Chapter 5

Discontinuous Time Delay Systems

In this chapter, we consider the problems of the robust exponential sta-
bility for uncertain impulsive switched system and uncertain impulsive switched
linear parameter dependent (LPD) system with time-varying delays and nonlin-
ear perturbations. We use appropriate Lyapunov function and derive exponential
stability condition in terms of linear matrix inequalities (LMIs) for uncertain im-
pulsive switched system with time-varying delays and nonlinear perturbations.
We apply the Halanay lemma to study the robust exponential stability for un-
certain impulsive switched LPD system with time-varying delays and nonlinear
perturbations. The new stability condition is less conservative and is more gen-
eral than some existing results. Numerical examples are presented to illustrate

the effectiveness of the theoretical results.

5.1 Stability Criteria of Uncertain Impulsive Switched
System with Time-varying Delays and Nonlinear
Perturbations

Consider the uncertain impulsive switched system with time-varying delays and

nonlinear perturbations of the form

(

i(t) = | Ay + DA ()| 2(t) + | By, + ABy ()] alt — b, ()

+f’ik(t> x(t)) + i, (tv x(t o hik (ﬂ))? t 7é 7% (51)
A:E(t) = Ik(l'(t)) = Dk{E(t), t= tk;
a(t) = ¢(t), (1) = ¢ (t), vt € [~h, 0],

\
where x(t) € R" is the state, 0 < h; (t) < h and ¢(),9(t) are a piecewise

continuous vector-valued initial function. A;,, B;, and D), are given real matrices

ik
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of appropriate dimensions. The uncertainties f;, (.), g, (.) represent the nonlinear
parameter perturbations with respect to the current state x(¢) and the delayed

state x(t — h(t)), respectively, and are bounded in magnitude:
i (6,2 ()) fi (8, 2(t)) < na” (D)2 (?),

Gi (t,2(t = R (8)) gy (8, (t = Ry (8)) < pa® (¢ = h(t))x(t — (1)),
where 7, p are given nonnegative constants. Az (t) = z(t))—z(t;,), Vlij& (tp+v) =
(), z(ty) = th& x(t—v). we assume that the solution of the impulsive switched
system (5.1) is right continuous i.e., z(t{) = z(tx). i, € {1,2,....,m}, k,m € Z*, t;
is an impulsive switching time point and o < t; <ty < -+ <t < -+t — +00
as k — +oo. Under the switching law of system (5.1), at the time ¢, the system
switches to the i; subsystem from the i;_; subsystem. The delay h;, (t) is a time

varying bounded continuous function satisfying
0<hy(t)<h, hy(t)<ds<l,

for all i, and ¢ > 0. The uncertainty AA;, (t) and AB;, () are time varying matrices

and satisfy the condition

i AB; (1) = By A (H) M,
where A;, (1) satisfies

A (t)=F, (O —JE, ()], I—-JJ">0.
The uncertain matrix Fj, (¢) satisfies

F (07 F, (1) < T.

Theorem 5.1.1 The system (5.1) is robust exponentially stable, if there exist sym-
metric positive definite matrices Py, and Q;, for all iy, € {1,2,....m}, k,m € Z+

and positive real numbers 9, 3,m, p,e1, €2 such that the following conditions hold.

An P, B, B, By
BIp, —(1-8)e?qQ 0 0
| Pl,k, O 0 _62[_
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P I+ Dp)'P

(ZZ) k—1 ( k) k > O7
Pik (I + Dk) PZk

B;, = B;, +AB;,(t).

Proof. We consider for t € (tx,t,41] and define the following Lyapunov function

for system (5.1) of the form

V(t,x(t)) = 22T (t) P, x(t) —l—/t P27 (8)Qu(s)ds

The derivative of V along the trajectories of ;;(s)tem (5.1) is given by
DV [QBa:T(t)Hkx(t)+x’T(t)]3ikx(t)+xT(t)PZ-k:i:(t)]
T (0)Qu(t) = (1 iy (D) (= hi, (1)Qu(t — i, (1))

Thus, we obtain that

D'V < 20T (0)Pa(t) + o (AL P(t) + 27 (¢ — hiy (0) BLPya(t)

T(0) Py sy (t) + 7 () Po B (t = iy (1)) + g3y (1 0(t = oy () Py (1)
2 2(1)) Py (t) + 77 (1) Po Fi (8, 2(8)) + 27 () Paygin (8,2 = i (1))
2 |27 (1)Qu(t) — (1= 0)e™ M (t — hy, (1) Qu(t — hiy ()]
e ana”(t)a Lt () it ()
e [capn” ()a(t) — eagl (1 2(t = iy (0))giy (0 (t = B, (1))

Then, we have DTV < e28tyT(t)®y(t), where

+

t>—€1

+ o+ 4+ o+

(
(

Ay P, B; P, P,
o |Pibe —(1=8eQ 0 0
Pik 0 —61I 0

L P’Lk 0 0 _62,[_

where Ay = 20P;, —|—121;7';Pik + P, A, +Q+(ein+exp)] and y7 () = [27(t) 2T (t—
hi(t))  fE(t,x(t) gl (t,x(t — hi(t)))]. By the condition (i), we conclude that
DTV (t,z(t)) < 0. Integrating both sides of this inequality from 0 to ¢, we find

V(t,z(t)) — V(0,2(0)) <0,
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and hence
0
Vi(t,z(t)) < :ET(O)PikSE<O)+/ e (5)Qu(s)ds
0—hs, (0)
< Algll,
where
12O = [l < floll,
0 0
| a0 < Awl@Iol? [ ds
—h —h
)‘max(Q) —20h 2
— [maw ¥/~
(R
A= maa:{)\max(ﬂk),’\m;—z(@(l — e72M)1. Therefore, the solution z(t,¢) of the

system (5.1) is bounded and it is easy to see that

A
[zt ) < Ellcb\le‘ﬁt,

where 7 = A\pin(F;,). This means that the system (5.1) is exponentially stable.
But it is except at the impulsive and switching points. We consider the time
points tx, k = 1,2, 3, ..., when the system switches form the t;_; subsystem to the
tr subsystem. To ensure the exponentially stable with a decay rate (3, the following

condition is required to be satisfied

V(tho(t) — Vitwa(ty) = () Pya(th) — 2 (6P, x(t)
= w(t)"[(1+ DT P+ Dy) = P, |(ts)

< 0.
Since we use the assumption (ii). This means that

(I+Dy)'P,(I+Dy)— P, , <0,

k—1

or, equivalently,

P, — (I + Dk)TRk([ + Dk) > 0.

k—1

We see that the above inequality is equivalent to this inequality

Piy, (I+Dy)"P, _—
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The proof of the theorem is complete.

