CHAPTER 3

MATERIALS AND METHODS

3.1 Materials and equipments

3.1.1 Plant materials

The recipes were prepared from a variety of plants which were indigenous in 7 upper northern provinces of Thailand (Chiang Mai, Chiang Rai, Lamphun, Lampang, Phayao, Phrae and Nan). All medicinal plants are commercially available. The fresh plants were collected from a herbal garden at Mae Tang district, Chiang Mai. These plants were authenticated and the herbarium voucher specimens were prepared and deposited in the herbarium of Faculty of Pharmacy, Chiang Mai University. The recipes and the characteristics of the plants used in this study were listed in Table 3.1.

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher specimen numbers, plant part used and uses in Lanna traditional medicine of the selected recipes

No.	Recipe	Botanical	Family	Voucher	Plant	Lanna uses
	No.	names	neio	specimen numbers	parts used	ലച
1	25	Cassia alata L.	Leguminosae-	010086	Fruit	Anti-
10	htC	Roxb.	Caesalpinioideae	Ma		inflammation
0			5			for insect
		ght	S r	e 9	P	

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher

 specimen numbers, plant part used and uses in Lanna traditional medicine of the

 selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant parts used	Lanna uses
		Datura metel L.var.fastuosa (Bernh.) Danert	Solanaceae	010087	Stem, leaf	500
		Jatropha gossypifolia L.	Euphorbiaceae	010089	Stem, leaf	64
2	105	Aegle marmelos (L.) Correa ex Roxb.	Rutaceae	010096	Fruit	Anti- inflammation for insect
		Azadirachta indica A. Juss.var.siamensis Valeton .	Meliaceae	010095-1	Flower	sting and bite
	B l	<i>Cyperus rotundus</i> L.	Cyperaceae	010092	Rhizome	GB
	ht	Oryza sativa L.	Poaceae		Water	nive

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher

 specimen numbers, plant part used and uses in Lanna traditional medicine of the

 selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant Parts used	Lanna uses
2					from washing uncooked rice	-535
	105	Phyllanthus emblica L.	Euphorbiaceae	010090	Fruit	64
		<i>Piper chaba</i> Hunt.	Piperaceae	010093	Seed	2
		Terminalia chebula Retz.	Combretaceae	010091	Fruit	
	2	Zingiber officinale	Zingiberaceae	010094-1	Rhizome	
1	51	Roscoe.	Bne	าล้	818	63

Copyright[©] by Chiang Mai University All rights reserved

 Table
 3.1 List of plant, characteristics, botanical names, family, herbarium voucher specimen numbers, plant part used and uses in Lanna traditional medicine of the selected recipes (continued)

No ·	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant parts used	Lanna uses
3	192	Anethum graveolens L.	Apiaceae	-	Seed	Anti- inflamm ationfor insect sting of bite
5	1°C	Baliospermum solanifolium (Burm) Suresh.	Euphorbiaceae	010098	Leaf	
	~	Croton Oblongifolius Roxb.	Euphorbiaceae	010097-2	Leaf	
	S1	Croton tiglium L.	Euphorbiaceae	010095-2	Leaf	10
		Dioecrescis	Rubiacieae	010096	Root/	
g	ht [©] r	erythroclada (Kurz.) Tirveng	hiang s r	Mai	Stem	ive r v

Table 3.1 List of plant, characteristics, botanical names, family, herbarium voucher specimen numbers, plant part used and uses in Lanna traditional medicine of the selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant parts used	Lanna uses
3	192	Foeniculum vulgare	Apiaceae		Seed	
		Mill. var. vulgare				4
Ê		(Miller) Thell.				96.
		Lepidium sativum L.	Brassicaceae	-	Seed	
		Nigella sativa L.	Ranunculaceae	ERP	Seed	
		Oryza sativa L.	Poaceae	5	Fruit	
1		Phyllanthus emblica L.	Euphorbiaceae	010090	Fruit	0
gn		by Cr	liang	Mai	Un	IVe

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher

 specimen numbers, plant part used and uses in Lanna traditional medicine of the

 selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant Parts used	Lanna uses
3	192	Piper chaba Hunt.	Piperaceae	010093	Seed	30
3		Piper nigrum L.	Piperaceae	-	Seed	501
		Plumbago indica L.	Plumbaginac eae	010097-1	Whole	4
		Plumbago zeylanica L.	Plumbaginac	010099	Whole	90
		Terminalia chebula	Combretacea	010091	Fruit	
	VQ	Retz.	e	010071	Tun	
		Zingiber officinale	Zingiberacea	010094-1	Rhizo	
		Roscoe.	e		me	
4	346	Caesalpinia digyna	Leguminosae	-	Root	Acne
	5	Rottle.	-			abscess
	S1	หาวิท	Caesalpinioi	1136	258	10
			deae			
121	nt	by Ch	lang	Mai	Un	ive

