TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xvii
LIST OF FIGURES	xx
LIST OF SCHEAME	xxvi
ABBREVIATIONS AND SYMBOLS	xxvii
PART I	1
DEVELOPMENT OF FLOW INJECTION ANALYSIS FOR THE	
DETERMINATION OF SOME BIOACTIVE COMPOUNDS FROM	
MEDICINAL PLANTS AND PHARMACEUTICAL FORMULATIONS	
CHAPTER I INTRODUCTION	2
1.1 The First Generation-Flow Injection Analysis (FIA)	2
1.1.1 Principle of FIA	2
1.1.2 FIA Instrumentation	3
1.1.3 Dispersion in the FIA	6
1.1.4 Optimization of an FIA System	8
1.2 Flow Injection Analysis of Arbutin in Medicinal Plants and	10
Pharmaceutical Formulations	
1.2.1 Arbutin	10
1.2.2 Previous Analytical Methods for Arbutin Determination	e 11
1.3 Flow Injection Analysis of Curcuminoids in Medicinal Plants and	14
Pharmaceutical Formulations	
1.3.1 Curcuminoids	14
1.3.2 Chemical Constituents in Turmeric	14

Pa	ige
1.3.3 Medicinal Uses and Pharmacology of Turmeric	15
1.3.4 Cosmetics Uses	16
1.3.5 Previous Analytical Methods for Curcuminoids Determination	16
1.4 Research Aims	19
CHAPTER II EXPERIMENTAL	20
2.1 Flow Injection Analysis of Arbutin in Medicinal Plants and	20
Pharmaceutical Formulations	
2.1.1 Instruments and Apparatus	20
2.1.2 Chemicals and Reagents	21
2.1.3 Flow Injection Apparatus	21
2.1.4 Standard, Reagents and Sample Preparations	22
2.1.5 Evaluation of the Proposed Flow Injection Manifold	24
2.1.6 Recommended Procedure	25
2.2 Flow Injection Analysis of Curcuminoids in Medicinal Plants and	26
Pharmaceutical Formulations	
2.2.1 Instruments and Apparatus	26
2.2.2 Chemicals and Reagents	26
2.2.3 Flow Injection Apparatus	27
2.2.4 Preparation of Standard, Reagents and Samples	28
2.2.5 Chemical Reaction	29
2.2.6 Recommended Procedure	30
CHAPTER III RESULTS AND DISCUSSION	31
3.1 Flow Injection Analysis of Arbutin in Medicinal Plants and	31
Pharmaceutical Formulations	
3.1.1 Preliminary Study	31
3.1.2 Manifold Design	31
3.1.3 Absorption Spectra of Arbutin	33
3.1.4 Chemical Reaction	34
3.1.5 Delivery Order of Reagent and Sample	35

	Page
3.1.6 Optimization of Experimental Variables	35
3.1.6.1 Effect of Reagent Concentrations	36
3.1.6.1.1 The Effect of 4-AP Concentration	36
3.1.6.1.2 The Effect of Hexacyanoferrate (III)	36
Concentration	
3.1.7 Optimization of Manifold Parameters	38
3.1.7.1 The Effect of Flow rate	38
3.1.7.2 Mixing Coil Diameter and Length	38
3.1.7.3 Injection Volume	38
3.1.8 Summary of the Optimum Conditions	42
3.1.9 Analytical Characteristics for Arbutin Determination	42
3.1.9.1 Linearity of Calibration curve	42
3.1.9.2 Sensitivity, Detection Limit and Quantitation Limit	43
3.1.9.3 Interferences	44
3.1.9.4 Reproducibility and Accuracy	45
3.1.10 Analytical Applications	49
3.1.11 Flow Injection Analysis of Arbutin	49
3.2 Flow Injection Analysis of Curcuminoids in Medicinal Plants and	50
Pharmaceutical Formulations	
3.2.1 Preliminary Study	50
3.2.2 Manifold Design	50
3.2.3 Absorption Spectra of Curcuminoids	53
3.2.4 Chemical Reaction	54
3.2.5 Delivery Order of Reagent and Sample	54
3.2.6 Optimization of Experimental Variables	55
3.2.6.1 The Effect of Alkaline Media	55
3.2.6.2 The Effect of 4-AP Concentration	55
3.2.6.3 The Effect of Potassium Hexacyanoferrate (III)	57
Concentration	

