LIST OF TABLES

Table	Page
1. The amount of essential amino acid in soybean compare with	8
FAO/WHO recommendation.	
2. The amount of fatty acid in soybean oil	8
3. Proximate composition of whole seeds of 6 soybean varieties	9
4. Moisture contents of soybean varieties	9
5. Reactive oxygen species found in vivo	30
6. Defenses systems against oxidative damage	38
7. Examples of some disorder and diseases associated with free-radical	41
pathology	
8. Analytical method for determining antioxidant activity	55
9. Aspergillus strains used in the screening test	65
10. Changes in isoflavone content of soybean fermented with and	97
without inoculation of <i>A. oryzae</i> BCC 3088	
11. Mass spectrometry analysis of isoflavones	98

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
1. Leaves and seed of soybean	4
2. Aspergillus conidium head and colony on agar medium	18
3. Oxidative stress and human diseases	34
4. The attack of hydroxyl radical on guanine in DNA which leads to mutation	35
5. Defense systems in vivo against oxidative damage	37
6. A representation of a free-radical-mediated disturbance producing a	42
diverging set of metabolic perturbations, with some or al of these repaired	
or prevented by effective cell defenses involving free radical scavengers	
and antioxidants	
7. The chemical structure of soybean isoflavones	48
8. Postulated mechanisms of protein oxidation in vivo	62
9. Antioxidative activity by scavenging effect on ABTS radical ability	79
assay of fermented soybean broths with 33 strains of Aspergillus	
10. β -glucosidase activity of fermented soybean broths with 6 strains	81
of Aspergillus	
11. β -glucosidase activity of fermented soybean with 6 strains of <i>Aspergillus</i>	82
during 4-day fermentation	
12. Antioxidative activity by scavenging effect on ABTS radical ability assay	85
of fermented soybean in solid state with 6 strains of Aspergillus during	
4-day fermentation	

13 . An	ntioxidative activity by ferric reducing ability power assay (FRAP) of	85
ferr	mented soybean in solid state with 6 strains of Aspergillus during	
4-d	ay fermentation	
14. To	tal phenolic content of fermented soybean in solid state with 4 strains	87
of	Aspergillus at day0 and day4 fermentation	
15. To	tal flavonoid content of fermented soybean in solid state with 4 strains	89
of	Aspergillus at day0 and day4 fermentation	
16 . Th	e dose-response for the DPPH radical-scavenging activity of the	90
me	ethanol extract from fermented soybean with Aspergillus oryzae	
ВС	CC 3088 and control at 4-day fermentation	
17 . Th	e dose-response for lipid peroxidation assay of the methanol extract	92
fro	om fermented soybean with Aspergillus oryzae BCC 3088 and control	
at 4	4-day fermentation	
18 . Th	e dose-response for plasmid DNA relaxation assay of the methanol	93
ext	tract from fermented soybean with Aspergillus oryzae BCC 3088	
and	d control at 4-day fermentation	
19 . Pro	otein oxidation inhibition assay of the methanol extracts of soybean	95
fer	rmented with (A) and without inoculation (B) of A. oryzae BCC 3088	
20. HF	PLC chromatograms of fermented soybean extract inoculated with	98
(C) (C) (Asj	pergillus oryzae BCC 3088 during fermentation	
21. Ma	ass spectral analysis of isoflavones in the fourth day fermentation	99
of	soybean fermented with Aspergillus oryzae BCC 3088.	

LIST OF SCHEMES

Schemes	Page
1. Proposed scheme for the formation of potent antioxidative substances	20
by fermented with Aspergillus	
2. The univalent pathway of O ₂ reduction	31
3. Haber-Weiss reaction and Fenton reaction	32
4. Ionizing radiation interacts with water	32
5. Formation of ABTS ^{•+} radical cation from activated myoglobin	57
6. Formation of ferrous tripyridyltriazine complex by ferric reduction	58
7. The mechanism of the reaction of antioxidant with a DPPH radical	3 58
8. Mechanism of lipid peroxidation	59
9. Reaction of phenolic antioxidants	60
10. The protocol of ABTS free radical cation decolorisation assay	68
11. The protocol of ferric reducing ability power assay (FRAP)	71

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved