TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
Abstract (English)	v
Abstract (Thai)	viii
List of Tables	xxiii
List of Figures	xxviii
Abbreviations and symbols	xxxii
CHAPTER 1 INTRODUCTION	201
1.1 Statement and significance of the problems	1
1.2 Objective	3
1.3 Scope of the study	3
1.4 Literature reviews	5
1.4.1 Silk worm	5
1.4.1.1 Biology of silk worm	6
1.4.1.2 Thai silk production	12
1.4.1.3 Silk worm products	22
A. Chemical composition of silk worm	22
B. Chemical composition of sericin	31
C. Chemical composition of fibroin	37
D. Chemical composition of silk worm oil	41
1.4.1.4 Preparations of oil and sericin	-49
A. Method of oil extraction from natural products	49

	Page
A.1 Rendering extraction	49
A.2 Hydraulic pressing extraction	49
A.3 Solvent extraction	49
A.4 Microwave digestion or oven extraction	50
B. Preparations of sericin	51
C. Application of sericins	51
1.4.2 Niosomes	52
1.4.2.1 Definition/Introduction	52
1.4.2.2 Formation of niosome	53
1.4.2.3 Niosome preparation methods	54
A. Hand-shaken method	54
B. Sonication method	55
C. Freeze-dried rehydration method	56
D. Reverse-phase evaporation method	56
E. Detergent depletion method	57
F. Supercritical carbon dioxide method	58
G. Microfluidization	59
H.Multiple membrane extrusion method	59
1.4.2.4 Characterization of niosomes	59
A. Morphology	59
B. Vesicle diameter	60
C. Charge	60
D. Microviscosity	60

	Page
E. Entrapment efficiency	61
F. Phase transition temperature and enthalpy change	61
G. In-vitro release	62
1.4.2.5 Advantages of niosomes	62
1.4.2.6 Comparison of niosomes and liposomes	63
1.4.2.7 Stability of niosomes	65
1.4.2.8 Applications of niosomes	65
1.4.3 In vitro biological assays	68
1.4.3.1 DPPH free radical scavenging activity assay	68
1.4.3.2 Tyrosinase inhibition assay	69
1.4.3.3 Microbial limit test	70
1.4.4 In vivo biological assays	71
1.4.4.1 Animals	71
A. Rabbit skin irritation testing	71
1.4.4.2 Human volunteers	72
A. TEWL meter/ vapometer	72
B. Cutometer	73
1.4.5 Applications of sericin and oil in cosmetics	74
1.4.6 Structure and biochemical changes in aging skin	75
1.4.7 Sericin and oil role of NMFs	82
CHAPTER 2 MATERIALS AND METHODS	86
2.1 Materials and equipments	86
2.1.1 Iviateriais	ð0

xiii

	Page
2.1.2 Chemical	86
2.1.3 Human volunteers	89
2.1.4 Equipments	90
2.2 Method	91
2.2.1 Extraction of the native Thai silkworm pupa oil	91
2.2.1.1 Soxhlet extraction	91
2.2.1.2 Maceration extraction	91
2.2.1.3 Characteristics of the native Thai silkworm oil	93
2.2.1.3.1 Physicochemical stability of oils extracted	
from the native Thai silk	93
2.2.1.3.2 Determination of linoleic acid contens in	
the oil sample by HPLC	93
2.2.1.3.3 Determination of the oxidation induction	
time of the oil sample	93
2.2.1.3.4 Determination of tocopherol and	
cholesterol contents by HPLC	94
2.2.1.3.5 Determination of fatty acid contents in	
the oil sample	94
2.2.1.3.6 Physical and chemical properties of the oil	95
A: Determination of saponification value	95
B: Determination of unsaponification value	96
C: Determination of Iodine value	96
D: Determination of density	97

xiv

	Page
E: Peroxide value	97
F: Determination of refractive index	97
G: Determination of acid value	98
2.2.1.4 Biological activities of the oil samples	98
2.2.1.4.1 Free radical scavenging assay	98
2.2.1.4.2 Tyrosinase inhibition assay	99
2.2.2 Preparation of sericin from the Thai native silk cocoon	99
2.2.2.1 Basic hydrolysis	99
2.2.2.2 Autoclave hydrolysis	100
2.2.2.3 Characteristics of sericin from the native Thai silk cocoon	101
2.2.2.3.1 Characterization of sericin from the native	
Thai silk cocoon	101
A: Total nitrogen by kjeldahl method	102
B: Loss on drying	102
C: Ash content	102
D: pH	102
E: Water solubility	102
E: Total plate count	103
2.2.2.3.2 Gel Electrophoresis of sericin from the native	105
	105
2.2.2.3.3 Fourier Transform Infrared	103
2.2.2.4 Biological activities of the sericin samples	103
2.2.2.4.1 Free radical scavenging assay of sericin	