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher

 specimen numbers, plant part used and uses in Lanna traditional medicine of the

 selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant Parts used	Lanna uses
4	346	Lagenaria siceraria (Molina) Standl.	Cucurbitacea	-	Calyx	503
		Passiflora foetida L.	Passifloracea e	010100	Stem, leaf	4
5	717	Caryota bacsonensis Magalon.	Arecaceae	010102	Root	Skin abscess,
	10	<i>Cassia occidentalis</i> L.	Leguminosae	010105	Flower	Insect sting or
		MAIU	Caesalpinioi deae			bite
	2	<i>Dregea volubilis</i> (L.F) Hook.f.	Asclepiadace ae	010101	Whole	9
	5 1	Fagraea fragrans	Loganiaceae	010104	Stem	Jðl
		Roxb.			bark	

 Table 3.1
 List of plant, characteristics, botanical names, family, herbarium voucher

 specimen numbers, plant part used and uses in Lanna traditional medicine of the

 selected recipesne (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant Parts used	Lanna used
5	717	Psophocarpus tetragonolobus	Leguminosae Papilionoideae	-	Pod	
		Quisqualis indica L.	Combretaceae	010103	Leaf, Seed	4
6	895	Cassia alata L.	Leguminosae- Caesalpinioideae	010086	Fruit	Gum abscess
	NG.	<i>Gardenia</i> <i>turgida</i> Roxb. Terveng.	Rubiaceae	RSI	Leaf, Root	
		Sauropus androgynus L. Merr.	Euphorbiaceae	010106	Leaf	
	รับ	Siphonodon celastrineus Griff.	Celastraceae	010109	Root	10
	nt [©]	Tiliacora triandra Diels.	Menispermaceae	010108	Leaf	ive

Table 3.1 List of plant, characteristics, botanical names, family, herbarium voucher specimen numbers, plant part used and uses in Lanna traditional medicine of the selected recipes (continued)

No.	Recipe No.	Botanical names	Family	Voucher specimen numbers	Plant Parts used	Lanna used
7	896	Coccinia grandis L. voigt.	Cucurbitaceae	010110	Leaf	abscess and
		Sesamum indicum L.	Pedaliaceae	-	Oil	tooth
		Vitex trifolia L.	Verbenaceae	010111	Leaf	pain
H		Zingiber officinale Roscoe.	Zingiberaceae	010094-1	Rhizome	0,

3.1.2 Chemicals

- Acetone AR grade (Labscan, Doublin, Ireland)
- Acetic anhydride (Sigma Chemical Co., St. Louis, MO, USA)
- Alpha naphthol (Fluka, Madrid, Spain),
- Ammonium hydroxide (Fluka, St. Louis, MO, USA)
- Antimony III chloride (Fluka, Buchs, Switzerland)
- Bismuth nitrate (Merck, Darmstadt, Germany)
- Cadmium iodine (Merck, Darmstadt, Germany)
- Calcium hydroxide (Merck, Darmstadt, Germany)

- Carrageenan (Lambda Type IV, Sigma Chemical Co., St. Louis, MO, USA)
- Chloroform (Labscan Asia, Bangkok, Thailand)
- Copper sulfate (Fluka, St. Louis, MO, USA)
- Cupric acid–Aldrich (Sigma Co, St. Louis, MO, USA)
- Cyanidin (Sigma Co, St. Louis, MO, USA)
- Ethanol (Merck, Darmstadt, Germany)
- Ethyl phenylpropiolate, 5 ml, (Fluka, St. Louis, MO, USA)
- Ferric chloride (Sigma Co, St. Louis, MO, USA)
- Formalin (Merck, Darmstadt, Germany)
- Gelatin salt reagent (Fluka, St. Louis, MO, USA)
- Gelatin (Fluka, St. Louis, MO, USA)
- Glacial acetic acid (Merck, Darmstadt, Germany)
- Hydrochloric acid AR grade (Labscan, Dublin, Ireland)
- Hydrogen peroxide (Sigma Chemical Co., St. Louis, MO, USA)
- Iodine (Sigma Chemical Co., St. Louis, MO, USA)
- Lead acetate (Sigma Chemical Co., St. Louis, MO, USA)
- Magnesium ribbon (Merck, Darmstadt, Germany)
- Mercuric chloride (Fluka, St. Louis, MO, USA)
- Methanol (Merck, Darmstadt, Germany)
- Morin ((Merck, Darmstadt, Germany)
- Nitric acid (Fluka, St. Louis, MO, USA)
- Phenylbutazone (Fluka, St. Louis, MO USA)

