,z; z €
var(s)}.

(i) 0b(S™(s,t1, ... tm)) = évbj(s)vb(tj) T3 uby(s).

(iv) op(S™(s,t1,.. . tm)) = ilvbj(s)op(tj) + op(s).

(2) Let 7 = (n;)ier be a type and let t be a compound term of the form ¢ =
fi(t1, ..., tn,) where f; is an m;-ary operation symbol. Let o be a generalized

hypersubstitution of type 7. Then,
(i) mindepth(ct]) = min{mindepth;(o(f;)) + mindepth(slt;]),
mandepthi(o(fi))|1 < j <n;, k> n;, x5, 2, € var(o(f;))}

(ii) maxdepth(a[t]) = max{mazxdepth;(o(f;)) + maxdepth(a|t,]),

mazdepthy(o(f;))|1 < j < ni, k> n;,xj, xp € var(o(fi))}.
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(iii) vb(a[t]) = :Z;vbj(a(fi))vb(ﬁ[tj]) + 2 wbi(o(fi).

(iv) op(6[t]) = Zj;lvbj<a<fi>>op<&[tj]> + op(a ().

(3) Let 7 = (n;);er be atype, t € W, (X) be aterm, and o € Hyps(7) be a generalized
hypersubstitution of type 7. Then the following statements hold:

(i) If o is a regular generalized hypersubstitution and n; > 1 for all i € I, then

maxdepth(G(t]) > mazxdepth(t).
(i) If o is a regular generalized hypersubstitution, then vb(a[t]) > vb(t).

(iii) If o is a regular generalized hypersubstitution and n; > 1 for all i € I, then

op(a[t]) = op(t).

(4) Let 7 = (n;);er be a type and V' be a non-trivial M-strongly solid variety of type
7. Let k > 1. Then the following statements hold:

(i) For the maximum depth ¢, if n; > 1 for all ¢ € I, then each N{(V) is
(M N Reg)-strongly solid.

(ii) For the variable count ¢, each Ng(V') is (M N Reg)-strongly solid.

(iii) For the operation count ¢, if n; > 1 for all ¢ € I, then each N{(V) is

(M N Reg)-strongly solid.

7.2 Monoids of Generalized Hypersubstitutions of Type
T=(2)
(1) Pa(2)UES UES UG U {04} is the set of all idempotent elements in Hype(2).

(2) The order of any generalized hypersubstitution of type 7 = (2) is 1,2 or infinite.

(3) Po(2)UES UES UES UES UGU{04,0 f(sy,m)} 1s the set of all regular elements
in Hyp(2).

(4) For any o: € Hypa(2) \ P(2), we have 0yRoy, 0¢Loy and 0,DoyDoy Doy
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(5) Any o0,, € Ps(2) is L-related only to itself, but is R-related, D-related and
J-related to all elements of P;(2), and not related to any other generalized

hypersubstitutions. Moreover, the set Pg(2) forms an R-, D- and J- class.
(6) All of R-, L- and D-class of 0,4 are equal to {04, 0 f(zy,01) }-

(7) (0ia)i = Hypc(2) = (0f(@s21))is and if 0 € Hypa(2) and (0); = Hypa(2), then

o is one of g;q O Of(y,4,). Moreover, the J-class of 0;4 is equal to its D-class,

{0id, O f(ane0) }-

(8) Any o, € G is R-related only to itself, but is L-related, D-related and J-related
to all elements of G, and not related to any other generalized hypersubstitutions.

Moreover, the set G forms an £-, D- and J- class.

(9) Let 7 = (n;)ier be a type and 01,09 € Hypg(7). Then 0;Roy if and only if

[m&l = Im(72
(10) For any oy, 0, € Hypg(2), 0sRoy if and only if the following conditions hold:

(i) If s € X, then t € X.
(i) If s ¢ X, then s =t or s = ¢.
(11) The L-class of the element o, ,,) is precisely the set ES U E_g

(12) The D-class of the element o, 4,) is precisely the set ES U ES U E_fl U E_g’;

1

(13) The following statements hold:
) @i =1 1= {01 € Hypa(2)lt € WE ({01)) UWE ({2:}) or 1,2 ¢
var(t)}.
(i) If o € I where 0 ¢ E¢ UES UES UES, then (0); C 1.