	Page
3.2.6.4 The pH Effect of Buffer Solution	57
3.2.7 Optimization of Manifold Parameters	60
3.2.7.1 The Effect of Mixing Coil Diameter and Length	60
3.2.7.2 The Effect of Flow Rate	61
3.2.7.3 The Effect of Injection Volume	62
3.2.8 Summary of the Optimum Conditions	63
3.2.9 Analytical Characteristics for Curcuminoids Determination	63
3.2.9.1 Linearity of Calibration Curve	64
3.2.9.2 Sensitivity, Detection Limit and Quantification Limit	65
3.2.9.3 Precision and Accuracy	65
3.2.10 Analytical Applications	67
3.2.11 Flow Injection Analysis of Curcuminoids	70
CHAPTER IV CONCLUSIONS	71
4.1 Flow Injection Analysis of Arbutin in Medicinal Plants and	71
Pharmaceutical Formulations	
4.2 Flow Injection Analysis of Curcuminoids in Medicinal Plants and	73
Pharmaceutical Formulations	
PART II	75
SEQUENTIAL INJECTION ANALYSIS WITH LAB-AT-VALVE FOR	
THE DETERMINATION OF SOLASODINE	
CHAPTER I INTRODUCTION	76
1.1 The Second Generation-Sequential Injection Analysis (SIA)	76
1.1.1 Principle of Measurement and Basic Instrumentation of SIA	77
1.1.2 Dispersion in the SIA	79
1.1.3 Software	80
1.2 Sequential Injection Analysis with Lab-at-Valve (SI-LAV)	82
for the Determination of Solasodine	
1.2.1 Steroidal Glycoalkaloids (Solasodine)	82
1.2.2 Chemical Structure of Glycoalkaloids	82

xi

	Page
1.2.3 Beneficial Effects of Glycoalkaloids	84
1.3 Previous Analytical Methods for Solasodine Determination	84
1.4 Research Aims	86
CHAPTER II EXPERIMENTAL	87
2.1 Sequential Injection Analysis with Lab-at-Valve (SI-LAV)	87
for the Determination of Solasodine	
2.1.1 Instruments and Apparatus	87
2.1.2 Chemicals and Reagents	88
2.1.3 Sequential Injection Apparatus	88
2.1.4 Preparation of Standard, Reagents and Samples	89
2.1.5 Sequential Injection Analysis Method	90
2.1.6 Experimental Protocol	91
CHAPTER III RESULTS AND DISCUSSION	94
3.1 Sequential Injection Analysis with Lab-at-Valve (SI-LAV)	94
for the Determination of Solasodine	
3.1.1 Preliminary Study	94
3.3.1.1 Spectral Characteristics	95
3.1.2 Sequential Injection Manifold Design	95
3.1.3 Optimization of the Experimental Parameters	96
3.1.3.1. Aspiration Order of Reagents and Sample	96
3.1.3.2 Sample, Reagent and Organic Solvent Aspiration	98
Volumes Optimizations	
3.1.3.2.1 Organic Solvent Aspiration Volume	98
3.1.3.2.2 Sample and Reagent Volumes	99
3.1.3.2.3 Volume of Sending Sample to Detector	e 99
3.1.3.3. Flow Rate	101
3.3.3.3.1 Optimization of Sample and Reagents Flow	101
Rates	
3.3.3.2 Flow Rate of Sending Sample to Detector	102