O

Theorem 5.1.2 The system (5.1) is robust exponentially stable, if there exist sym-

metric positive definite matrices Py, and Q;, for all iy, € {1,2,....,m}, k,m € Z+

and positive real numbers §, 3,m, p,€, €1, €a such that the following LMIs hold.

O P, B, B,
BiTleilc —(1=98)e Q0
. P; 0 —el
(4)
P, 0 0
6_1Hi G_IMZ'k 0
_eEg;Hk 0 0
P, I+ Dy)'P
(i4) e DY >0,
P, (I + Dy) P

P,
0
0

k

—62[
0
0

e 'Hl
e ' M!
0
0
—1I
J

where ©11 = 28P;, + AL P, + P, Ai, +Q + (e1m + €ap)l.

k

Proof. Let us set

A11

b
P,

. B
BI'P, —(1-6)e%"Q
0
0

P,

i

0
—€1I
0

0

—62_[

0

o O O

Where AH = Qﬁpzk + AZT sz -+ szAzk -+ Q L (6177 —+ €2p)I, Alk == Azk —+ AAlk(t),

k

@11
BIP,
P,
B

P, B,

k _<1 " ) 5)6_2[3]1@
0
0

0
—61[
0

0

—EQI



Then, we obtain

ik

2, +

QO +

0, +

T
+|H;, M; 0 0]

ABg; (t) P,

0
0

86

0
0
0

HIAT (t)ELP, + P, B, A, (1) H,

MIAT ()ETP,
0
0
Ao |H, M, 0 0]
) - AT
P,E,
0
AT (1)
0
0

o o o O

o o o O
o o o O

By Lemma 2.3.14, we assume ®;, < 0 if and only if there exists € > 0 such that

Qik + |:€_1

T
Hik
MT

Uk

0
0

P,

T
MFT
ik
0
0

P, E;

T
} <0,
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On using Schur complement Lemma (Lemma 2.3.16) in above inequality, it be-

comes that
On P, B, P, P, ¢'Hl P E;
Bl'P, —(1—=68e?"Q 0 0 e'M! 0
P, 0 —el 0 0 0
<0
P; 0 0 —el 0 0
6_1Hl‘ 6_1Mik 0 0 —1 J
€El P, 0 0 0 J I
The proof of the theorem is complete. O

Example 5.1.2 We consider the following uncertain impulsive switched system with
Time-varying delays (5.1) under a given switching law. That is, the switching
status alternates as i1 — i3 — 11 — i3 — - -+ . We consider robust performance of

the system (5.1) by using Theorem 5.1.2. The system (5.1) is specified as follows:

-9 1 -2 0 —0.21 0.001
Al N 7Bl Tr 7H1 - 5
2 =8 1 1 0 —0.1
—11 2 -2 1 —0.3 0.01
AQ = 7B2 = 7H2 - )
1 -8.2 0 1 0 —0.3
—0.3 0 —0.3 0
El = 7E2 =
0.005 —-0.2 0.003 —-0.4
—0.1 0.003 —0.3 0.005 0.1 0
Ml 3 7M2 x ) J = )
0 —0.1 0 —-0.3 0 0.1
-1 0
Dy =D, =
0 -1

The nonlinear functions f;(+), g:(+), ¢ = 1,2 of the form

() 1.1529 cos ()1 () () 1.1529 sin(t)z; (¢) |
1.1529 cos(t)x2(t) 1.1529 cos(t)x(t)
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and

i B 11529 sin(t)a (t — I (1)) ]
01 (t,o(t — (1)) = 11529 sin(®)eat — ()]

[1.1529 cos(t)1 (¢ — ha(t))
| 1.1529 sin(t)xa(t — ha(t))

ga(t, o(t — hy(t))) =

We choose that 0 = 0.5, Fi(t) = Fy(t) = I, e = 1,64 = €3 = 6.2715, 6 = 0.1,
B = 0.1, hi(t)) = 8.0259sin’(5325)t and ho(t)) = 7.8259sin*(=2s)t, that is,

h = 8.0259. By using LMI Toolbox in MATLAB, we use the asumptions (¢) and

(77) in Theorem 5.1.2 to this example. The solutions of LMI are as follows:

o 1.6636 0.3223 2 1.3194 0.2114 7.7471  —0.1482
1 == ; 2 —_— 5 =
0.3223 1.8792 0.2114 1.8478 —0.1482  8.2042

We conclude the relation between ¢ and Apyax.

0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Pmax | 3.4444 | 54718 | 6.9102 | 8.0259 | 8.9375 | 9.7082 | 10.3759 | 10.9648

Therefore, the system (5.1) is 0.1—stable. O

Numerical Simulations

Numerical experiments are carried out to investigate dynamical system by
using dde45lin in Matlab. In Fig. 5.1, the parameters of the system are specified
as in Example 5.1.2 and the initial condition is z(t) = [4 —5]7,t € [-8.0259, 0],

Figure 5.1: The simulation of solutions for the impulsive switched time-varying

delay system in example 5.1.2.
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Consider the uncertain impulsive switched systems with time-varying delays of
the form
#(t) = [Aiy + AAL @O 2(0) + [ By, + ABy (6)] 2(t = hi, (1), t # b
Ax(t) = I(x(t)) = Dyx(t), t =ty (5.2)
a(t) = ¢(t), (t) = (), Vt € [—h, 0],

From system (5.2) where , we take the change of the state variable
y(t) = e’a(t), te RT, (5.3)

then the linear delay system (5.2) is transformed to the delay system

§(t) = Ay (t, B)y(t) + Bi (t, B)y(t — iy (1)), (5.4)
y(t) = e"o(t), y(t) = Be™o(t) +™y(t) t e [=h,0],

where

Bi,(t,8) = "5 B; () = ¥ [Bik +AB;, (t)]’

