
Chapter 2

Preliminaries

This chapter aims to introduce some notations, definitions and theorems that

will be used in our research. We will talk about interest rates and present value,

Brownian motion and stochastic calculus, risk neutral probability measures, ex-

istence and uniqueness, multiple asset model and financial risk measures respec-

tively.

2.1 Interest rates and present value

When you borrow an amount A (called the principal) which must be repaid after

a time T with a (simple) interest rate r (per time T ), the amount to be repaid at

time T is

A+ Ar = A(1 + r).

When T is one year (for example), and the interest at rate r (per year) is

compounded semi-annually, you must repay, after one year,A(1+r/2)2, since what

it means is this. After half a year, you are to be charged simple interest at the

rate of r/2 per half-year, and that interest is then added on to your principal,

which is again charged interest at rate r/2 for the second half-year period. In

other words, after six months, you owe A(1 + r/2), and this is your new principal

for your second half-year at rate r/2. Thus, at the end of the year, you owe

A(1 + r/2)(1 + r/2) = A(1 + r/2)2.

If your borrowed amount A is charged at rate r compounded monthly, then

after one year you owe A(1+ r/12)12. That is so because “compounded monthly”

means paying simple interest every month at a rate of r/12 per month, with the

accrued interest then added to the principal owed during the next month.
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It is clear that you pay more interest with compounded rate than with simple

rate!

The interest rate r is called the nominal interest rate. The so-called “effective

interest rate” (per year) is defined as

reff = (amount paid at the end of a year− A)/A.

For an amount A you borrow, for one year, say, at a nominal rate r per year,

compounded continuously, how much you owe at the end of the year?

Well, if the loan is compounded at n equal intervals in the year, then you owe

at the end of the year is A(1 + r/n)n. We refer to “continuous compounding” as

the limit as n → ∞. Thus, you owe

A lim
n→∞

(1 + r/n)n = Aer.

Note that the effective interest rate (per year) is then

(Aer − A)/A.

Now if the amount A is borrowed for t years, at a nominal rate r per year

compounded continuously, you owe Aert. Indeed, if the interest is compounded n

times during the year, then there would have been nt compoundings by time t,

giving a debt level of A(1 + r/n)nt. Thus,

A lim
n→∞

(1 + r/n)nt = A( lim
n→∞

(1 + r/n)n)t = Aert.

In order to compare different income streams, we need the concept of present

value.

This concept appears when you can both borrow and loan money at a nominal

rate r per period that is compounded periodically. What is the present worth of

a payment of a dollars that will be made at the end of period i ?

Since a bank loan of a(1 + r)−i would require a payoff of a at period i, the

“present value” of a payoff of a to be made at time period i is a(1 + r)−i.

If the rate r is compounded continuously (for a given period), then the value

now of a dollar promised at time t is e−rt.
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When the promise of a future dollar will be always be honoured (such as for

US government bonds), the interest rate r is referred to as the risk-free interest

rate.

2.2 Brownian motion and stochastic calculus

In 1828, the Scottish botanist Robert Brown observed pollen particles in suspen-

sion under a microscope and observed that they were in constant irregular motion.

In 1900, Bachelier considered Brownian motion as a possible model for stock mar-

ket prices. However, at that time, the topic was not thought worthy of study!

In 1905, Einstein considered Brownian motion as a model of particles in sus-

pension. He observed that, if the kinetic theory of fluids was right, then the

molecules of water would move at random and so a small particule would receive

a random number of impacts of random strength and from random directions in

any short period of time. Such bombardment would cause a sufficiently small

particule to move in exactly the way described by Brown.

In 1923, Norbert Wiener defined and constructed Brownian motion rigorously

for the first time. In his honour, the resulting stochastic process is called the

Wiener process.

Finally, in 1965, from the work of Samuelson, Brownian motion appeared as a

modelling tool in finance.

2.2.1 Definition of Brownian motion

Let (Ω,F , P ) be a probability space. For each ω ∈ Ω, suppose there is a

continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and that depends on

ω. Then W (t), t ≥ 0, is a Brownian motion if for all 0 = t0 < t1 < . . . < tm the

increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1) (2.1)
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are independent and each of these increments is normally distributed with

E
[
W (ti+1)−W (ti)

]
= 0 (2.2)

V ar
[
W (ti+1)−W (ti)

]
= ti+1 − ti (2.3)

2.2.2 Martingale property for Brownian motion

Martingales refer to a class of betting strategies in the 18th century in France.

The theory was introduced by Paul Levy and mostly developed by J. Doob.

The stochastic process X = (X(t), t ≥ 0) define on (Ω, A, P ), is said to be a

martingale with respect to the filtration F(t) if it satisfies the following:

(i) X is F - adapted

(ii) E|X(t)| < ∞ for all t ≥ 0

(iii) E(X(t)|F(s)) = X(s) (P -a.s.) for 0 ≤ s ≤ t.

Remark: It is important to note that the concept of a martingale involves

both the filtration and the probability measure P on (Ω, A), with respect to it,

expectations are taken. It is possible that X is not martingale with respect to

P , but it is a martingale with respect to another probability Q on (Ω, A). This

phenomenon of “changing probability measures” is crucial in option pricing in fi-

nancial economics.