	Page
3.3.3.3 The Effect of Methyl Orange Concentration	102
3.1.3.4. Mixing Coil Length and Internal Diameter	103
3.1.4 Analytical Characteristics	104
3.1.4.1 Linearity of Calibration Graph	104
3.1.4.2 Detection limit and Quantification Limit	105
3.1.4.3 Precision and Accuracy	105
3.1.5 Application	107
CHAPTER IV CONCLUSION	110
4.1 Sequential Injection Analysis with Lab-at-Valve (SI-LAV)	110
for the Determination of Solasodine	
PART III	112
DEVELOPMENT AND VALIDATION OF MICROFLUIDIC SYSTEMS	
FOR DETERMINATION OF DRUG RESIDUES IN HONEY SAMPLES	
COUPLES WITH CHEMILUMINESCENCE DETECTOR AND LIQUID	
CHROMATOGRAPHY-MASS SPECTROMETRY	
CHAPTER I INTRODUCTION	113
1.1 The Third Generation-Microfluidic Systems as Micro Total Analysis	113
(μTAS) or Lab-on-a Chip Technique	
1.1.1 Lab-On-a-Chip	113
1.1.1.1 Chip Materials and Fabrication Technologies	114
1.1.1.2 Advantages of LOCs	114
1.1.1.3 Disadvantages of LOCs	115
1.1.2 Molecularly Imprinted Polymers (MIPs)	115
1.1.2.1 Theory of Molecularly Imprinted Polymers	115
1.1.2.2 Molecular Imprinting Strategies and Procedures	116
1.1.2.3 Parameters of MIP Syntheses	117
1.1.2.3.1 Template	117
1.1.2.3.2 Functional Monomers	117

	Page
1.1.2.3.3 Cross-Linkers	119
1.1.2.3.4 Solvents (Porogens)	119
1.1.2.3.5 Initiators	119
1.1.3 Chemiluminescence	121
1.1.3.1 Theory of Chemiluminescence	121
1.2 Development and Validation of Microfluidic Systems for Determination	126
of Drug Residues in Honey Samples Coupled with Chemiluminescence	
Detector and Liquid Chromatography-Mass Spectrometry	
1.2.1 Drug Residues (Chloramphenicol)	126
1.2.2 Previous Analytical Methods for Chloramphenicol Residue	127
Determination	
1.3 Research Aims	130
CHAPTER II EXPERIMENTAL	131
2.1 Microflow Chemiluminescence Sensor for Determination of	131
Chloramphenicol in Honey Based On Molecularly Imprinted Polymer	
2.1.1 Instruments and Apparatus	131
2.1.2 Chemicals and Reagents	132
2.1.3 Microfluidic Device Design and Instrumentation	132
2.1.4 Standard, Reagents and Sample Preparations	134
2.1.5 Procedures	135
2.2 LC-MS/MS on Microfluidic Device for Confirmatory of	137
Chloramphenicol Determination in Honey Samples Based On Molecular	
Imprinted Polymers	
2.2.1 Chromatographic Evaluation of MIPs Chloramphenicol	137
2.2.2 LC-MS/MS Instrumentation	[–] 137
CHAPTER III RESULTS AND DISCUSSION	139
3.1 Microflow Chemiluminescence Sensor for Determination of	139
Chloramphenicol in Honey Samples Based on Molecularly Imprinted	
Polymer	

	Page
3.1.1 Preliminary Study	141
3.1.1.1 Evaluation of the MIP	141
3.1.1.2 Investigation of Parameters for CL Detection	142
3.1.1.2.1 Effect of H ₂ SO ₄ Concentration	142
3.1.1.2.2 The pH Effect of Phosphate Buffer on the	143
CL Intensity	
3.1.1.2.3 Effect of $Ru(bipy)_3^{2+}$ Concentration	144
3.1.1.2.4 Effect of Oxidant Concentration	144
3.1.1.2.5 Effect of Flow Rates and Sample Volume	145
3.1.1.2.6 Effect of CL Reagents Volume	148
3.1.1.2.7 Effect of Binding Characteristic of MIPs	149
Micro Flow Sensor	
3.1.2 Summary of the Optimum Conditions	150
3.1.3 Analytical Characteristics of the Microfluidic Device for	150
Chloramphenicol Determination	
3.1.3.1 Linearity Range	150
3.1.3.2 Sensitivity, Detection Limit and Quantitation Limit	152
3.1.3.3 Precision	152
3.1.3.4 Accuracy	152
3.1.4 Analytical Applications	152
3.2 LC-MS/MS on Microfluidic Device for Confirmatory of	155
Chloramphenicol Determination in Honey Samples Based On Molecular	
Imprinted Polymers Childing Mail Univer	
3.2.1 Preliminary Investigation	155
3.2.1.1 Optimization of the SPME Conditions	[–] 155
3.2.2 Chromatographic Evaluation for CAP-MIP	157
3.2.3 Chromatography and Mass Spectrometry	159
3.2.4 Analytical Characteristics	161
3.2.4.1 Linearity of Calibration Curve	161

	Page
3.2.4.1.1 High Performance Liquid Chromatography	161
(CAP-MIP Column)	
3.2.4.1.2 LC-MS/MS (CAP-MIP on Chip)	162
3.2.4.2 Sensitivity, Detection Limit, Quantification Limit	163
3.2.4.2.1 High Performance Liquid Chromatography	163
(CAP-MIP Column)	
3.2.4.2.2 LC-MS/MS (CAP-MIP on Chip)	163
3.2.4.3 Precision and Accuracy	164
3.2.4.3.1 High Performance Liquid Chromatography	164
(CAP-MIP Column)	
3.2.4.3.2 LC-MS/MS (CAP-MIP on Chip)	164
3.2.5 Analytical Applications	164
CHAPTER IV CONCLUSIONS	166
4.1 Microflow Chemiluminescence Sensor for Determination of	166
Chloramphenicol in Honey Samples Based on Molecularly Imprinted	
Polymer	
4.2 LC-MS/MS on Microfluidic Device for Confirmatory of	168
Chloramphenicol Determination in Honey Samples Based on Molecular	
Imprinted Polymers	
SUGGESTION FOR FURTHER WORK	168
REFERENCES	170
APPENDIX	179
CURRICULUM VITAE	S 181
LIST OF PUBLICATIONS	187

xvi

LIST OF TABLES

Table		Page
1	Effect of 4-AP and hexacyanoferrate (III) concentrations on	37
	sensitivity	
2	Effect of flow rate of reaction and carrier stream on sensitivity	39
3	Effect of mixing coil length on sensitivity	40
4	Effect of injection volume on sensitivity	41
5	The optimum conditions for determination of arbutin	42
6 5	The effect of interferences on the peak height (mV) of 20.0 μ g mL ⁻¹	45
	arbutin standard solution	
7	Intra-day and inter-day variability of the FI spectrophotometric	46
	determination of arbutin	
8	Comparison of accuracies for arbutin determination by FIA and	47
	HPLC methods	
9	Comparison of the proposed FI method with selected earlier reported	48
	methods	
10	Effect of aspiration order of reagents and sample	55
11	Effect of alkaline media added to hexacyanoferrate (III) solution	56
12	Effect of 4-AP and hexacyanoferrate (III) solutions	58
13	Effect of pH of borate buffer solution on sensitivity	59
14	Effect of mixing coil length on sensitivity	60
15	Effect of flow rate of carrier and reagent streams on sensitivity	62
16	Effect of injection volume on sensitivity	63
17	The optimum condition for determination of curcuminoids content	64
18	Analytical characteristics for curcuminoids determination	64
19	Precision of FI method	66
20	Accuracy of proposed FIA method for determination of curcuminoids	68

Table Page 21 Comparative determination of total curcuminoids using the proposed 69 FIA method and spectrophotometric method 22 Aspiration order of reagents and sample 97 23 Effect of chloroform volume 98 99 24 Effect of sample volume Effect of methyl orange volume 99 25 26 Effect of flow rate of sample and reagent on sensitivity 101 27 Effect of mixing coil length and internal diameter on sensitivity 103 28 Precision study for solasodine 106 29 Percentage recovery of solasodine content in Solanum species by the 107 SIA-LAV proposed method 30 Comparative determination of solasodine contents in various 108 Solanum species using the SIA-LAV method and the spectrophotometric method 31 Comparison of the proposed method with selected earlier reported 109 methods 32 Effect of H₂SO₄ concentration 143 Effect of Ru(bipy)₃²⁺ and Ce(IV) concentrations 33 144 34 Effect of flow rate 146 35 Effect of sample volume 147 36 Effect of reagent volume 148 37 The binding characteristics of the MIP in the microfluidic device 149 38 The optimum conditions for the determination of chloramphenicol 150 residue 39 Precision study for chloramphenicol 154 40 Analytical recovery of chloramphenicol added to honey sample 154 solution MIP-SPME conditions of CAP from $(3.10 \times 10^{-2} \mu mol L^{-1})$ and THAP 41 157