We introduce the following notations for using in Lemma 2.1,

Zn P, By, (1) + ™MW, K, Ay, (t,8)
®;, (t) = | BL(t)P, + Wi, —e 2"Qy +0Qi, — W; K;, B;, (t) :
Zi (t, ) K, Esz (t)K; 22, — 2K,

where

S = Xf; (t,8) P, + -Pikzik (t,0) + Qi — Gﬁhmk~
Lemma 5.1.3 Let A, (t), B; (t) € R™™ be given matrices for all iy, € {1,2,...,m},
for all k,m € N as in system (5.4). Let P, Qi;., Wi, and K, for all i), €

{1,2,...,m}, for all k,m € Z* be symmetric positive definite matrices and positive
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real numbers §, 3, €, €, and h. Then ®;, (t) <0 if and only if

Ay DB, + MW, KyA(8) ¢'HT P E, ¢'HT 0 |

* Agy KBy, M 0  'MF 0

* * Ass 0 0 0 e I, By,

* * * I J 0 0 <0,
* * * * -1 0 0

* * * * * —I J

* * * * * * I

(5.5)

where Ay = A} (B) Py, + Py, Ai, (8) + Qi, — e”" Wi, Agy = —e271Qy +0Q;, — W
and Agg = h2626hVVik — 2sz
Proof. We consider ®; (t) for t € (tg, tkt1], i € {1,2,...,m}, for all m,k € Z* as

=1 Pikéik (t) + eﬂhmk Kikzik (t,5)
O, (t) = | BL(t) P, + W, —e 20Qy + 0Qy, — Wi K;, B;,(t) :
A, (t,5)K,, BY (1)K, h2e20hW, — 2K,

where
—_ —T —
=11 = Azk (ta ﬁ)jjlk + PlkAlk (t7 ﬁ) + Qlk ot eﬁhWik-

Then, we have

A P, B, + "W, K, A (B)
@, (t) = |BELPR, +eMW, —e?Qy +06Q; —~W; Ky, Bi,
AT (B)K; BIK,, 2y, — 2K,
o1 Py Ey N ()M, K B A, (8 H;
+ | MEAT (t)EL P, 0 K E;, A, (t)M;,
HIAT ()ET K, MIAT (H)ELK, 0
A Py By, + "W, K, A, (t, B)
= | BLP, + Wi —e?Qy +06Qi, Wi, Ky By (1)
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P, E; HY
+ 0 | AL [Hk M, 0}+ M| AL [Eggpik 0 0},
0 0

HEAT (t)E! P, By Lemma 2.3.14, ®; (t) < 0 is equivalent to this inequality

Ay P, B;, + GﬂhVVz‘k KikZik (t, 5)
Bl P, + "W, —e?hQ;, +6Q;, — W, K;, B;, (t)
_T ~
T
e 'H! ePyE; 0 ; ; -1 |e'Hl eP, E;, 0
+ e_lMg; 0 0 e‘lMiT 0 0 <0.
—Jr I g
0 0 0 0 0 0

By using Scher complement Lemma (Lemma 2.3.16) in above inequality, the above
inequality is equivalent to

- -

A Py B, + "Wy K A, (t.5) e 'H €P,E;
BI'P, + "W, A KBy (t) e 'ME 0
A (t,8)K, BY (1)K, Ass 0 0o | <o,
e 'H, eflMik 0 —1 J
| ¢ELP, 0 0 JT -1 |

Using Lemma 2.3.14 and Schur complement Lemma (Lemma 2.3.16) again, the

above inequality is equivalent to

i PuBi + MWy, Ky Ay(8) eHL ePE, 'HL 0

* Agy KBy, e'MT 0  g'ME 0

* * Ass 0 0 0 eI, By,

* * * -1 J 0 0 <0,
* * * * —1 0 0

* * * * * -1 J

* * * * * * —I
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where Ay = Al (B) Py, + Py, A, (8) + Qi — PMW,  Agy = —e21Q; +6Qi, — Wi,
and Agz = h2€2ﬁhVVik — 2K;,. The proof of the lemma is complete. O
Theorem 5.1.4 The system (5.2) is robustly B— stable, if there exist P, Qi , Wi,
and K;, be positive definite symmetric matrices for all iy € {1,2,...,m}, m,k € Z*

and positive real numbers 9, (3, €, €, and h such that the following LMI hold.

Ay Aw K, Au(f) HL cPE, a'HL 0
* Dy KBy, e'ME 0 g'ME 0
* * Aass 0 0 0 el B,
(i) * * * -1 J 0 0 <0,
* * * * —1I 0 0
* * * * * —1 J
| * * * * * =7 |
(i) P THDTRY
_Pik(f + Dy,) P,

(222) Qlk — Qik—l < 0,
(iv) Wi, — W, _, <0,

1k—1
wh@r@ A11 - AT (ﬁ)P +RkAZk (/8)+sz _eﬁhmka AQZ —€ 2ﬁhQ +5Q1k Zka
Alg = P B +e hVVZk and Agg = h2€25hmk — QKZk
Proof. For t € (tx,try1], we define the following Lyapunov function for system

(5.4) of the form

V(t,y@))zyT(t)Bky(tH/t ot " (5)Qi, y( ds+he%h/ /+ W (o) dods.

