TABLE OF CONTENTS

A STELLOW B	ages
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF SCHEMES	XV
ABBREVIATIONS AND SYMBOLS	xvi
CHAPTER I INTRODUCTION	1
CHAPTER II REVIEW OF LITERATURES	10
1. Free radicals and antioxidants	10
2 cancer	29
3. bacteria g n t s r e s e r v e	30
4. Fungi	31
5. Review of Chemical Constituents of <i>C. hystrix</i> Leaves	33
6. Review of Chemical Constituents of <i>F. limonia</i> Leaves	33
7 Review of Chemical Constituents of A marmelos Leaves	33

8. Review of Chemical Constituents of <i>C. aurantifolia</i> Leaves	34
CHAPTER III MATERIALS AND METHODS	35
Source and Authentication of the plant materials	35
General Techniques	35
Analysis of essential oil	37
	38
Analysis of mineral metal ions	
Antioxidant activity	39
Biological Activity	40
Extraction	41
CHAPTER IV RESULTS AND DISCUSSION	53
1. Extraction yield	53
2. Screening method for total antioxidant activity	54
3. Screening method for antimicrobial activity	61
4. Screening method for anticancer activity	62
5. Analysis of the essential oil	65
6. Analysis of the mineral metal ions	74
7. Isolation of <i>C. hystrix</i> constituent	79
8. Isolation of <i>F. limonia</i> constituent	84
agne ukoonen agustelat	141
CHAPTER V CONCLUSION	90
ppyright [©] by Chiang Mai Univers	
REFERENCES	93
rights reserv	e c
APPENDIX	106
	401
VITA	124

LIST OF TABLES

Table 9888	Page
2.1 ROS, RNS, and other free radicals sometimes found in biological system	11
2.2 Defense systems <i>in vitro</i> against oxidative damage	18
3.1 AAS parameters	38
4.1 The percentage yields of the extracts from Thai medicinal plants	53
4.2 The percentage yield of ethyl acetate and butanol extracts from <i>F. limonia</i>	54
4.3 The percentage yields of the essential oil from Thai medicinal plants	54
4.4 Percentage inhibition of Trolox concentration series for ABTS screening method	55
4.5 Percentage inhibition of vitamin C concentration series for ABTS screening method	55
4.6 Percentage inhibition of quercetin concentration series for ABTS screening	55
method	
4.7 Antioxidant activities by ABTS assay	57
4.8 The percentage inhibition of each concentration of the Trolox standard solution	58
4.9 The percentage inhibition of each concentration of the vitamin C standard	59
solution	
4.10 The percentage inhibition of each concentration of the quercetin standard solution	60
4.11 Antioxidant activities by DPPH assay	61
4.12 Antibacterial activities	63
4.13 Antifungal activities	64
4.14 Anticancer activities	65
4.15 Volatile components in leaves of <i>Citrus hystrix</i> DC.	66
4.16 Chemical composition of the essential oil of <i>F. limonia</i> Swing.	68
4.17 Chemical composition of the essential oil of 4 marmelos	70

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 90818196		
1.1	Citrus hystrix DC.	3
1.2	Feronia limonia Swing.	4
1.3	Aegle marmelos Corr.	6
1.4	Citrus aurantifolia Swing.	7
2.1	The interrelationship between oxygen and the ROS	12
2.2	The attack of HO on a variety of biological important molecules	13
	produces a great diversity of reaction products	
2.3	The interrelationship between NO and the RNS	15
2.4	Sequence describing lipid peroxidation, L represents a lipid and hydrogen	16
	being lost generally is allylic, i.e., C=C-C-H.	
2.5	The assay for measuring TEAC (Trolox equivalent antioxidant capacity).	22
2.6	DPPH structure	23
2.7	Ferric reducing ability of plasma (FRAP) assay	24
2.8	The oxygen radical absorbance capacity assay	25
2.9	(a) Fluorescence decay curve of fluorescein in the presence of	26
	R-tocopherol and AAPH. (b) Linear plot of the net AUC versus	
	R-tocopherol concentration	
2.10	Thiobarbituric Acid Reactive Substances assay	28
4.1	Concentration-response curve for the absorbance at 734 nm for	56
	ABTS ^{*+} as a function of concentration of standard Trolox (a),	
	vitamine C (b) and quercetin (c) solution	
4.2	Calibration curve for the absorbance at 540 nm of DPPH method as a	59
	function of the concentration of Trolox standard solution	
4.3	Calibration curve for the absorbance at 540 nm of DPPH method as a	59
	function of the concentration of vitamin C standard solution	
4.4	Calibration curve for the absorbance at 540 nm of DPPH method as a	60
	function of the concentration of quarcetin standard solution	