 $(2.80 \times 10^{-2} \mu mol L^{-1})$ using the MIP poly(DAM-EGDMA) as sorbent

xviii

Table		Page
42	Comparison of the molecularly imprinted polymer analytical	165
	figures of merit of the proposed method with monolith C_{18} column	
	HPLC method	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1	Typical representation of a FIA system, where a defined volume of	3
	sample is injected into a continuously flowing carrier stream which	
	is merged with a stream of reagent. The ensuing transient generation	
	of product is monitored by a suitable detector (D)	
2 9	Schematic diagram of a typical flow injection analysis manifold. P	4
	is a pump, C and R are carrier and reagent lines respectively, S is	
	sample injection, MC's are mixing coils, D is a flow through	
	detector, and W is the waste line. The lower portion of the diagram	
	indicates some typical instrument options available for reagent and	
	carrier propulsion, sample injection, sample-reagent mixing, and	
	various detection modes	
3	Schematic drawing of a peristaltic pump	5
4	Schematic drawing of injection sample system	5
5	The dispersion process typical of FIA system	8
6	Chemical structure of arbutin in this study	10
7	Chemical structures of curcumin, demethoxycurcumin and bis-	15
	demethoxycurcumin	
8	Proposed FI manifold; R1, Borate buffer solution; R2, 4-AP; R3,	22
	potassium hexacyanoferrate; P1 and P2, pump; I, injection vale; C,	
	a glass tube packed with silica C_{18} as a mini-column; MC, mixing	
	coil reactor; D, detector; R, recorder; W, waste	
9	Schematic configuration of the FIA system: A; carrier stream of	27
	borate buffer solution, B; 1.0×10^{-1} mol L ⁻¹ 4-AP solution, C; $1.0 \times$	
	10 ⁻³ mol L ⁻¹ potassium hexacyanoferrate (III) solution, P; peristaltic	
	pump, I; injection valve, RC; reaction coil, D; detection, R;	
	recorder. W: waste	

Figure		Page
10	FI configurations tested for arbutin determination: (a) borate buffer	33
	solution was used as a carrier stream and 4-AP and	
	hexacyanoferrate (III) solution were used as the reagent streams; (b)	
	4-AP solution was used as the carrier streams while the reagent	
	stream were borate buffer and hexacyanoferrate (III) solutions; P1	
	and P2, pump; I, injection vale; C, a glass tube packed with silica	
	C ₁₈ as a mini-column; MC, mixing coil reactor; D, detector; R,	
	recorder; W, waste	
11	The product presents an absorption maximum at 514 nm (a)	34
	whereas the arbutin exhibits its absorption maximum at 308 nm (b)	
12	Effect of (a) 4-AP concentration and (b) hexacyanoferrate (III)	37
	concentration on the sensitivity of calibration curve $(n = 3)$ of 1 - 15	
	μ g mL ⁻¹ arbutin standard solutions	
13	Effect of flow rate of (a) reaction and (b) carrier streams on the	39
	sensitivity of calibration curve (n = 3) of 1 - 15 μ g mL ⁻¹ arbutin	
	standard solutions	
14	Effect of mixing coil on the sensitivity of calibration curve $(n = 3)$	40
	of 1 - 15 μ g mL ⁻¹ arbutin standard solutions	
15	Effect of injection volume on the sensitivity of calibration curve (n	41
	= 3) of 1 - 15 μ g mL ⁻¹ arbutin standard solutions	
16	FI grams of arbutin standard	43
17	Calibration curve of arbutin standard	43
18	Schematic configuration of the FIA system: R1; carrier stream of	52
	borate buffer solution, R2; 4-AP solution, R3; potassium	
	hexacyanoferrate (III) solution, P; peristaltic pump, I; injection	
	valve, MC; reaction coil, D; detection, R; recorder, W: waste	