The derivative of V' along the trajectories of system (5.4) is given by
DYV = T (t)Py(t) +y" (t)P,y(t)
y" (0)Qiy () — (1= hi (0)y" (t — Py (1) Qi y(t — hi, (1))
0

+h2e2hyT (YW, 9 (t) — he®h / gt (s + )W y(s +t)ds
—h

y (A, (t, B)Pyy(t) + y" (t = hi, (0) By, (t, ) Pryy(t)
+yT () Py (1) Ail (8, By (t) +y" (1) Py (8) By (t, B)y(t — hiy (1))
' ()Qiy(t) — (1= )y (t — hi (1) Quy(t — hi, (¢))

IN
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0
+h2e2PhyT (YW, y(t) — heh / g (s + ) Wi y(s +t)ds

+ 20" () K | = 9(t) + Ay (1, B)y(t) + By (1, B)y(t — hi, (1)

y(t) y(t)
< | Oy(t — by, ()| @i () | Oyt — by, (1)
0 ()

By estimation the last term for above inequality by using Jensen’s Inequality, it

follows that

0
—hewh/ g (s + ) Wi (s +t)ds
—~h

0
< _h(t)e / G (s + )W, (s + t)ds
—h(t)

t

L1 4@%@/ JT ()W, (5)ds
t—h(t)

< e [y0) = e = ha )] Wi, [000) — (e — b, (1),
< eI O y(t) — y(t — hiy ()] Wi [o0) —ylt — B ()]

< =Myt )W y(t) + 267 Oy (Wi y(t — hy(2)

—e* iy T (= by, (£) Wiy (t = B (1)) (5.6)
and
=i P’ikéik (t) + oWy, K, Ay, (t,3)
q)ik (t) = gz; (t)sz + eﬁhWik _ei2ﬂhQik + 5@% - I/Vl Klkélk (t) )
where
= A2 = Bh
—11 _Aik<t7ﬁ)‘Pik +‘P'ikAik(t7/8)+Qik —€ VVik’

(t,0) = A, + AA; () + 51,

A,
B, (1,8) = OB, (1) = 0B, + AB (1),
that is, A} (8) = A;, + 8I. By (i) and Lemma 5.1.3, we conclude that

DYV (t,y(t)) < 0. (5.7)
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Integrating both sides of (5.7) from 0 to ¢, we obtain

V(t,y(t) = V(0,4(0)) <0,

and hence

t
yT(6)Pyy(t) + / y7(5)Qs,y(s)ds + he?® / / Wi i(a)dads
t hzk(t) J,_S

0
T ; 28h
</ OP0 + [ VORI e / / W,y i(a)dads
0 0 )\
| v 9Quus)ds < Mm@l [ e%dsz%@a—e—%wnwa
—h —h
we have
)\ . (P )H 2 ) 2 max(sz) —25h 2
e e e
LRI (Wi ) sup |6, ]2 (5.8)

Therefore, the solution y(t, ¢, 1) is bounded. Returning to the solution x(¢, ¢, 1)

of system (5.2), it is easy to see that

lyO)| = [lz(0) ]| = ¢(0) < [l#],

we have
l2(t, 6, 0)|| < E($)e?
e Aas (P82 + 2mo2(@0) (1 =22
o vl ={~—"——;
FORBERIN, 00 (Wi, ) sup{ 6], 011} }%
)\min(Pik)

This means that the system (5.2) is robustly f— stable. We will consider the
case at the time point t;, k = 1,2,3,... when the system switches form the ¢, ;

subsystem to the t; subsystem. To ensure the g— stability, we need to show that

V(5 y(th) — V(te, y(te)) < 0. We have
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Vit y(t) = Vite y(te))
= ?JT(@)P%Q(@) Y yT(tk)Pikfly(tk)

" / 2957 (5)[Qs, — Qi |2(s)ds

+h62ﬂh/ / W — Wi, - ] (av)dads
t+s
= w(tn) ™ [(I+ DY) Py (I + Dy) = P |e*ra(ty)

. /t ezﬁsxT(s> [sz _ Qik,Jx(S)dS
t—h;, (t)

—|—h62ﬁh/ / W — Wi, - ] (a)dads
O il [(1 + DR, (t:)(I + Dy) — PiH} ()

o[ T () — O |u(s)ds
t—h, (1)

et / / W W, _ ](a)dads
t+s

By assumptions (i7), (i77) and (iv). We have
[(1 + D), (I + Dy) — Pi,H] <0, Q,—Q <0, Wiy —W,_,<0.

Therefore, V (¢, y(t})) — V (¢, y(tx)) < 0. The proof of the theorem is complete.[]
Example 5.1.4 We consider the following uncertain impulsive switched system with
Time-varying delays (5.2) under a given switching law. That is, the switching
status alternates as 11 — iy — 11 — i3 — - -+ . We consider robust performance of

the system (5.2) by using Theorem 2.2. The system (5.2) is specified as follows:

-7 1 -2 0 04 0.1
Al = aBl = 7H1 = )
-1 —6 0 3 0 —-04
—6 1 1 0 —0.5 0.2
A2 = 7B2 = 7H2 - )
2 =8 0 =2 0 0.7
0.3 0 —0.3 0
E, = aEQ = ’

0.1 —0.3 0.2 04
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0.5 0.3 0.6 0.1 0.5 0
1= 7M2 - 7‘] -

0.1 04 0.2 0.5 0 05
We choose Fi(t) = Fy(t) = I, e =€ =€ = 1,60 = 04, § = 0.1, hy(t)) =
1.8518 sin®(124=)t and hs(t)) = 1.8518sin* (795 )¢, Le., , h = 1.8518. By using
LMI Toolbox in MATLAB, the solutions of LMI are as follows:

10.2589 —0.9181 8.7370 0.6651
1= 42 =
—0.9181 9.3092 0.6651 6.5525
0 46.6969 —2.1673 31.8035 —1.5450
1= s Wo —
—2.1673 44.4882 —1.5450 29.6337
0.3578  —0.0632 0.1553  —0.0059
Wl = 7W2 = )
00632 0.3406 00059 0.1334
1.4810 —0.1887 1.6788 0.1774 -1 0
Klz 7K2: JDIZDQZ )
—0.1887 1.2210 0.1774 0.9244 0 -1

and we find the maximum of time-varying delays (hp.x = 1.8518). We conclude

the relation between 0 and Apay.

) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pmax | 3.5619 | 2.6341 | 1.8518 | 1.1756 | 0.6312 | 0.3716 | 0.3168 | 0.2343

Therefore, the system (5.2) is 0.1—stable. O

Numerical Simulations

Numerical experiments are carried out to investigate dynamical system by
using dde4blin in Matlab. In Fig. 5.2, the parameters of the system are specified
as in Example 5.1.4 and the initial condition is z(t) = [3 —3]7,¢ € [-1.5,0],
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Figure 5.2: The simulation of solutions for the impulsive switched time-varying

delay system in example 5.1.4

Next, we consider the linear system with time-varying delays of the form
x(t) = Azx(t) + Bx(t — h(t)). (5.9)

Corollary 5.1.5 The system (5.9) is f— stable , if there exist P, Q, W and K be
positive definite symmetric matrices and positive real number 0, 3, h such that the

following LMI hold.