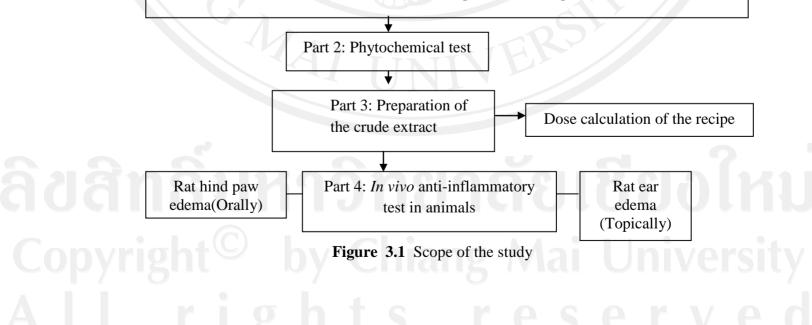
- Picric acid (Sigma Chemical Co., St. Louis, MO, USA)
- Potassium iodide (Sigma Chemical Co., St. Louis, MO, USA)
- Potassium bismuth iodide (Sigma Chemical Co., St. Louis, MO, USA)
- Potassium hydroxide (Sigma Chemical Co., St. Louis, MO, USA)
- Modena Prednisolone acetate (Fluka, Buchs, Switzerland)
- Quinine sulfate (Fluka, Buchs, Switzerland)
- Red mercuric iodide (Sigma Chemical Co., St. Louis, MO, USA)
- Resorcinol crystal (Sigma Chemical Co., St. Louis, MO, USA)
- Rutin (Merck, Darmstadt, Germany)
- Sodium carbonate (Sigma Chemical Co., St. Louis, MO, USA)
- Sodium citrate (Sigma Chemical Co., St. Louis, MO, USA)
- Sudan IV (Sigma Chemical Co., St. Louis, MO, USA)
- Sulfuric acid (Sigma Chemical Co., St. Louis, MO, USA)
- Tannic acid (Fluka, St. Louis, M, USA)
- Volatile lactone glycoside (Sigma Chemical Co., St. Louis, MO, USA)
- Zinc dust (Sigma Chemical Co., St. Louis, MO, USA)
- Tween 80 (Uniquema, Bromborough, UK)

3.1.3 Equipments

- Rotary evaporator (Buchi, R-200, Burladingen, Germany)
- Freeze-dryer (Christ, Billerbeck, Germany)
- Vernier caliper 6 inch, 0-150 mm. (Mitutoyo, Tokyo, Japan)
- Plethysmometer 7150 (Ugo Basile, Modena, Italy)

Centrifuge tube 50 ml (TPP, Trasadingen, Switzerland)

- Ultracentrifuge (Univeral 32 R, Hettich Zentrifugen, Germany)


3.1.4 Animals

Sprague Dawley rats were purchased from National Laboratory Animal Centre, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand. The hind paw edema test used male rats 180-250 g with the age of 6 weeks. The rat ear edema test used the male rats with weight ranging from 50-70 g and the age of 3 weeks.

3.2 Methods

The scope of this study was divided into four parts as shown in Figure 3.1. The detailed methods are as follows:

Part 1: Screening and selection of recipes from the Lanna medicinal plant textbooks database: Specifying the criteria (*e.g.* symptoms for the treatment, the route of administration of the recipes; oral and topical

3.2.1 Screening and selection of recipes from the Lanna medicinal plant textbooks database MANOSROI II

Step 1 Selection the recipes from the Lanna medicinal plant textbooks from "MANOSROI II" database. The selection criteria were as follows:

1) Specify the criteria (*e.g.* symptoms for the treatment) to select the antiinflammatory recipes such as swelling, redness, edema, pain on the external skin, insect/animal bite, acne, boil, gum edema (abscess), body and tendon disturbance (Kumar, 2005).

2) Select the recipes which had both oral and topical routes of administration.

3) Select the recipes from the 11,130 translated recipes in the database collected from seven provinces, Chiang Mai, Chiang Rai, Lamphun, Lampang, Phayao, Phrae and Nan in the upper north of Thailand.

Step 2 The selected recipes were screened and ranked for the recipes selection. The criteria and conditions of scoring and ranking were set as describes:

1) Determine the plant which appeared with high frequency in most recipes. This was ranked by the score from high to low with 4 levels of score point. The priority for frequency in most recipes were 7, 4, 3, 2 and 1, the full score was set at 20 points for the frequency of 7. For example, the frequency of the same plant used in the recipe was 4, thus the score was 11.4 points (4 X 20/7).

2) Specify the selection criteria for the ease availability of plants in the local scrub forests or markets. The score and priority for recipe selection was set at 10 points

as full score when the recipe contained the plants as specify in the recipe of Lanna medicinal plant textbooks and easy availability in the local scrub forests or markets. For example, the recipe contained of the 8 plants, but the 2 plants were unable to collect from the local scrub forests or markets, thus the score of this recipe was 7.5 points (10 X 2/8).

3) Specify the selection criteria for completeness of the recipes from the Lanna medicinal plant textbooks. The 4 selection criteria were the composition, dosage, preparation and indication uses of the recipes. The scores for these criteria were set at 5 points for each condition of the completeness of the recipes. The recipes were ranked and then the top seven recipes were selected for the study.