Figure Page 19 53 Absorption spectra of (a) curcuminoids (λ 425 nm) and (b) curcuminoids and 4-AP and potassium hexacyanoferrate in an alkaline solution (λ 456 nm) 20 The effect of alkaline media added to potassium hexacyanoferrate 56 (III); (a) Na₂CO₃, (b) NaOH and (c) KOH 21 Effect of 4-AP concentrations and hexacyanoferrate (III) 58 concentrations on the mean of sensitivity (slope) of 1-15 μ g mL⁻¹ curcuminoids standard solutions 22 The effect of the pH of the carrier stream 59 23 The influence of the tubing length for making the mixing coil 61 24 The effect of flow rate for carrier stream (a) and reagent stream (b) 62 25 The influence of injection volume on absorbance sensitivity 63 26 Calibration curve of curcuminoids in over the ranges 5 - 20 μ g mL⁻¹ 65 27 Precision of FI method 66 28 Schematic diagram showing a simple SIA manifold, where A, B and 78 C, represent analyte and reagent reservoirs 29 79 (i) and (ii) schematic diagram showing the pump operating in reverse to aspirate a zone of reagent followed by sample. (iii) Formation of a zone of product upon reversal of flow and propulsion toward the detector 30 (a) Solasodine and (b) Solanidine 83 31 Schematic diagram of SIA system with LAV 88 32 95 Absorption spectra of solasodine complex solution (b) and reagent blank solution (a) Effect of Sequence order of the SIA-LAV system for the semi-97 33 automated liquid-liquid extraction of solasodine: A, Chloroform; B, methyl orange; and C, sample 98 34 The influence of the organic solvent volume (chloroform)

Figure		Page
35	The influence of the solasodine volume	100
36	The influence of the methyl orange volume	100
37	The flow rates of sending sample to detector	102
38	The effect of methyl orange concentration	103
39	The effect of mixing coil length	104
40	Typical SI-grams and calibration graph of solasodine: $a = 10$, $b =$	105
	20, $c = 30$, $d = 40$, $e = 50$, $f = 60 \ \mu g \ mL^{-1}$ respectively	
41	Principle of molecular imprinting	116
42	The function monomers used in the non-covalent approach	118
43	The cross-linkers used for molecular imprinting	118
44	Chemical structures of selected chemical initiators	120
45	Jablonski diagram to show electronic states of a molecule absorbing	121
	and emitting light. Where S_0 : ground singlet state, S_1 , S_2 : excited	
	singlet states, T ₁ , T ₂ : excited triplet state, IC: internal conversion,	
	ISC: intersystem crossing, F: fluorescence, P: phosphorescence.	
46	Schematic showing the different chemiluminescence reaction	123
	mechanisms (direct and indirect chemiluminescence)	
47	Chemical structure of chloramphenicol	126
48	(a) Schematic diagram of dimension on the micro-channel on chip.	133
	(b) Schematic diagram of micro flow sensor on chip for	
	determination of chloramphenicol (P1, P2, P3: Fusion 100 micro-	
	syringe pump)	
49	Schematic diagram of dimension on chip	138
50	Structure of chloramphenicol used in this work and molecularly	140
	imprinted polymer procedure	
51	The CL intensity of sample with effect of adsorption comparison	141
	between DAM and MAA monomers synthesis for micro flow	
	sensor on chip for determination of chloramphenicol $(3.09 \times 10^{-3}$	
	μmol L ⁻¹ of chloramphenicol)	