AT(B)P + PA(B) + Q — "W PB + "W KA(B)
BTP 4 Phyy —e hQ +6Q — W KB < 0.
AT(B)K BTK h2e?PhW;, — 2K

(5.10)

Example 5.1.5.1 We consider the linear system (5.9) with time-varying delays in

the form

i(t) = () + (t — h(t)). (5.11)
0 —0.9 1 1

We use the MATLAB LMI Toolbox for this example, we can compare with the

results of other researchers, a summary is given in the following table by using the
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conditions in Corollary 2.3:

Methods | Amax (0 is unknown) | Apax (0=0.1) | hmax (0=2) | hmax (h(t):O)

Su [42] 0.405 . . -

Kim [1§] - 0.945 Not defined 1

Yue [55] - 0.972 Not defined 1

Park [34] i . a 4.359
Fridman [9)] - - - 4.470

Yan [54] 0.999 3.604 0.999 4.472
Our results 0.999 3.604 0.999 4.473

Our results use the convergent rate (5 = 0.000001) for the condition in Corollary
5.1.5
Example 5.1.5.2 We consider the linear system (5.9) with time-varying delays in

this form

-3 =2 —0.5 0.1
i(t) = x(t) + (t —h). (5.12)
1 0 0.3 0

We use the MATLAB LMI Toolbox for this example, we can compare with the
results of other researchers, a summary is given in the following table by using the

conditions in Corollary 5.1.5:

Methods | hmax (6=0) | Amax (8=0.4) | hmax (3=0.6 ) | hmax(5=0.8)
Liu[22] 0.964 0.281 0.124 0.048
Kwon[21] 00 2.649 1.765 1.345
Our results 00 2.723 1.831 1.361
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5.2 Stability Criteria of Uncertain Impulsive Switched
LPD Time-Delay System with Nonlinear Pertur-
bation

Consider the uncertain impulsive switched linear parameter dependent (LPD) con-

trol system with time-varying delays and nonlinear perturbations of the form

(

i(t) = Ai (@)a(t) + Bi(@)a(t — hiy (1)) + fi, (¢, x(t)

+ i, (tv .’E(t - hik (t))>7 t 7é lk;
Az(t) = x(t) — z(t7) = Gi(a)z(t — hi (1)), t=ty;  (5.13)
z(t) = o(t), Vt € [—h, 0],

A~

Ai(0) = [As,(0) + A4, ()], Bi(0) = [Bi(e) + AB, ()],

where z(t) € R" is the state, n € Z* and h;, (1) is a positive function represent-
ing the time-varying delays. ¢(t) is a piecewise continuous vector-valued initial
function. A;, («), B;, (o) and Gy () are uncertain M"™*™ matrices belonging to the

polytope of the form

N N
[Ai (@), By, ()] = [Z jAi s ) ajBikvj:| ,
j=1 J=1

N
ZQj = 170@' Z 0, Aik,jaBik,j = M”Xn,j — 17 ...,N,
=1

and

N
Gk<04) = ZO&ijJ, sz‘ S Mnxn,j =1,..,N.

j=1
The uncertainties f(.), g(.) represent the nonlinear parameter perturbations with
respect to the current state z(¢) and the delayed state z(t — h;, (t)), respectively,

and are bounded in magnitude:
i (4 () fi (8,2 (t)) < na” (H)a(?),

9 (tw(t = h(t))) g, (t, 2o, (t = h(t))) < pa (¢ — hi, (1)) (t — b, (1)),
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where 7, p are given nonnegative constants. Az(t) = z(t]) — x(t), =(t,) =

lim z(t — v), lim z(ty + v) = z(t)) = x(tx) means that the solution of the
v—0

v—0t

impulsive switched system (5.13) is right continuous. i € {1,2,....m}, k € N,
m € N, t; is an impulsive switching time point and £y < t; <ty < --- < to. Under
the switching law of system (5.13), at the time point ¢z, the system switches to
the iy subsystem from the i;_; subsystem. The delay h;, (t) is any time varying

bounded continuous nonnegative function satisfying

for all 44 and ¢ > 0. The uncertainties AA;, (t), AB; (t) and AC;, (t) are time

varying matrices of the form
AA; () = B (o)A, ()M (), AB;, (t) = E;, () Ay, (1) N, (),
where A;, (1) satisfies
A ) =F, O —-JE, 0], I-JJ">0.
The uncertain matrix F; (t) satisfies

() < 1. (5.14)

[ u(a)  Pla)Bi(e) Pla) Pa)]
by (o) | BE@P@  bP@ 00 | _
P( ) 0 —61[ 0
I P(a) 0 0 —el
where
By, (@) = AT (@)P(a) + P(a) Ay, () + (e + e2p)] + aP(0),
R ILE
and

Vi, (5,1) = Az;,jPl + PjAi 1+ (e1m + €2p)] + aP;. (5.16)
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Lemma 5.2.1 Let A;, (), B;, (o) € R™" be given matrices for all iy, € {1,2, ..., m},
forallm,k € Z* asin (5.13). Let P, € R™"™, i = 1,2, ..., N, be symmetric positive
definite matrices and positive real numbers 1, p, €, €1,€2,( and 0 < b < a. Then,