4.5	Total ion chromatogram of C. hystrix DC. essential oil	66
4.6	Total ion chromatogram of F. limonia essential oil	68
4.7	Total ion chromatogram of A. marmelos essential oil	70
4.8	Total ion chromatogram of C. aurantifolia essential oil	71
4.9	Standard addition curve for determination of calcium in old	77
	C. hystrix leaves	
4.10	Standard addition curve for determination of sodium in young	77
	A. marmelos leaves	
4.11	Standard addition curve for determination of iron in old <i>F. limonia</i> leaves	77
4.12	Standard addition curve for determination of magnesium in young	78
	C. hystrix leaves	
4.13	Standard addition curve for determination of manganese in old	78
	C. aurantifolia leaves	
4.14	Standard addition curve for determination of zinc in old	78
	A. marmelos leaves	
4.15	Standard addition curve for determination of copper in young	79
	C. aurantifolia leaves	
4.16	Total ion chromatogram of CHAP fraction	79
4.17	Total ion chromatogram of CHC4GP fraction	80
4.18	Total ion chromatogram of CHH3G fraction	81
4.19	Total ion chromatogram of CDH fraction	82
4.20	Total ion chromatogram of CDO6B fraction	83
4.21	Total ion chromatogram of FAK1 fraction	84
4.22	Total ion chromatogram of FALP fraction	85
4.23	Chemical structure of β-sitosterol	89
4.24	Chemical structure of stigmasterol	89
4.25	¹ H NMR spectrum of FALP	108
4.26	¹³ C NMR spectrum of FALP	109
4.27	mass-spectrum of citronellol	110
4 28	mass-spectrum of heta citronellal	111

4.29 mass-spectrum of citronellyl acetate	112
4.30 mass-spectrum of linalool	113
4.31 mass-spectrum of sabinene	114
4.32 mass-spectrum of 4-terpineol	115
4.33 mass-spectrum of gamma-terpinene	116
4.34 mass-spectrum of alpha-terpinene	117
4.35 mass-spectrum of limonene	118
4.36 mass-spectrum of alpha-phellandrene	119
4.37 mass-spectrum of trans-caryophyllene	120
4.38 mass-spectrum of geranial	121
4.39 mass-spectrum of neral	122
4.40 mass-spectrum of geraniol	123

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SCHEMES

Schemes 918186		
3.1	Extraction scheme of <i>C. hystrix</i>	42
3.2	Isolation scheme of <i>n</i> -hexane extract of <i>C. hystrix</i> leaves (CH)	43
3.3	Isolation scheme of compound CHC4	44
3.4	Isolation scheme of compound CHC4GP	45
3.5	Isolation scheme of compound CHH3	46
3.6	Isolation scheme of compound CHH3G	47
3.7	Isolation scheme of dichloromethane extract of <i>C. hystrix</i> leaves (CD)	48
3.8	Isolation scheme of compound CDO6	49
3.9	Isolation scheme of compound CDO6B	49
3.10	Extraction of F. limonia leaves	50
3.11	Extraction scheme of ethyl acetate extract	50
3.12	Isolation scheme of compound FAK1	51
3.13	Isolation scheme of compound FALP	52

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVATIONS AND SYMBOLS

ABTS Radical form of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

cm Centimeter

CC Column chromatography

°C Degree Celsius

DPPH 1,1-diphenyl-2-picrylhydrazyl

FRAP The ferric reducing antioxidant power

g Gram hour

IC₅₀ The concentration that resulted in 50% inhibition of the activity

ml Milliliter
mm Millimeter
mM Millimolar

MS Mass spectrometry

nm nanometer

ORAC The oxygen radical absorbance capacity

r² Correlation coefficient

RNS Reactive nitrogen species

ROS Reactive oxygen species

SOD Superoxide dismutase

SOS Superoxide scavenging

TBARS Thiobarbituric acid reactive substance

TEAC Trolox equivalent antioxidant capacity

TPTZ 2,4,6-Tris (2-pyridyl)-s-triazine

TLC Thin layer chromatography

UV Ultraviolet

AAS Atomic absorption spectrophotometry

GC-MS gas chromatography-mass spectrometry