3.2.2 Phytochemical Test

The phytochemicals in the recipes were identified by a standard phytochemical test (Farnsworth, 1966). Chemical screening tests are the basis for discovering the chemical compounds as shown in Table 3.2.

Chemical	Reagent	Method	References
Compound group		A 11-	
Alkaloid	Dragendorff's	Bismuth nitrate solution	Rosin, 1967.
กลิ่มห		(8gm of bismuth nitrate	เซียกไ
		was dissolved in 30% w/v	
ight [©]		Nitric acid 12ml) was	Unive

Table 3.2 The reagents and methods for the phytochemical test

96

Chemical	Reagent	Method	References
Compound group			500
Alkaloid		mixed together with	
		potassium iodide solution	5
		(27.2 gm of potassium	
		iodide in 50 ml of distilled	
		water). The mixture was	5
		adjusted to 100 ml by	2
		using distilled water. A	
		positive test is orange in	6
		color.	9
Z	Hager's	Dissolve 1 g of picric acid	Lide D.R., 2004
		in 100 ml of distilled	$\langle \langle \rangle / \rangle$
		water then drop 1-2 ml	
		into a preparation tube	
		recipe solution. A	
		positive test is yellow in	
S 11		color.	RSIA
	Meyer's	Mercuric chloride solution	Rosin, 1967.
zht [©]	reagent	(1.36 gm of mercuric	Univ
•		chloride in 60 ml of	

Chemical	Reagent	Method	References
Compound group			
Alkaloid		distilled water) was mixed	
		with potassium iodide	
		solution (5 gm of	
		potassium iodide in 10 ml	
		of distilled water). Then,	
		the solution was adjusted	
		to 100 ml by using	
		distilled water. A positive	
		test is white in color.	
Z	Wagner's	Potassium iodide solution	Onwukaeme, et al.,
	reagent	(2 gm of potassium iodide	2007
		in 10 ml of distilled water)	
		was mixed to 1.27 gm of	
		Iodine. Then, the solution	
e.		was adjusted to 100 ml by	
าริแห		using distilled water. A	
		positive test is orange	
ght [©]		brown jn color.	

Chemical	Reagent	Method	References
Compound group	7		500
Anthraquinone	Modified	0.5N KOH 10 ml and	Onwukaeme et al.
glycosides	Borntrager's	$3\%H_2O_2$ 1 ml were added	2007.
		to 500 mg of each recipe.	
		This mixture was heated	
		on a water bath for 10	53
		minutes. Then, the	50%
		mixture was filtrated and	
		glacial acetic acid was	6
		added until it resulted in	9
		an acidic solution. After	
		that the solution was	
	1	transferred to a separator	
	AII	funnel and extracted with	
		10 ml of benzene. The	
		benzene layer was	
າຣິນາ	1961	collected and divided it to	REA
		2-5 ml of each of two	1000
ight [©]	by C	hiang Mai	Unive

Chemical Compound group	Reagent	Method	References
Anthraquinone		tubes. Tube no. 1 was	
glycosides		control tube while Tube	
		no. 2 had NH ₄ OH T.S.	
		added and mixed with the	
		solution. A positive test is	
		pink-red color in basic	
		layer.	
Carbohydrate	Benedict's	Benedict's solution:	Dickson, 1998
	solution	Dissolve 173gm of	
		sodium citrate, 17.3 gm of	
		copper sulfate and 100 gm	
		of sodium carbonate with	
	AI	distilled water and adjust	
		volume to 1000 ml. Then	
		heated the crude drug with	
	1991	Benedict's solution. A	
		positive test is a brick-	
	by C	redcolor precipitate	
		indicates presence of the	
	ht		O K V

Chemical	Reagent	Method	References
Compound group	0		500
Carbohydrate		aldehyde group.	
	Molisch's test	α - <u>naphthol</u> is dissolved in	Dickson, 1998.
	سيبين	ethanol. This reagent (2	
	B	drops) and 2 ml of	308
		distilled water are added	S
	- K	to each recipe (0.1 gm)	208
		and mixed together in test	4
		tube. Then, this test tube	6
		is laid at an angle of 45	
		degrees and 1 ml of	A
	6	sulfuric acid is added to	
	TAT-	the tube; the acidic layer is	
		a placed under the water	
		layer. The tube is left to	
		stand for a moment. A	d
	1991	positive test is brownish-	GBQ1
		purple ring between two	
	by C	layers.	Unive
	h +	$1. C_5 H_{10} O_5$ (pentose) +	