O, () <0 if and only if

Vi (3,5) PiBig Py P €M ; €PiEy
BZ»TMPj —bP; 0 0 e‘lNl{J 0
/ P; 0 —el 0 0 0 .
(Z) S_Clajzla 7N
P; 0 0 —el 0 0
6_1Mik,j 6_1Nik,j 0 0 —I J
By P 0 0 0 J -1 |
Vi (3, 0)  PiBiya P P €M, ePEj
BiTk’jPl —bP; 0 0 e_lNi{,j 0
B P; 0 —el 0 0 0
(22)
P; 0 0 —el 0 0
6_1Mik,j 6_1Nik,j 0 0 —1 J
eEiTMPl 0 0 0 J —1I
Yy (l,7) PBi,; P, Py E_lMg,;l ePE;, ;
BE;JPJ- —bP, 0 0 e’lNgl;l 0
b 0 —el 0 0 0 2CT
+ < ,
P 0 0 —el 0 0 N -1
6_1Mik,l E_lNik,l 0 0 —1I J
EEZ?;JB 0 0 0 J -1
j=1...N—1,l=75+1,....N.
Proof. We consider ®; (o) < 0 define as
Ui (@) P(a)Bi(a) Pla) P(a)
BT (a)P(a)  —bP(a 0 0
Q, (a) = ACE () <0. (5.17)
P(«a) 0 -l 0
P(a) 0 0 —el
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Then, (5.17) transforms to the below inequality

Yi(@)  P(@)By(a) Pla) Pla)
b (o) BT(a)P(a) —bP(a) 0 0
' Pla) 0 —al 0
P(a) 0 (——"
A (@) P(a)E;, (a)A;, (1)N;, ()
/ NE(a)AT (1) EL () P(c) 0
0 0
0 0
dula)  P(a)By(a) Pla) Pla)
B Bl (a)P(a)  —bP(a) 0 0
N P(a) 0 —al 0
P(a) 0 0 —el
P(a)E;, (o)
+ ! i (1) [ M, (@) Ny(a) 0 0]
0
0
P(@)Ey ()]
My (@) Nyla) 0 0] ALO) ! <0
0
0

where

Vi (@) = A] (a)P(a) + P(a)A;, (a) + (e + e2p)] + aP(w),

Ai (o) = My () Af (D) E; (a) P(a) + P(a) By, () Ag, (1) My ().

o o o O

IO o O OI




103

By using Lemma 2.3.14, the above inequality holds if and only if there exists ¢ > 0

such that
Vi (@) Pla)Bi(a) Pla) P(a)
Bl (a)P(o)  —bP(a) 0 0 /,
P(a) 0 —el 0
P(O{) 0 0 —62[
) _ T
e_lMgg(a) eP(a)E;, (o) e_lMg;(oz) eP(a)E;, ()
e 'NE(a) 0 -1 | e N () 0
I —J
0 0 0 0 <0
—Jr I
0 0 0 0
0 0 0 0
(5.18)
By Schur complement lemma, (5.18) is equivalent to
Ui (a)  P()Bi(a) Pla) Pla) e 'Mj(a) eP(e)E;(a)
Bi(a)P(a) —bP(«) 0 0 e‘lNi(a) 0
P(a) 0 -l 0 0 0
< 0(5.19)
P(a 0 0 —el 0 0
e M (o) €N (a) 0 0 -1 J
_eEiTk (o) P(cv) 0 0 0 J -1 |
From (5.19), we obtain
Vi, (5,0)  PiByy P Py e 'ML, €PEy,
Bl.,P  —bP; 0 0 !N, 0
N
P; 0 —al 0 0 0
S a 7 ' <0, (5.20)
j=1 =1 1D] 0 0 —62[ 0 0
671Mik,j EilNilﬁj 0 0 —I J
€ET B 0 0 0 J I




where 1;, (j,1) = AT P+ P;A;

(73]

we obtain the following identities :

ZozlAZozB ZOPAB—FZZOJO(@AB + A;Bj],
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=1 j=i+1

=1 j=i+1

N -1) ZQQC—2Z Z a;0C = Z Z

=1 j=i+1

ivd + (€1n+ €2p) ] +aP;. The facts that Y| a; = 1,

a; — aj] 20>0.

Hence, the inequality (5.20) is equivalent to the following inequalities

Bg;jp —ij
Pj 0
Pj 0
€'\ Mi; €'Ni;
_eElT“Pl 0
and
B ;b
P
P
E_lMlk’]
EL, P
B} P
Py
+
Py
_lMlkv
| €E; P
j=1,...,N—

P P _1Ml71:J
0 0 *1N171;j
—ei 1 0 0
0 —eol 0
0 0 e |
0 0 J
PB,, P P
—bP; 0 0
0 —e1 1 0
0 0 —eol
€N, ;0 0
0 0 0
PB,, P P
—bP, 0 0
0 —erl 0
0 0 —el
€ Nya 0 0
0 0 0
L,l=j+1,..,N.

EPjEik,j
0

G O© O

—1 T
Mlk j

—1n7T
Nikvj

< _Clu

o O© O

j=1,..,N.

(5.21)

2T

IN
=
|

(5.22)
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Therefore, the inequality (5.17) is equivalent to (5.21) and (5.22). The proof of
lemma is complete. U
Lemma 5.2.2 Let Gi(a) € R™™ be given matrices for allk € Z+ as in (5.13). Let
P,e RV™, 1 =1,2,...., N be symmetric positive definite matriz and positive real

numbers O, ¢ for all k € Z*. Then

P(a P(a)Gr(a
) WOl g, (5.23)
Gi(a)P(a) Gi(e)P(a)Gi(a)
if and only if
-6l 0 P;
(Z) 0 —0pd G;]Pj <-=¢I, j=1,..,N.
P PGy, =B
—ol 0 P; —ol 0 P,
) 21
@ | 0 —&I GLP|+| 0 =&l GLP| <y
P PiGr =B B PiGr; —B
j=1,..N—11=j+1,..N.
Proof. Consider inequality (5.23), we have
P Pla)G
(@) @) | _,
Gi(a)P(a) Gi(e)P(a)Gi(a)
Equivalently,
—o,l 0 I
+ Pa) I Gila)] <0.