(iii) The J-class of o f(z, 1) is equal to its D-class, ES U ES U E_fl U E_IG2

(14) For any oy € E%({x1,22}), the elements which are L-related to o; are only oy

itself and oy.

(15) For oy, € EC({x1,23}), Do, = {04, 0,07, 07}
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(16) For o, € EC({x1,x2}), the J-class of o, is equal to its D-class, {0y, 0y, 07, 057}

(17) Lett € W) (X)\X and z; € var(t) or x5 € var(t). Then the following statements

are equivalent:

(i) oy has an H-class of size 2,
(i) ¢ =t,
(iil) ¢ = f(u,v) for some u,v € Wz (X) with v = v'.
(18) For all ; € X, o,, is primitive.
(19) Let o be an idempotent element with ¢ ¢ X. Then o, is not primitive.
(20) Let o be an idempotent element. Then o,, < oy if and only if leftmost(t) = x;.
(21) Let oy be an idempotent element. Then o,, < oy if and only if rightmost(t) = z,.

(22) Let z; € X where i > 2 and oy be an idempotent element. Then o,, < o, if and
only if t =z; or t ¢ X.

(23) Let t € Wy)(X) with z2 ¢ var(t) and o, be an idempotent element. Then

Opa ) < 0, if and only if s = f(xq,22) or s = f(z1,1).

(24) Let t € W) (X) with 21 ¢ var(t) and o, be an idempotent element. Then

Of(tms) < 0, if and only if s = f(xq,29) or s = f(t, 22).

(25) Lett € Wy)(X) with x, ¢ var(t) and o, be an idempotent element with f(z1,t) #
s ¢ X. Then oy < 04,4 if and only if s = f(xl,t)éeingth@p(s)) where z; =

leftmost(s) with i > 2.

(26) Lett € Wy)(X) with x; € var(t) and o, be an idempotent element with f(t, z,) #

f (t, xQ)éingth(Rp(S))

s ¢ X. Then o0, < 04, if and only if s = where x; =

rightmost(s) with ¢ > 2.

(27) Let s € Wi)(X)\ X and 0, € G. If 05 < 0y, then s =¢.
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7.3 Idempotent Elements in Pregs(2,2)

(1) Let oy, 4, be a generalized hypersubstitution of type 7 = (2,2). Then oy, 4, is

idempotent if and only if 64, +,[t1] = 1 and 6y, 4, [t2] = ta.
2) Let t1 = f(z;,x;) and ty = f(xg,x;) with 4,5, k,1 € N. Then oy, 4, is idempotent
J 1,62
if and only if the following conditions hold:
(i) If 21 € var(ty), then z; = z; and if 25 € var(t;), then z; = x,.
(ii) If x; = x; = 21 or ; = x; = x9, then z;, = x.
(iii) If x; = 2y and j > 2, then z; = ;.
(iv) If ¢ > 2 and z; = x9, then ), = ;.
(v) If 4,5 > 2, then x), = x; and z; = z;.
3) Let ty = g(z;,x;) and ty = g(xk, ;) with 2,7, k,1 € N. Then oy, 4, is idempotent
J 1,t2
if and only if the following conditions hold:
(i) If x1 € var(ty), then z, = 1 and if x9 € var(ty), then z; = z,.
(i) If 2 = 2y = @1 or oy = x; = 9, then z; = x;.
(iii) If 2 = 27 and [ > 2, then z; = ;.
(iv) If £ > 2 and x; = xo, then x; = z4.
(v) If k,1 > 2, then x; = x, and z; = ;.
(4) Let t1 = f(x;,x;) and to = g(zg, ;) with 4,5, k,l € N. Then oy, 4, is idempotent
if and only if the following conditions hold:
(i) If z; = xo, then z; = z,.
(i) If z = z9, then z; = z.
(iii) If ¢ > 2, then x; # z4.
(iv) If k > 2, then x; # ;.

(5) Let oy, 4+, be a generalized hypersubstitution of type 7 = (2,2). If op(t;) = 1,
op(tz) > 1 and to = g(k1,ks), then oy, 4, is idempotent if and only if t; €
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{f(x1,2;), f(xa, x2), f(xj,21)]i, 5,k € N,j > 2,k # 1} and the following con-
ditions hold:
(i) @1 ¢ var(ty) or xe & var(ty).
(ii) If x; ¢ var(te) and o € var(ts), then to = g(ky, x2).
(iii) If 2o ¢ var(ty) and x; € var(ty), then ty = g(z1, k2).