Chemical	Reagent	Method	References
Compound group	D	100	500
Carbohydrate		conc. $H_2SO_4 \rightarrow C_5H_4O_2$	
		+ 3 H ₂ O	5
	البليل	2. $C_5H_4O_2$ (furfural) + 2	
		$C_{10}H_8$ -OH (α -naphthol)	
	1	\rightarrow colored product	50
	Barfoed's	198 ml of distilled water	Dickson, 1998.
	reagent	and 2 ml of glacial acetic	
	Copper acetate	acid are added to 13.3 gm	6
	Acetic acid	of cupric acid. 1ml of this	5
		mixture is added to each	
	6	recipe and mixed. Then,	
	11-	the solution is heated on a	
	JIP	water bath. A positive test	
		is red precipitate	
		(monosaccharide).	
	Seliwanoff' s	A small portion of	Dickson, 1998.
	test	resorcinol crystal is added	
	Resorcinol	to 1ml of each recipe	Unive
	HCl	solution in the test tube	0 4 1
		5 F C S	

Chemical Compound group	Reagent	Method	References
Carbohydrate		and mixed. Then, 1 ml of	
		conc. HCl is added and	6
		the solution heated on a	
		water bath for 5 minutes.	
		A positive test is orange-	S
	K	red color (ketone hexose).	50%
Cardiac glycosides	Liebermann-	0.5 gm of each recipe was	Harborne, 1998.
	Burchard	dissolved in 10ml of	6
		methanol. Then, the	19
		solution was heated on the	
		water bath for 5 minutes.	
		After that the solution was	
	4/1	filtered and the solvent	
		evaporated by evaporator	
		to give the residue. This	
	1991	residue was dissolved with	RSIA
		2 ml of acetic anhydride	
	bv C	and mixed with 1ml of	Unive
		conc. sulfuric acid. A	

Chemical	Reagent	Method	References
Compound group			500
Cardiac glycosides		positive test is the	
		brownish-red ring	
		between two layers of	
		acetic anhydride and	
	A	sulfuric acid.	505
	Keller-	Each recipe was extracted	Onwukaeme et al.,
	Kelliani's	with 3ml of chloroform.	2007.
		Then, $3ml$ of $FeCl_3$	6
		reagent (0.3 ml of 10%	2
		FeCl ₃ in 50 ml glacial	
		acetic acid) was added and	
	T	mixed in a test tube. The	
	AII	test tube was placed	
		upright for a moment.	
		Next, the test tube was	
	ເຈົ້າ	laid at an angle of 45	REA
		degrees and 5-6 drops of	
	by C	sulfuric acid were added	Unive
		to the tube. A positive	
<u>r i g</u>	ht	s res	erv

Chemical	Reagent	Method	References
Compound group			0 3 1
Cardiac glycosides		test is brown, red or green	
		color between two layers	
	11111	of reagents which diffused	
		to glacial acetic acid layer.	
Carotenoid	-Concentrated	A: Carotenoid extraction	Harborne, 1998.
	sulfuric acid.	Each recipe was extracted	200
	-Antimony III	with ethanol. The	
	chloride	ethanolic extraction was	6
		collected. Then, the	5
		ethanolic extraction of	
	6	each recipe was extracted	
	11-	with ether in separator	
	J IP	funnels, and the ether	
		layer was collected. Ether	
		was evaporated at room	
	1931	temperature and residue	เรียง
		was found.	
	by C	B: Chemical test	Unive
		1. The extraction in A	
- r i g		s res	erv

was dissolved with	'San
was dissolved with	
was dissolved with	
chloroform. Then, conc.	55
H_2SO_4 was added to the	
solution. A positive test is	
blue or greenish-blue in	S
color.	50%
2. The extraction in A	
was dissolved with	6
chloroform. Then,	9
absolute antimony III	
chloride was added to the	
solution. A positive test is	
dark blue –red in color.	
NaOH Distilled water is added to	Trease and Evans,
2 gm of each recipe in a	1989.
round-bottom flask until	REIA
humid, and then is	
covered with filter paper	Unive
soaked with 20%	
	H ₂ SO ₄ was added to the solution. A positive test is blue or greenish-blue in color. 2. The extraction in A was dissolved with chloroform. Then, absolute antimony III chloride was added to the solution. A positive test is dark blue –red in color. NaOH Distilled water is added to 2 gm of each recipe in a round-bottom flask until humid, and then is covered with filter paper

Chemical	Reagent	Method	References
Compound group			
Lactone glycosides		NaOH. Then, the solutions	
(Coumarins)		are heated on a water bath	
$T \mid L$		for 5 minutes. After that,	
		the filter paper is placed	
2		under UV long wave. The	
		positive result shows	
		fluorescence on paper	
		(volatile lactone	
		glycoside). Then, the	
Z		residue in the round-	
		bottom flask is mixed with	
		5-10 ml of 95% ethanol	
		and warmed on a water	
		bath for 15 minutes. The	
~		solution is filtrated and	
18114		evaporated it until give the	
		concentrated solution.	
ight [©]		This solution is spotted to	
		filter paper soaked with	
- 9	n T	s res	erv