xv

	Page
extracted from the native Thai silk cocoon	103
2.2.2.4.2 Tyrosinase inhibition assay of sericin extracted	
from the native Thai silk cocoon	104
2.2.2.4.3 Total Amino acid profile of sericin extracted	
from the native Thai silk cocoon	105
2.2.3 Preparation of niosome entrapped with sericin and oil	
extracted from the None Ruesee silkworm	105
2.2.3.1 Preparation of blank niosomes	105
2.2.3.2 Characteristics of blank niosomes	107
A. Particle size and zeta potential determination of	
blank niosomes	107
B. Physical stability of the blank niosomes	107
C. Selection of the best blank niosomal formulation	107
2.2.3.3 Entrapment of silkworm sericin and oil in the selected	
niosomal formulation	107
2.2.3.4 Physicochemical properties and stability observation	108
A. Appearance and morphology	108
B. pH measurement	109
C. Appearence of niosomal dispersion	109
D. Determination of entrapment efficiency	109
E. Particle size and zeta potential measurement	109
F. Stability study of the niosomes entrapped with sericin	
	110

xvi

xvii	
	Page
G. Transmission electron microscopy	110
2.2.4 Development of anti-wrinkle serum containing niosomes	
entrapped with oil and sericin extracted from silk	111
2.2.4.1 Five serum base formulations were developed and	
one formulation was selected	111
2.2.4.2 The quality of the serum base was compared with the typic	cal
facial moisturizing products sold on the market	111
2.2.4.2.1 Characteristics determination	111
A) Color	111
B) pH	111
C) Viscosity	111
D) Physical stability	112
2.2.4.2.2 Sensory quality	112
2.2.4.3 Optimizations of the best anti-wrinkle serum formulations	117
2.2.4.4 Development of serum containing niosomes entrapped	
with the silk oil and sericin	119
2.2.4.5 Development of color and fragrance of the selected serum	
formulation	119
2.2.4.5.1 Color development of the selected serum	
formulation	119
2.2.4.5.2 Fragrance development of the selected serum	
formulation	120

		٠	٠	٠
Х	V	1	1	1

	Page
2.2.4.6 Quality assessment on the developed serum containing	
niosomes entrapped with silk oil and sericin	120
A. Measure the pH value with a pH meter	120
B. Physical quality	120
C. Microbiological quality	120
D. Sensory quality	121
E. Clinical quality	121
2.2.5 Stability of the developed serum at difference storage	
temperature	122
2.2.6. Consumer acceptance study	122
2.2.7 Cost calculation for the developed serum containing niosomes	
entrapped with oil and sericin silk protein	123
2.2.8 Statistical analysis	123
CHAPTER 3 RESULTS AND DISCUSSION	124
3.1 Extraction of the native Thai silk worm pupa oil	124
3.1.1 Extraction and physico-chemical stability of oil extracted	
from Soxhlet and maceration method	124
3.1.2 Physico-chemical characteristics of oil	125
3.1.2.1 The linoleic acid contents	125
3.1.2.2 Fatty acid contents	126
3.1.2.3 Tocopherol and cholesterol contents	128
3.1.2.4 Physical and chemical contents	129

xix		
	Page	
3.1.3 Biological activities of oil	130	
3.1.3.1 Free radical scavenging activity	130	
3.1.3.2 Tyrosinase inhibition activity	132	
3.2 The native Thai silk sericin protein	134	
3.2.1 Extraction and physico-chemical stability of sericin extracted		
alkaling method	124	
3.2.1.1 Characterization of sericin extracted from the Thai native	134	
silk cocoon by the autoclave and alkaline method	134	
3.2.1.2 Gel electrophoresis of the sericin from the Thai native silk		
cocoon	136	
3.2.1.3 Amino acid compositions	139	
3.2.1.4 FTIR spectra	142	
3.2.2 Biological activities of sericin	144	
3.2.2.1 Free radical scavenging activity	144	
3.2.2.2 Tyrosinase inhibition activity	144	
3.3 Preparation of niosomes entrapped with sericin and oil extracted		
from None Ruesee silkworm	147	
3.3.1 Physical stability of blank niosomes from formulations		
prepared by chloroform film method with sonication	147	
3.4 Characteristics of the niosome formulations entrapped with the		
sericin and oil silkworm	150	
3.4.1 The vesicular size determination	150	
3.4.2 Morphology of the vesicles	150	