0 —(Skf Gz (Oé)
By using Schur complement Lemma in the above inequality, we get

—01 0 I
0 &I GF(a) | <0. (5.24)
I Gpla) —P7'a)
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Pre-multiplying (5.24) by diag{I, I, P(a))} and post-multiplying by diag{I, I, P(a)}.
We obtain
—Orl 0 P(«a)
0 —op 1 Gi(a)P(a)| <0. (5.25)
Pla) P(a)Gia) —P(a)

The facts that ZZN L @ = 1, we have the following identities :

ZOQA Z%B ZQQAB +Z Z oo [A; B + A;Bi),

=1 j=i+1
—1204%—2220@0@( ZZ a; — oy 20 >0.
=1 g=i+1 i=1 j=1+1

Hence, the 1nequahty (5.25) is equivalent to the following inequalities
—0pl 0 P;
0 —0rd G;;FJ.P]- <-—¢I, j=1,.,N,
by PGy  —P

and
—0 ! 0 P; —o,l 0 P,
T - - 2C1
O —6k[ GkJ‘PZ + O —5kI Glc,lpj >~ m,
Py PGy =D B PGy —h
j:]‘7""N_]-7l:j+1,-..7N.
The proof of lemma is complete. n

Theorem 5.2.3 The system (5.13) is robustly exponentially stable, if there exist
symmetric positive definite matrices P;, 1 = 1,2,..., N, and positive real numbers
a,n,p, € €,6,C,0<b<a,pu>1,0,>0 for all k € ZT such that the following

conditions hold.

Ui(G.J) PiBi; Py Py € 'Mj; ePE
T — T

BI P, —bP;, 0 0 WL, 0

| P, 0 —al O 0 0 |
(Z> S_Cla]:L aN

P, 0 0 el 0 0

GilMik Ri EilNikJ’ 0 0 —1I J

Elp 0 0 0 J 1
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Vi (5,0) PiBiya Py Py e 'Mi, ePiEy
BiTk’jPl —bP; 0 0 e‘lNi{J 0
B P; 0 -l 0 0 0
(12)
P; 0 0 —el 0 0
6_1Mik,j 6_1Nik,j 0 0 —1 J
eEiTmPl 0 0 0 J -1
i (1,7) PBi; P P e_lMi,l e E;, ;
P, 0 —el 0 0 0 2C1
_|_ S 9
P 0 0 —el 0 0 N-—1
6_1Mik,l 5_1Nik,l 0 0 —1I J
eEiTkJPl 0 0 0 J -1
j=1,..N—-11l=45+1,.. N.
—0p1 0 P;
(131) 0 " G”ﬁjpj <-CI, j=1,..,N.
Py PiGy; P
—o,d 0 P; = 0 P,
' 201
(iv) 0 =0l GLE|+| 0 -6l GLP S;jvﬁé—I,
I P, PGy —P P PG,; —PB
j=1,.,N—1,l=j+1,..,N.
< - :
(v) ph< inf{te —ti}
(’UZ) 1< max{gk + 5]€€/\h} < M < 6)\T, 51@ = m, 1€ {]_,2, ...,N},

k€ Z* and \ > 0 is the unique positive root of the equation N\ — a + be M = 0.

Proof. We consider, for ¢t € [ty_1,tx), the following Lyapunov function
V(z(t)) = 27 (1) P(a)x(t).
It is easy to see that

Mlzl* < V(x(t) < Aoz,
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where A\ = min(Ayin(FP)) and Ay = max(Apax(P;)), @ = 1,2,..., N. The Dini
derivative of V' (z(t)) along the trajectories of system (5.13) is given by

DYV ((t) = " (6)P(@)a(t) + 2" (t)P(a)i(t)
= [Ai(@)a() + By(@)a(t = hi, (1) + fiu (1, 2(2))
i (1 (t — iy (1) " Pa)a(t) + 2(H)P(a) | Aq ()2 (t)
By (@)l = hiy (1) + fi (6,2(1)) + g, (8,2t = By (£)))].

Thus, we obtain

DYV (x(t)) < :CT(t AT(Q)P(a)x(t) + xT(t — h, (t))Bg;(a)P(a)x(t)

Kk

)

+a (1) P() Ay, (@)2(t) + 2T (1) P(a) By, (@) (t = h, (1))
(
(

+€17’/$T t x(t) T 61f$<t7x(t>)fik (t,ﬂ?(t))

+eapr’ (H)a(t) — g, (¢ 2(t — hi (1))gs, (8, 2(t — hi, (1))

Since,

Aile) = [A5,(0) + DA, (1)), BE (@) = | Bi(a) + AB, (1)),
e (0)2(t) - e fL (L a(t) i, (1, 2(8)) 2 0,

eapa” (t)z(t) — eagy, (t, x(t — hi, (1)))gi, (£, (¢ — hi (1)) > 0,
we obtain

DTV (x(t))

IA

y" ()P, ()y(t) — aV (x(t)) + bV (a(t))
y' ()P (a)y(t) — aV (x(t)) + 0V (x(t)), (5.26)

VAN

where

V(x(t)) = sup {V(z(s))},

t—h<s<t
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and
di(a)  P(a)Bi(a) Pla) P(a)
o, ()= BI'(a)P(a)  —bP(a) 0 0
P(a) 0 —al 0
P(a) 0 0 —el]

() = AT (a)P(a) + P(a) Ay, () + (e + e3p)] + aP(cx),

and y7(t) = [#7(t) 2T (t—hy, (1)) fE(t2(t) gl (¢ 2(t—hi(t)))]. From (5.26),
assumption (7), (74) and Lemma 5.2.1 then we conclude that

DYV (x(t)) < —aV (x(t)) + bV (z(t)). (5.27)

From a > b > 0 and Lemma 2.3.17, there exist v > 1, A > 0 such that for all
te [tkflatk%k € N7

V(x(t)) < AV (z(tp_y))e Mt-1), (5.28)

where

Vie(te)) = sup  {V(z(s))},

tp—1—h<s<tp_1

and A > 0 satisfying A — a + be = 0. We consider the case when ¢ = t;. In this

case, we have

Vie(ty) = o' (t)P(a)x(ty)
= [2(ty) + Gr(@)z(tk — h(tp)]T P(@)[2(ty) + Gla)x(ty — h(ty))]
= xT(t,;)P(a)x(t;) + 2xT(t,: P(a)Gr(a)x(ty — h(tg))

)
! (1 = h(t)) G () P() Gr(@)a(t — h(ty))
)

) { (1) ]

By assumption (#ii), (iv) and Lemma 5.2.2, we get

P(a P(a)Gi()
Gi(a)P(a) Gi(a)P(a)Gk(a)

[ () ]

V(z(ty)) < &V (z(t,)) + 0V (x(ty — hity))) (5.29)
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where 6, = m, i=1,2,3,...,N. For z(s) = ¢(s), with s € [ty — h, to], we
will show that

V(z(t)) < "M max(Amax(P)||0]|2e 2t € [tey, 1),k € N (5.30)

We will prove inequality (5.30) by mathematical induction. Indeed, when k = 1,

we have
V(@(t)) < max(Amax (B))[[2(t)[|? = max(Amax () [6(#)[*,1 = 1,2,3, ..., N.

|, we have

Since, ||¢]|* = supiy—n<i<io||0(t)
V($(t0)) < maX()\max(Pi»H(bHQ'
Thus, we conclude that

V(x(t)) YV (z(to)e M) < 4y max(Amax (B)) || ]|2e )

IA

< AMO max(Amax(P))||@|?e 70t € [to, t1),i = 1,2,3, ..., N.