Chemical	Reagent	Method	References
Compound group		100	500
Lactone glycosides		20% NaOH.After that, the	. 2
(Coumarins)		filter paper is placed under	5
		UV long wave. A positive	
	1 ST	test is fluorescence on	
	2	paper (non volatile lactone	502
		glycoside).	20%
Flavonoid	-Magnesium	-2 ml methanolic	Harborne, 1998;
glycosides	ribbon	extraction of each recipe	Onwukaeme <i>et al.</i> ,
	-Concentrated	was divided to 1 ml/test	2007.
	HCl -Zinc dust	tube for 2 tubes.Tube no.	A'
	-2 N HCl	1: 0.1 gm of Mg ribbon +	
	11-	conc. HCl 1 ml(Result =	
	JIN	positive color: Orange)	
		Tube no. 2: 0.5 gm of Zn	
		dust + 2 N HCl (2 drops)	a 9
	1991	(Result = positive color:	188191
		Red)	
	by Cl	-Benzo-γ-pyrone nucleus	Unive
	h t	was determined as	

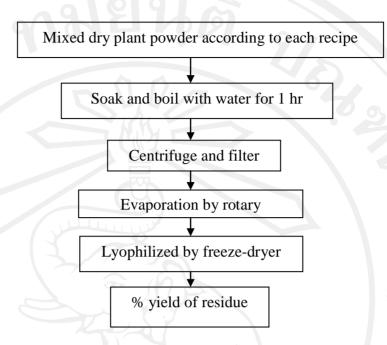
Chemical	Reagent	Method	References
Compound group			001
Flavonoid		following:	
glycosides		Mg ribbon was added to a	5
		methanolic extraction	
		from each recipe. Then,	
		these were heated and	5
		added with conc. HCl.	50
		(Result = positive color as	
		belows:-Reddish-orange	6
		(flavone)	5
		- Red-crimson (flavonol)	
		-Crimson-purplish-red	
	1	(flavanone)	
	AII	- Red (Flavanonol)	
		Negative color:	
		Yellowish-green	
Lipid	Sudan IV test	Add 2 ml of each sample,	Trease and Evans
		2 ml of water and 1 drop	1989.
	by C	of Sudan IV. Agitate each	Unive
	h t	tube. A positive test is	

Chemical Compound group	Reagent	Method	References
Lipid		floating red droplets or a	
		floating red layer colored	
	يب يدر	by Sudan IV. 500 mg of	
	(S)	each recipe was added	
		with 10 ml of boiling	5305
	Z	water and this mixture	200
		was placed aside to cool.	~
Saponin	Froth test	Then, it was shaken for 10	Onwukaeme et al.
		seconds and 1-2 drops of	2007.
		2N HCl were added. A	A
		positive test is observed if	
	11-	there is foam on the	
	J IP	mixture.	
Tannin	-0.5% Gelatin	1.Preparation of extraction	Trease and Evans
	solution	100 ml of distilled water	1989; Harborne
	-Ferric	was added to 5 gm of each	J.B., 1998.
	chloride T.S.	recipe and heated until	
	by C	boiling. The solution was	Unive
		filtrated and collected for	

Chemical	Reagent	Method	References
Compound group	0	100	Som
Tannin	-1% lead	further tests.	Onwukaeme, D.N. et
	acetate	2. Tannin determination	al., 2007;
	solution	Divide the extraction	
	-10% Sodium	from 1 to each tube for 1	
	chloride	ml and adjusted to 6 ml of	584
	solution	each tube by using	500
	-1% Quinine	distilled water. Add with	
		2-10 drops of the test	6
		reagent as follows: 0.5%	9
		Gelatin solution, 1% lead	
	sulfate solution	acetate solution, 1%	
	-Formalin-HCl	Quinine sulfate solution,	
	reagent	Ferric chloride T.S. A	
	-Vanillin	positive test is the dark	
	reagent	blue color and/or	
	1991	precipitate.	Rein
		3.Tannin determination	
	hv C	(tannin assembly type)	Unive
		Vanillin reagent: Divide	CHIVE
-r i 2	ht	c rac	

Chemical	Reagent	Method	References
Compound group			
Tannin	-Concentrated-	the extraction from 1 to	
	Hydrochloric	evaporating dish for 10 ml	
	acid	and evaporate on water	
	-Tannic acid	bath until dry.	
		Add 1 ml of vanillin	
		reagent and 1 drop of	
		conc.	
		• HCl. A positive test is	
		crimson color.	
		Formalin–HCl reagent:	
	6	Divided the	
	TAX	• extraction from 1 for 2	
	J IP	ml and added with 3	
		drops of 40% formalin	
		and 6 drops of 10%	
	1121	HCl. Then, heated	
		them on water bath for	
	by C	1-2 minutes. A	
	h t	positive test is red	
<u> </u>			Arv