(6) Let oy, 4+, be a generalized hypersubstitution of type 7 = (2,2). If op(t;) > 1,
op(tz) = 1 and t; = f(k1,k2), then oy, 4, is idempotent if and only if ¢, €
{9(21,2:), 9(x2, 22), 9(xj, )i, j,k € N;j > 2,k # 1} and the following condi-
tions hold:

(i) @1 ¢ var(ty) or xe & var(ty).
(ii) If x; ¢ var(t;) and xo € var(ty), then t; = f(ki, z2).
(iii) If xo ¢ var(ty) and x; € var(ty), then to = f(xy, ko).

(7) Let 04,4, be a generalized hypersubstitution of type 7 = (2,2). If op(t;) =
1, op(ts) > 1 and to = f(ki,ka), then oy, 4, is idempotent if and only if ¢; €
{f(x1, ), f(@a, x2), f(xj,22)|i,j € N,j > 2} and the following conditions hold:

(i) If ty = f(21,22), then ops(ts) = {f}.
(i) If t1 = f(z1, @) with i # 2, then ¢, = ty,, 'e9th(EP(t2) where
xy = leftmost(ts).
(iif) If t; = f(x;, 22) with j # 1, then ty = t1,, 9h(EP®) where

xy, = rightmost(ts).

(8) Let 04,4, be a generalized hypersubstitution of type 7 = (2,2). If op(t;) >
1, op(ts) = 1 and t; = g(ki, k2), then oy, 4, is idempotent if and only if ¢, €
{9(x1,2;), 9(x2,22), g(xj,22)|7,5 € N,j > 2} and the following conditions hold:

(i) If ty = g(21, x2), then ops(ty) = {g}.

(ii) If to = g(w1, ;) with i # 2, then t; = ty, [9h(LP1) where

xy = leftmost(ty).
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(iif) If t, = g(z;, z9) with j # 1, then t; = ty,, e9t(EP(t1) wwhere

xy, = rightmost(t).

(9) Let oy, ¢, be a generalized hypersubstitution of type 7 = (2,2), op(t;) > 1,
op(tz) > 1 and t; = f(k1, k), toa = f(ks, ks), then oy, 4, is idempotent if and
only if (z1 ¢ var(t;) or xo & var(ty)) and (z1 ¢ var(tz) or xs ¢ var(ts)) and the
following conditions hold:

(1) If tl, tg - W(§,2)({x1})’ then tl = f(fl'l, k’g) and tg = tllength(Lp(tQ)).

(11) Ift,ty € W(§72)({$2}), then t; = f(]ﬁ, 1172) and ty = tllength(Rp(tQ))‘

(111) If tl & ng)({wl})a tQ € W(C;g)({.’lﬁg}), then tl = f(l’l, k‘g) and

ty = tlmlength(LP(tz)).

(iv) Ity € WG, ({z2}), t2 € WG o ({21}), then 1 = f(k1, z2) and

to = tlxl length(Rp(t2)) .

(v) If t; € ng)({xl}) and x1,xe ¢ var(ty), then t; = f(x1,ky) and t5 =

tlxklength(Lp(M)) where T = leftmost(tQ).

(vi) If ¢, € ng)({xg}) and x1,x9 ¢ wvar(ty), then t; = f(ki,x2) and to =

thg, [9EP(2) where x), = rightmost(ts).

(vii) If @1, 2o ¢ var(ty), then ty = ;.

(10) Let 04,4, be a generalized hypersubstitution of type 7 = (2,2), op(t;) > 1,
op(tz) > 1 and t; = g(k1,k2), to2 = g(ks,ky), then oy, 4, is idempotent if and
only if (z1 ¢ var(ty) or xo & var(ty)) and (z1 ¢ var(tz) or xs ¢ var(ts)) and the

following conditions hold:

(ii) If t1,t0 € W(%Q)({xg}), then ¢, = g(ks, 22) and t; = tl;ngth(Rp(tl))'

(iii) If ¢; € W(CQ’:Q)({xl}), ty € W&Q)({mg}), then to = g(ks, x2) and

t, = t2xllength(Rp(t1))_

(iv) If t; € Wé’vg)({xg}), ty € W(gQ)({a:l}), then to = g(x1, ky) and

t, = t2z2 length(Lp(t1)) )
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(v) If ty € W(§72)({$1}) and 1,y ¢ var(ty), then ty = g(x1, ks) and

t = tgxklength(Lp(tl)) where z;, = le ftmost(ty).