Therefore, (5.30) holds for k = 1.

Next, we assume that (5.30) holds for & < m,m > 1. Then, we need to show that
(5.30) holds when & = m + 1. By the above induction assumption, (5.27) and
(5.28), we have

V((tm))

IN

5_mV(x(t;%)) + ng(:E(tm - h(tm))):
MG mas O ()

IA

M A () ]~

IN -+

VM B + Ome™) max(Amax (P)) || 6] 77 E )

IN

Y M max(Amax () [[¢]|*e 1), (5.31)
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Hence, it follows from conditions (vi), (5.27) and (5.30) that

’}’V(x(tm)ef)‘(tftm) =~ max {V(:E(t))}eik(tftm)

ton—h<t<tm

= ymax{ sup V)L V() fe N

tm—1—h<s<tm

< 7max {’)’mMmfl max(Amax (P;))||¢]| 2= tm = =t0)

V(a(t))

IN

M () ]P0 e N0-t)
_ ,merl max {Mmfle/\h’ Mm} maX(Amax(Pi)) ||¢||267)\(tm*t0)e*/\(t*tm)

< AT M™ max(Amax () || ¢[00,
Therefore, (5.30) holds for all £ € N. Finally, we have to show that

le(®)]] < Kllolle* ")t > 4, (5.32)

WhereOzZ%[)\—m(:—hm]>07K:\/7'%21'

From ph < infpen[ty — tp_1], we get that k — 1 < t’“*ul—h_to, which implies

(’}/M)k_l < e(tkflfioh)l"(vM) < e(t_tOLl;TWM)’
for t € [tx_1,tx). We obtain that
V(z(t)) max(Amax(F)) 1,110 k=1 —A(t—
t 2 < < max\{ % M 1 A(t—tg)
eI < ot < e e ol e
max()\max(-Pi)> 2 (—)\—&—l"WhM)(t—to) .

=1,2,3,..., N.

Vmin()\min(Pi)) loife . ! o

Therefore, we conclude that (5.31) holds by above inequality. This means that the
system (5.13) is robustly exponentially stable. The proof of theorem is complete.[]
Example 5.2.3 We consider the following uncertain impulsive switched LPD system
with time-varying delays (5.13) where u(t) = 0 under a given switching law. That
is, the switching status alternates as i1 — 19 — i1 — 72 — - -+ . We consider robust
performance of the system (5.13) by using Theorem 5.2.3. The system (5.13) is

specified as follows:

—8.59 0.4 —8.35 0.2
Al (O[ = + (0% s
0.2 —8.045 0.2 —=8.23
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—-8.65 0.1 —-885 0.2
Ag(OZ) = (1 + (%)
0.1 —8.48 04 —8.34
04 O 02 0 03 O 04 O
Bi(a) = o + o , By(a) = oy + s )
0 0.2 0 04 0 0.5 0 0.3
03 0 05 0 04 O 04 O
Ei(a) = oy + Qg yEr(a) = oy + iy ,
0 04 0 04 0 04 0 0.3
06 0 06 0
Ml(af) = (1 + [6%) ]
0 0.5 0 04
04 0 06 0
Ms(a) = oy + ;
0 0.6 0 04
09 0 0.8 0 1.0 0 09 0
Nl(Oé) = + ap ,NQ(OC) = g + Qo s
0 1.1 0 09 0 1.1 0 1.2
5 0 5 0
Gk(CM):Oq + Qo , kEN,
0 5 0 5

and nonlinear functions f;(.), g:(.), ¢ = 1,2 are of the form

1.1529 cos(t)z1(t) 1.1529 sin(t)z1(t)
filt,z(t) =  fa(t, (1) = :
1.1529 cos(t)z(t) 1.1529 cos(t)z(t)
and _ -
1.1529 sin(t)z1 (t — hy(t))
g1t 2(t = (1)) = Ol LI O
1.1529sin(t)x2(t — hy (%))
[1.1529 cos(t)1(t — ha(t))|
galt.x(t = ha(t)) = \al
1 1529 sin(t)zo(t — ha(t))
10
We choose Fl(t) = F2<t) = s =1 ,€1 = €9 = 6. 5345
01
o = ay = 3, li(t)) = 0.1 + sin®*(¢) and h2 = 0.1 + cos?(t). By using LMI



113

Toolbox in MATLAB, we apply the condition (i), ..., (vi) in Theorem 3.3 to this

example shows that the solutions of LMI are as follows:

5.0885 0.0848 4.5709 0.1627
Pla) =m + as
0.0848 5.3186 0.1627 4.6779

0 = 160.6620, a = 10,b = 2, = 0.0711 and n = p = 1.1529. The following
parameters and matrices are required to be satisfied (i), ..., (iv). By (v), (vi), we
can find the parameters constants u = 3.7, A &~ 1.33306. Therefore, this example
of the system (5.13) is robustly exponentially stable. O

Numerical Simulations

Numerical experiments are carried out to investigate dynamical system by
using dde45lin in Matlab. In Fig. 5.3, the parameters of the system are specified
as in Example 5.2.3 and the initial condition is z(t) =[9 —7]7,t € [-1.1,0],

The state x(t)

Figure 5.3: The simulation of solutions the uncertain impulsive switched LPD

system with time-varying delays and nonlinear perturbations (5.13)