Chemical	Reagent	Method	References
Compound group			500
Tannin		color of precipitate.	
Xanthone	5% Potassium	A: Xanthone extraction	Harborne, 1998.
	hydroxide	Each recipe was extracted	-
	- Cyanidin	with ethanol and heated	
	- Mg ribbon	on boiling water for 5	5
	- H ₂ SO ₄	min.The extraction was	12
		then filtrated.	
		B: Chemical test	Ġ
		5% KOH was dropped	9
		to the extraction in A	A
	6	The result is positive	$\langle \langle \rangle / \rangle$
	1	color: yellow	
	4/1	1Ethanol was	
		evaporated from the	
		extraction in A by	
	ຊດຈົງ	using boiling water	RSIA
		until it gave dried	
	by C	residue. This residue	Univ
		was dissolved with	
-r + g	ht	s res	e r


 Table 3.2 The reagents and methods for the phytochemical test (continued)

Reagent	Method	References
	methanol. Then, Mg	
	ribbon was added to this	
	solution and heated.	
	Then, conc. H ₂ SO ₄ was	
	added to the heated	
	solution. A positive test is	
	pink color.	
	Keagein	methanol. Then, Mg ribbon was added to this solution and heated. Then, conc. H ₂ SO ₄ was added to the heated solution. A positive test is

3.2.3 Preparation of the crude extract

1) Extract preparation

The extracts of each recipe was performed according to the instruction in the recipe. The ground plant materials (approximately 20 gm of each plant) were mixed and soaked in 700 ml of distilled water for 1 hour and then boiled for 1 hour. The extractions were filtered and evaporated under reduced pressure in a rotary evaporator (Buchi, Italy, R-200) at 50 °C and lyophilized by a freeze-dryer (Christ, Germany). The percentage yield of the recipes was calculated. The freeze-dried extracts were collected and stored in small glass bottles for further evaluation. The diagram of the extraction was shown in Figure 3.2.

Figure 3.2 Diagram of the preparation of the crude extract of the recipes The percentage yield of the crude extract was described as follows:

Percentage Yield = $\underline{Extract weigh/g}$ x 100% Plant recipe weigh/g

2) Dose calculation of the recipes

Two anti-inflammatory, which were the rat hind paw edema and rat ear edema method were performed. The doses of all recipes used in both experiments were calculated as follows:

2.1 The doses of the recipes for the experiments were on rat hind paw edema (Table 3.3) were calculated based on the recommended dose given in the Lanna medicinal recipes. Taken into consideration, the route of administration, which is orally, recommended dose in humans confer the maximum volume of drug for oral feed in rats (1 ml). The calculation of a dose for oral feed in rats is as follows: (Appendix A) Volume for oral feed (ml) = weight of a rat (g) x recommended dose (mg/g)

Concentration of drug preparation (mg/ml)

The positive control was prednisolone acetate with the dose in the range of 1-4 mg/kg/day (Lacy *et al.*, 1999) when the weight of rats was approximately 250 mg each.

Five different doses of double concentration of each recipe were investigated. The first group of rats used as the primary dose calculation and the doses increased 2 times in the following groups. The doses each recipes were shown in Table 3.3. For the negative control group, 1 ml of distilled water was used while the positive control group, various pre-calculated concentrations of prednisolone acetate at 1.5, 2 and 4 mg/kg were used (Agarwal and Rangari, 2003).

Recipe no.	Doses (mg/kg BW)					
The second secon	G1	G2	G3	G4	G5	
N'C	mg/kg b.w.	mg/kg b.w.	mg/kg b.w.	mg/kg b.w.	mg/kg b.w.	
25	1.97	3.94	7.88	15.76	31.52	
105	2.59	5.18	10.38	20.76	41.52	
192	1.33	2.66	5.32	10.64	21.28	
346	1.62	3.24	6.48	12.96	25.92	
717	2.03	4.06	8.12	16.24	32.48	
895	1.67	3.34	6.68	13.36	26.72	
896	1.87	3.74	7.48	14.96	29.92	

Table 3.3 The doses of the recipe extracts for the rat hind paw edema assay

Note: Please see the dose calculation in the Appendix A

2.2 The doses in all recipes for the rat ear edema method were recommended from the Thai Lanna medicinal recipes. The first group of rats used as the primary dose and the doses increased 2 times in the following group. Ethyl phenylpropiolate (EPP) was used to induce rat ear edema. For the control groups, the negative control group was water and the positive control was phenylbutazone (1 mg/20 μ L/ear) (Barik *et al.*, 1976). The doses of each recipe were lower, equal and higher than the standard drug as shown in Table 3.4.