(vi) If ty € ngg)({xg}) and xy, xe ¢ var(ty), then to = g(ks, z2) and

t = tgxklength(Rp(tl)) where z;, = rightmost(ty).
(vil) If @1, 2o ¢ var(ts), then t; = to.

(11) Let o4, + be a generalized hypersubstitution of type 7 = (2,2), op(t1) > 1,
op(tz) > 1 and t = f(k1,k2), ta = g(ks, ks), then oy, 4, is idempotent if and
only if (z1 ¢ var(t;) or xo & var(ty)) and (z1 ¢ var(ty) or xs & var(ts)) and the
following conditions hold:

(1) If tl S ng)({‘rl}), then tl = f(.l’l,kg).
(11) If tl S Wg’z)({xg}), then tl = f(kl, IQ).
(iil) If t5 € W(§72)({x1}), then to = g(x1, ky).

(IV) If ty € W(§72)({$2}), then ty = g(kg,l'Q).

7.4 Monoids of Generalized Hypersubstitutions of Type
7= (n)
(1) Let o, be a generalized hypersubstitution of type 7 = (n). Then o, is idempotent
if and only if &,[t] = t.
(2) For every z; € X, 0,, and 0,4 are idempotent.

(3) If oy € G(n) and o5 € Hypg(n) \ Ps(n), then o, og 05 = 0y, i.e. G(n) itself is a

left zero band.

(4) Let t = f(t1,...,tn) € Wy(X) and 0 # var(t) N X,, = {;,,...,7;,}. Then o,
is idempotent if and only ¢;, = x;, for all k € {1,...,m}.

(5) Let t = f(t1,...,tn) € Wiy(X) and 0 # var(t) N X,, = {x;,,...,x;,}. Then
oy is regular if and only if there exist ji,...,Jn, € {1,...,n} such that ¢t;, =

xil?"'7tjm = T

m*
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(6) Any o,, € Pg(n) is L-related only to itself, but is R-related, D-related and
J-related to all elements of Pg(n), and not related to any other generalized

hypersubstitutions. Moreover, the set Pg(n) forms an R-, D- and J-class.

(7) Any o, € G(n) is R-related only to itself, but is L-related, D-related and J-
related to all elements of G(n), and not related to any other generalized hyper-

substitutions. Moreover, the set G(n) forms an £-, D- and J-class.

(8) Let 04,00 € Hypg(n). Then o,Roy if and only if the following conditions hold:

(i) If s€ X, then t € X.

(ii) If s ¢ X, then s = Cyyy for some bijection o on J.

(9) Let 0y € Hypa(n) \ Pg(n). Then, for any permutation 7 on J, oy is L-related to

the generalized hypersubstitution o).

(10) Two idempotent elements o and oy in Hype(n) \ Pg(n) are L-related if and only
if var(s) N X,, = var(t) N X,.

(11) Let oy be an idempotent element in Hypg(n) \ (Pe(n) U G(n)). Then L, =
{Oxp)|7 is a permutation of J,w ¢ X, var(w) N X, = var(t) N X,, and o, is an

idempotent element}.

(12) Let oy be an idempotent element in Hypg(n) \ (Pg(n) U G(n)). Then D,, =
{ow|w = Cyxjs for some « bijection on J, 7 a permutation on J,s ¢ X, and o,

an idempotent element with var(s) N X,, = var(t) N X, }.

(13) Let o; be an idempotent element in Hypg(n) \ (Pg(n) UG(n)). Then its J-class

is equal to its D-class.

(14) Let oy, 0: be idempotent elements in Hypg(n) \ (Pe(n) U G(n)). Then o4 and oy
are J- or D-related if and only if the number of distinct variables in X,, which

occur in s and ¢ are equal.