Figure		Page
52	Scanning electron micrographs of the MIPs by photo-	142
	polymerization method (a) DAM and (b) MAA monolith	
53	Effect of H_2SO_4 concentration 14	
54	The effects of reagent concentration (a) $Ru(bipy)_3^{2+}$ and (b) $Ce(IV)$	145
	in 1.0×10^{-1} mol L ⁻¹ H ₂ SO ₄	
55	The effects of flow rate	146
56	The effects of sample volume	147
57	The effects of reagent volume	148
58	Calibration curve of chloramphenicol in over the range 1.55×10^{-4}	151
	to $3.10 \times 10^{-3} \ \mu mol \ L^{-1}$	
59	Precision of the proposed method in concentration of (a) 1.55×10^{-4}	153
	μ mol L ⁻¹ and (b) 1.55 × 10 ⁻³ μ mol L ⁻¹ chloramphenicol	
60	Extracted sample equilibrium profile of CAP for SPME	156
61	Extraction and desorption flow rate profile of CAP for SPME	156
62	Retention factors (k) of CAP ($3.10 \times 10^{-2} \mu mol L^{-1}$) and THAP	158
	$(2.80 \times 10^{-2} \mu\text{mol L}^{-1})$ as marker, on the different MIPs columns	
	using mixture of acetonitrile/water or methanol/water as mobile	
	phase	
63	Imprinting factors (IF) of CAP ($3.10 \times 10^{-2} \mu\text{mol }L^{-1}$) and THAP	159
	$(2.80 \times 10^{-2} \mu\text{mol L}^{-1})$ as marker, on the different MIPs columns	
	using mixture of acetonitrile/water or methanol/water as mobile	
	phase	
64	Chromatograms of CAP and THAP in honey sample (a) without	160
	spiked standard and passed SPME, (b) with spiked standard, and (c)	
	with spiked standard passed SPME. Concentration of CAP (3.10 \times	
	$10^{\text{-2}} \ \mu\text{mol} \ \text{L}^{\text{-1}}$) and THAP (2.80 $\times \ 10^{\text{-2}} \ \mu\text{mol} \ \text{L}^{\text{-1}}$) were added	
65	Full scan ESI mass spectrum of CAP residue from honey sample	161
	(MS/MS)	

Figure Linear calibration graph obtained under the optimal conditions for determination of chloramphenicol over the range 3.72×10^{-4} - 7.44

```
\times 10^{-3} \mu mol L^{-1}
```

Linear calibration graph obtained under the optimal conditions for 163 determination of chloramphenicol over the range 7.75×10^{-4} - 6.20 \times 10⁻³ µmol L⁻¹

Page

162

67

66

LIST OF SCHEMES

Scheme		Page
1	Assumed scheme of reaction between 4-AP and arbutin and	35
	formation of a highly colored quinineimine	
2	Assumed scheme of reaction between curcuminoids and 4-AP and	54
	formation of a highly colored quinoneimine	

xxvi

AU	absorbance unit
CL	chemiluminescence
cm	centimeter
°C	degree celsius
DI	deionize water
ESI	electron electrospray ionization
EtOAc	ethyl acetate
EU	europium union
FIA	flow injection analysis
g	gram
GC	gas chromatography
h	hour
HPLC	high performance liquid chromatography
H ₂ O	water
i.d.	internal diameter
k	capacity or retention factor
kg	kilogram
L	liter
LAV	lab at valve
LOC	lab on a chip
LOD	limit of detection
LOQ	limit of quantitation
Μ	molar (mol L ⁻¹)
MC	mixing coil
MeOH	methanol
mg	milligram
min	minute
MIP	molecularly imprinted polymer

ABBREVIATIONS AND SYMBOLS

xxviii

mL	milliliter
mm	millimeter
MRPL	minimum required performance limit
MS	mass spectrometry
mV	milivoltage
n	number of measurement
NIP	non imprinted polymer
nm	nanometer
No.	number
рН	-log [H ⁺]
PMT	photomultiplier tube
PTFE	polytetrafluoroethylene
R.S.D	relative standard deviation
$Ru(bipy)_3^{2+}$	tris(2,2'-bipyridyl) ruthenium (II)
S.D	standard deviation
sec	second
SIA	sequential injection analysis
SPME	solid phase micro ectraction
TLC	thin layer chromatography
UV	ultraviolet
v/v	volume by volume
w/v	weight by volume
μg	microgram
μL by C	microliter All University
μm	micrometer
%	percentage
λ	wavelength
σ	standard deviation