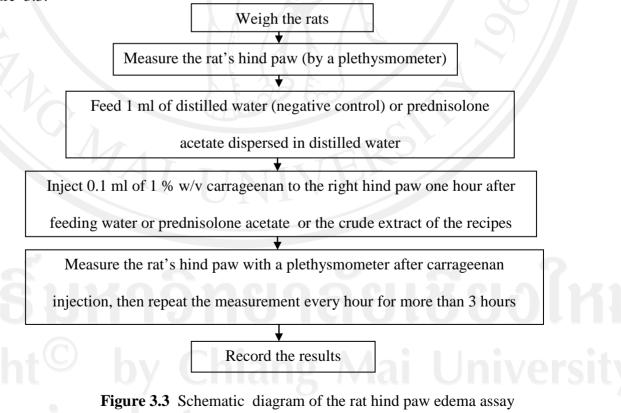
Recipe No.	Doses (mg/20 µL/ear)				
	G3	G4	G5		
	mg/20 μL/ear	mg/20 μL/ear	mg/20 µL/ear		
25	0.5	1.0	2.0		
346	0.5	1.0	2.0		
717	0.5	1.0	2.0		
	4II	NIVE			

Table 3.4 The doses of the recipes extract for the rat ear edema assay

3.2.4 In vivo anti-inflammatory tests

The male Spraque Dawley rats were purchased from National Laboratory Animal Centre, Mahidol University, Salaya, Nakhon Pathom, Thailand, weight between 180 - 250 gm for the hind paw edema assay and 50 - 70 gm for the ear edema assay. The female rats were excluded from the test with regard to the inflammatory action of serotonin mediator (Carlsson *et al.*, 1985). The animals had free access to food and water and were kept on a 12/12 hour light/dark cycle. Groups of four animals were used in each test group of hind paw edema test. For the ear edema tests, groups of four animals were used in each test group. The negative control animals of both the hind paw edema test and ear edema test received vehicle only.

For the anti-inflammatory test in animals, the recipe extracts which were indicated for topical used were tested both in rat hind paw edema and rat ear edema. The test was compared with the positive control using the standard anti-inflammatory drugs, prednisolone acetate for oral administration and phenylbutazone for topical administration. The percentage inhibition of inflammation of the extract and the reference drug was calculated using the following equation (Palanichamy and Nagarajan, 1990):


Percentage inhibition of inflammation = (A-B)/A x100

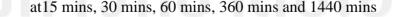
Where A was the average degree of inflammation of the control and B was the average degree of inflammation of the extract.

A. Hind paw edema assay

Carrageenan – induced rat paw edema assay was used. A carrageenan solution (conc.1% w/v) 0.1 ml was injected into the right hind paw of each rat at the sub plantar region (Winter et al., 1962). The male rats with the weight ranging from 180–250 gm and the age of 6 weeks were used in the experiment. The animals were divided into 9 groups. Group 1 (control) was given distilled water. Group 2 was given orally a standard drug (prednisolone acetate). Groups 3 - 9 (test groups) were given orally various doses of the extracts. Paw volume was determined by means of a volume displacement

technique using a plethysmometer (Model 7150, Ugo Basile, Modena, Italy). The right hind paw was immersed into measuring chamber containing 0.05 % NaCl in distilled water, exactly to an ink mark at the anatomical hair line. Each paw volume was obtained from the average of five readings. The rat hind paw volume was measured five times at each interval from 0 to 4 hours after the carrageenan injection. The test drug was given orally 30 minutes before the injection of carrageenan. The volume of the right hind paw was measured before injection and at 1, 2, and 3 hrs after induction of inflammation. The edema volume of the paw (paw volume (ml) at time x- paw volume (ml) at time 0) and the percentages of edema inhibition for each test recipe extracts versus the control group were calculated. The schematic diagram of the hind paw edema procedure was shown in Figure 3.3.

B. Ear edema assay


The three selected recipes (recipe nos. 25, 346 and 717) which indicated the topically use and gave the anti-inflammatory activity from the rat hind paw experiment were tested for anti-inflammatory by the rat ear edema method. The edema was induced by the application ethyl phenylpropiolate (EPP), (Brattsand *et al.*, 1982). The EPP solution was applied to each inner and outer surfaces of both ears. A vernier caliper was used to measure the thickness of the rat's ear. The male rats with the weight of 50 gm and the age of 4 weeks were used in the experiment. The animals were divided into 5 groups. Group 1 (negative control) received distilled water and acetone. Group 2 (positive control) received the standard solution of phenylbutazone. Groups 3-5 (tested groups) received the extracts from the recipes. For ear thickness determination, a vernier caliper (Mitutoyo, Toky, Japan) was applied on the tip at inner and outer surface of the ear. Measurements were taken from 0-24 hours after EPP-induced ear edema. The schematic diagram of the ear edema assay procedure was shown in Figure 3.4.

Measure the rat ear before the experiment

Apply the test solution on outer and inner surface of the rat ear $(1mg/20 \,\mu l / ear)$

Apply the EPP at the rat ear immediately $(1mg/20 \mu l / ear)$

After application on the rat ear, measure the rat ear thickness

Record the results

Figure 3.4 Schematic diagram of the rat ear edema assay