	Page
3.4.3 Entrapment efficiency determination	153
3.4.4 The antioxidative activity of niosomes entrapped with None	
Ruesee sericin and oil prepared by the CFS method	155
3.5. Development of the serum containing of niosomes entrapped with	
oil and sericin from silk	158
3.5.1 Selection of the suitable serum base	158
3.5.1.1 Quality of the serum products available in the market	158
3.5.1.2 Selection of the serum base formulations	159
3.5.2 Optimization of the serum formulations	163
3.5.2.1 Quality of the basic serum formulas that had passed	
the selection	163
3.5.2.2 Optimization of the serum formations	170
3.5.3 Preparation of niosome serum formulations	174
3.5.3.1 Elasticity study of niosome serum formulations using	
Cutometer	174
3.5.3.2 Color and fragrance development of serum with niosome	
entrapped with sericin and oil from the native	
Thai silkworm	176
A. Color study of niosomes serum formulations	176
B. Fragrance study of serum formulations	177
3.5.3.3 Quality study of the serum containing of niosome	
entrapped with sericin and oil from silk	181

XX

	Page
3.5.3.4 Physical and chemical stability of the serum containing	
niosome entrapped with oil and sericin from silk	183
A. Chemical stability of the serum containing of niosome	
entrapped with oil and sericin from silk	183
B. Physical stability of the developed serum	184
B 1. Viscosity value	184
B 2. Color value (L*a*b*)	185
3.6 Cost estimation of the oil, sericin from the native Thai silk worm	
and anti-wrinkle serum mixed with of niosomes entrapped with serici	n
and oil from silk	189
3.6.1 Estimation cost of the products from Thai native silkworm	189
3.6.2 Estimation cost of the anti-wrinkle serum containing niosomes	
entrapped with sericin and oil from Thai native silkworm	190
3.7 Consumer acceptance study on the serum containing of niosome	
entrapped with oil and sericin from silk	192
3.7.1 Demography data of volunteers	192
3.7.2 Information of consumer acceptance study on anti-wrinkle serun	n
containing niosomes entrapped with oil and sericin from silk	193
3.7.3 Decision to buy the developed product	197
CHAPTER 4 CONCLUSION	199

206

REFERENCES

xxi

		xxii	
			Page
APPE	NDICES		236
	Appendix A	Chemical and physical properties of compounds used	
		in this study	239
	Appendix B	Preparation of the reagent solutions for SDS-PAGE assay	240
	Appendix C	Friedman test	242
	Appendix D	Survey sheet consumer acceptance study	243
	Appendix E	The estimated cost of niosomes entrapped with None Rues	see
		strain silkworm extracts containing sericin and oil	256
	Appendix F	Cosmetic ingredients	260

CURRICULUM VITAE

266

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxiii

LIST OF TABLES

Table		Page
1	The classification of varieties of silk culture in Thailand	13
2	Characteristics of Native Thai Silkworm of Nangnoi Srisaket, Nang Lai	
	and Nang Leung	14
3	Characteristics of Native Thai Silkworm of Chor. Yoi. 1, Chor. Yoi. 2	
	and Chor Yoi. 3	16
4	Characteristics of Native Thai Silkworm of Paengphuay, Nangmoi	
	Srisaket and Sam Rong	17
5	Characteristics of Native Thai Silkworm of None Ruesee ,Keaw Sakol	
	and Khaki	19
6	Characteristics of Native Thai Silkworm of Neueasrithun and Mor.	20
7	Types of chemical ingredients of silk	22
8	Compositions of carbohydrate in silk protein of Bombyx mori and Taihei	
	strains.	23
9	Types and amount of amino acids found in Thai silk, wild silk and	
10	foreign silk	25
10	chemical structure, molecular weight and crystal conformation of	26
ns	The relative of the arrive solds found in silk	20
10	The polarity of the amino acids found in silk	27
12	The functions of various amino acids in the body	vers
13	I ypes, volume, and chemical structure of amino acids found in sericin of Non- native silk of Chul Thai Silk Co Ltd	33
14	Amino acid compositions in sericin and fibroin	35

Table		Page
15	Amino acid compositions of in sericin extracted from 4 layers	36
16	Types and amount of fibroin in <i>Bombyx mori</i> silk in comparing	
	to G.rufobrunnae	39
17	Nutrients found in 100 grams of silk pupa	42
18	Types and amounts of amino acids found in silk pupa of Thai	
	Silk Co.,Ltd	43
19	Composition of fatty acids of silk pupa powder from species Jul1,	
	Hybrid Nakorn Rachasima and Native Thai.	45
20	Chemical composition and fatty acid contents of the silk pupa both sex	
	separated and non-separated	46
21	Chemical characteristics of extracted oil from Jul1 and Jul5 silk pupa	47
22	Ingredients of the 5 selected serum base formulations	112
23	Factors and levels used in the study	117
24	The percentage yields of the Thai native silkworm oil extracted by	
	Soxhlet and maceration	125
25	Vitamin E (mg/100g) and cholesterol contents (mg/100g) determined	
	by HPLC of oil extracted from Thai native silkworm varieties by Soxhlet	
	and maceration extraction methods	129
26	Physical and chemical characteristics of the native Thai silkworm oils	
	extracted by Soxhlet and maceration methods	131
CODYN 27 N	Appearances, color values and % protein contents of silk protein powder	
	prepared by the autoclave and alkaline extraction methods	135

xxiv

Table		Page
28	Characteristics of sericin protein from Bombyx mori Linn.	
	(Native Thai silk) and the commercial sericin product	137
29	The amino acid profiles of various sericin sample extracted by different	
	methods from different species of <i>Bombyx mori</i> Linn (native Thai silk)	
	and the commercial sericin product	141
30	The physical appearances of the blank niosomes (Tween 61/ cholesterol	
	at 1:1 molar ratio) prepared by CFS after kept at 4, 25 and 45 °C at	
	initial 1, 2 and 3 months	148
31	The physical properties including vesicular size, the polydispersity	
	index (PDI), pH, color and dispersibility of blank niosomes (Tween 61/	
	cholesterol at 1:1 molar ratio) by CFS kept at different temperatures	
	for 3 months	149
32	Physical appearances (vesicular size, pH and physical appearances)	
	of niosomes (Tween 61/ cholesterol at 1:1 molar ratio) entrapped	
	with sericin and oil at 1 and 1 % w/w respectively, of the niosomal	
	forming materials kept at various temperatures for 3 months	151
33	The entrapment efficiencies (% EE) of niosomes entrapped with	
	None Ruesee strain silkworm extracts containing sericin and oil prepared	ł
	by the CFS method	153
34	Tyrosinase inhibition activities (IC $_{50}$) and DPPH radical scavenging	
	activity (SC ₅₀) of niosomes entrapped with None Ruesee strain	
	silkworm sericin and oil extracts prepared by CFS	155
35	Color and pH quality of ant wrinkle serum products available in the	
	market	157
36	Appearances of the five anti-wrinkle serum products	159
37	Physical and chemical quality of the five anti-wrinkle serum products	159

Table		Page
38	Scores of preference by the volunteer with the different characteristics	
	of the five anti-wrinkle serum products	160
39	Percentages of feeling score (frequency) of the volunteers on various	
	characteristics of anti-wrinkle serum basic formulas 1-5	161
40	Summary of the product quality value of the commercial product	
	compared with the basic formula serum	163
41	Quantitative descriptive analysis (QDA) of the basic serum formula	
	compared with the market products	165
42	Quality value of basic formula serum added Seppic gel [®] 305,	
	Simugel EG and CDRM 2051 at the level of 0.5% w/w	167
43	Just-about-right score of the volunteers with serum added with	
	CDRM 2051, Simugel EG and Sepigel 305 at the level of 0.5% w/w	168
44	Elasticity of skin and the ability of treansepidermal water loss loss on the	
	skin by the 3 formulas of the anti-wrinkle serum	169
45	Preference scores on various features of the anti-wrinkle serum	170
46	Equations of the relations between the preference scores of serum	
	and the production factors	171
47	Comparisons of factor values used to explain skin elasticity before and	
	after adding niosomes entrapped with oil and sericin from silk	174
48	Ur and Uf values of the serum with 6% niosomes entrapped with oil	
	and sericin from silk after using for 0, 2 and 4 weeks	174
49	The total rank of the preference ranking on color of serum with niosomes	
	entrapped with sericin and oil from the native Thai silkworm	176

xxvi

	•	٠
37 37	¥ 74	
хх	νı	
/ \ / \		

Table		Page
50	Scores on fragrance preferences in the serum formula mixed with	
	niosomes entrapped sericin and oil from the native Thai silkworm	177
51	Fragrances of volunteers by the just-about-right method	178
52	Ingredients of the serum products mixed and the selected fragrance	179
53	Chemical, physical properties and micro-organism contamination of	
	the serum products containing niosomes entrapped with sericin and	
	oil from silk and the selected fragrances	181
54	Sensory qualities of the serum products containing niosomes	
	entrapped with sericin and oil from silk	182
55	The estimated costs of oil and sericin from the Thai native silkworm	188
56	The estimated costs of niosomes entrapped with sericin and oil from	
	Thai native silkworm	189
57	The estimated costs of the developed anti-wrinkle serum containing	
	niosomes entrapped with sericin and oil from Thai native silkworm	191
58	Personal data of the volunteers in the consumer acceptance study	193
59	Information obtained from the consumers acceptance study	195
60	Preference levels of the volunteers on the characteristics of the anti-	
	wrinkle serum containing niosomes	196
61	Satisfaction levels of the volunteers on the characteristics	
	the anti-wrinkle serum containing niosomes	197
62	Decision to buy the anti-wrinkle serum containing niosomes	197
Table	B1 Preparation of the separating gel and stacking gel	241

		٠	٠	٠
XУ	ΚV	1	1	1

Table	Page
Table E1 Estimated cost calculation of oil from the silkworm pupa	257
Table E2 Estimated cost calculation of sericin from silk cocoon	257
Table E3 Costs of the serum with base compositions	258
Table F 1 The of common names and international nomenclature of cosmetic	

ingredients

260

<mark>ລິບສີກຣົ້ນກາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

xxix

LIST OF FIGURES

Figure		Page
1	Life cycle of silkworm	7
2	Silk cocoon	9
3	Composition of silk filament	23
4	Structure of silk	23
5	Structure of β -sheet and α -helix of silk	24
6	Chain molecule of silk	24
7	Electron photos of 2 fibroin fibers which are joined together by sericin	32
8	4XRD of sericin, which has amorphous structure in comparing to fibroir	n 34
9	FTIR Spectrum of sericin shows the random coil	34
10	Composition of fibroin cocoon	38
11	Structure of β-sheet silk of in fibroin	38
12	3D structure of β-form of fibroin in silk	38
13	Schematic drawings of a niosome	54
14	Schematic representation of the three steps of niosome preparation by	
	hand-shaken method. 1: Addition of an aqueous phase to the dry thin	
	lipid film. 2: Swelling and peeling of the lipid film under vigorous agitat	tion.
	3: Milky suspension of the equilibrated niosome	55
15	Reaction of the DPPH radical in the presence of the antioxidant	
	compound during the DPPH assay	69
16	Melanogenesis pathway	70
17	Deformation-time curve of the viscoelasticity of the skin	73

Figu	re	Page
18	Silkworm pupa (left) and silk cocoon (right) from the five Thai native	
	silkworms Bombyx mori (Linn.); (A): Keaw Sakol; (B): Nangnoi Srisa	ket;
	(C): Nang Leung; (D): Sam Rong and (E): None Ruesee	87
19	Extraction processes of the native Thai silkworm pupa oil by	
	Soxhlet extraction	92
20	Extraction process of the native Thai silkworm pupa oil by	
	the maceration extraction	92
21	Extraction of process sericin from the Thai native silk cocoon	
	prepared by extraction using basic hydrolysis	100
22	Extraction of process sericin from the Thai native silk cocoon prepared	1
	by extraction using autoclave hydrolysis	101
23	Preparation processes of niosomes	106
24	The bottom-view of bottle showed different degrees of sedimentation	108
25	Preparation process of the serum base formulation 1	115
26	Preparation process of the anti-wrinkle serum formulation 2	115
27	Preparation process of the serum base formulation 3	116
28	Preparation process of the serum base formulations 4	116
29	Preparation process of the serum base formulations 5	116
30	Thai native silkworm pupa varieties silkworm pupa	124
31	The appearances of the native Thai silkworm pupa oil	125
Copyri ₃₂	The percentages of fatty acids in the native Thai silkworm oil	
	extracted by Soxhlet and maceration methods	127

XXX

Figu	re	Page
33	SC ₅₀ (mg/ml) values by DPPH scavenging assay of oil from	
	various Thai native silkworm pupa prepared by the Soxhlet	
	and maceration method	132
34	IC_{50} (mg/ml) values by tyrosinase inhibition activity assay of oil from	
	various Thai native silkworm pupa prepared by the Soxhlet and	
	maceration process	133
35	Appearances of silk protein powder prepared by (a) autoclave	
	and (b) alkaline methods	135
36	Separation of protein by the SDS-PAGE method at 12.5% gel and	
	dyeing by comassie brilliant blue R-250	138
37	FTIR spectra of sericin from difference silk varieties obtained	
	from autoclave extraction processes compared with Promois®	142
38	FTIR spectra of sericin from difference silk varieties obtained	
	from alkaline extraction processes compared with Promois®	143
39	SC ₅₀ (mg/ml) values by DPPH scavenging assay of sericin	
	from various Thai native silk cocoon prepared by autoclaving	
	and basic hydrolysis in comparing to the standard antioxidants	
	(vitamin C, vitamin E and BHT)	145
40	IC_{50} (mg/ml) values by tyrosinase inhibition activity assay of sericin	
	from various Thai native silk cocoon prepared by autoclaving and basic	2
	hydrolysis in comparing to the standard antioxidants (vitamin C and	
	kojic acid)	146

xxxi

			٠	٠	
\$7	37	37	1	1	
х	х	х	н		
			-	•	

Figure	Page
41 Niosomes entrapped with sericin and oil from None Ruesee silkworm	
by Canon EOS450D	150
42 Morphology of niosomes entrapped with the sericin and oil silkworm	
prepared by CFS investigated by TEM with the magnification of ×15.k	150
43 Response surface graphs showing relations between the concentrations	
of Montanov L and DCCB 3031 with the effects on preference	
of skin firmness (a) and overall preference (b)	171
44 Contour plot graphs showing the score range of suitable preference	
in the productions of raised skin firmness such as preference on	
firmness (a) and overall preference (b)	172
45 Contour plot graph of the preference score value on the raised skin face	
firmness and overall preference upon superimpose area derived of the	
green area which are Montanov L and the DCCB3031 suitable amount	172
46 The Ur and Uf values of skin after using the serum base mixed	
with 6 % w/w niosomes entrapped with sericin and oil at 0, 2 and 4 weeks	s 175
47 The serum containing niosomes entrapped with sericin and oil	
from the native Thai silkworm and the selected fragrance	180
48 Changes of pH of the developed serum stored at 30, 35 and 45° C	
for 8 weeks.	183
49 Viscosity changes of the developed serum stored at 30, 35 and 45° C	
for 8 weeks	184

xxxiii

Figure	e	Page	
50	Change of the lightness value (L*) of the developed serum stored		
	at 30, 35 and 45°C for 8 weeks	185	
51	Changes of color value on the a* of the developed serum stored		
	at 30, 35 and 45°C for 8 weeks	186	
52	52 Changes of color value in b* of the developed serum stored		
	at 30, 35 and 45°C for 8 weeks	187	

ลิปสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

CFS	Chloroform film method with sonication	
CFU	Colony forming unit	
CHCl ₃	Chloroform	
DPPH	1, 1-Diphenyl-2-picryhydracyl	
TEM	transmission electron microscopy	
FT-IR	Fourier transforms infrared spectroscopy	
HPLC	High performance liquid chromatography	
IC_{50}	Concentration providing 50% of tyrosinase inhibition activity	
LPO	Lipid peroxide	
LUV	Large unilamellar vesicle	
mg	Milligram	
mL	Milliliter	
MLV	Multilamellar vesicle	
mM	Millimolar	
nm	Nanometer	
ppm	Parts per million	
SC ₅₀	Concentration providing 50% free radical scavenging activity	
SUV	Small unilamellar vesicle	
TEA	Triethanolamine	
TEWL	Transepidermal water loss	
Tween 61	Polyoxyethylene sorbitan monostearate	
μg	Microgram	

XXXV

ີລິບສີກສົ້ນກາວົກຍາລັຍເຮີຍວໃหນ Copyright[©] by Chiang Mai University All rights reserved