Martingales are stochastic processes which are “constant on average” and

model fair games. The martingale property is the property (iii) which says that:

the best forecast of the unobservable future value X(t), based on information at

time s < t, which is F(s), is the value X(s) known at time s.

As we can see that the martingale property is essential in the construction of

stochastic integral, since our main stochastic process, the Brownian motion is a

martingale.

Theorem 2.2.1. Brownian motion is a martingale.
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Proof Let 0 ≤ s ≤ t be given. Then

E[W (t)|F(s)] = E[W (t)−W (s) +W (s)|F(s)]

= E[W (t)−W (s)|F(s)] + E[W(s)|F(s)]

= E[W (t)−W (s)] +W (s)

= W (s)

2.2.3 Stochastic calculus

Definition 2.2.2. A stochastic process X is a continuous process {X(t) : t ≥ 0}
such that X(t) can be written as

X(t) = X(0) +

∫ t

0

σ(s)dW (s) +

∫ t

0

µ(s)ds (2.4)

where µ(s) and σ(s) are random F-previsible process such that
∫ t

0
(σ2(s) +

|µ(s)|)ds) is finite for all time t (with probability 1). The differential form of this

equation can be written as

dX(t) = σ(t)dW (t) + µ(t)dt (2.5)

2.2.4 Formula for Itô process

We extend the Itô-Doeblin formula to stochastic processes more general than

Brownian motion. Almost all stochastic processes, except those that have jumps,

are Itô precess.

Definition 2.2.3. Let W (t), t ≥ 0, be a Brownian motion, and let F(t), t ≥ 0 be

an associated filtration. An Itô process is stochastic process of the form

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du, (2.6)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic process1.

1We assume that E
∫ t

0
∆2(u)du and

∫ t

0
|Θ(u)|du are finite for every t > 0 so that the integrals

on the right-hand side of (2.6) are defined and the Ito integral is a martingale. We shall always

make such integrability assumptions, but we do not always explicitly state them.
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Lemma 2.2.4. The quadratic variation of the Itô process (2.6) is

[X,X](t) =

∫ t

0

∆2(u)du (2.7)

Proof. See [13, p 143-144]. �
The conclusion of Lemma (2.2.4) is most easily remembered by first writing

(2.6) in the differential notation. Let X(t), t ≥ 0 be an Itô process as

dX(t) = ∆(t)dW (t) + Θ(t)dt (2.8)

2.2.5 Formula for Brownian motion

We want a rule to “differentiate” expression of the form f(W (t)), where f(x)

is a differentiable function and W (t) is a Brownian motion. If W (t) were also

differentiable, then chain rule from ordinary calculus would give

d

dt
f(W (t)) = f ′(W (t))W ′(t),

which could be written in differential notation as

df(W (t)) = f ′(W (t))W ′(t)dt = f ′(W (t))dW (t).

Because W has non zero quadratic variation, the correct formula has an extra

term, namely,

df(W (t)) = f ′(W (t))dW (t) +
1

2
f ′′(W (t))dt. (2.9)

This is the Itô-Doeblin formula in differential form. Integrating this, we obtain

the Itô-Doeblin formula in integral form:

f(W (t))− f(W (0)) =

∫ t

0

f ′(W (u))dW (u) +
1

2

∫ t

0

f ′′(W (u))du. (2.10)

We formalize the preceding discussion with a theorem that provides a formula

slight more general than (2.10) in that it allows f to be a function of both t and

x.
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Theorem 2.2.5. Itô-Doeblin formula for an Itô process Let X(t), t ≥ 0, be an Itô

process as described in Definition 2.2.3 and let f(t, x) be a function for which the

partial derivatives ft(t, x), fx(t, x) and fxx(t, x) are defined and continuous. Then

for every T ≥ 0

f(t,X(T )) = f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))dX(t)

+
1

2

∫ T

0

fxx(t,X(t))d[X,X](t)

= f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))∆(t)dW (t)

+

∫ T

0

fx(t,X(t))Θ(t)dt+
1

2

∫ T

0

fxx(t,X(t))∆2(t)dt. (2.11)

However, it is easier to remember and use the result of this theorem if we

recast it in differential notation. We may rewrite (2.11) as follow:

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).(2.12)

We may reduce (2.12) to an expression that involves only dt and dW (t) by

using the differential form (2.8) of the Itô process (i.e, dX(t) = ∆(t)dW (t) +

Θ(t)dt ) and the formula of (2.8) for the rate at which X(t) accumulates quadratic

variation (i.e, dX(t)dX(t) = ∆2(t)dt). This is obtained by squaring the formula

for dX(t) and using the multiplication table2. Making these substitutions in (2.12)

we obtain

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))∆(t)dW (t)

+ fx(t,X(t))Θ(t)dt+
1

2
fxx(t,X(t))∆2(t)dt (2.13)

Example 2.2.6. (Generalized geometric Brownian motion). Let W (t), t ≥ 0, be a

Brownian motion. Let F(t), t ≥ 0, be its associated filtration, and let µ(t) and

σ(t) be adapted process. Define the Itô process

X(t) =

∫ t

0

σ(s)dW (s) +

∫ t

0

(
µ(s)− 1

2
σ2(s)

)
ds (2.14)

2dW (t)dW (t) = dt, dtdW (t) = dW (t)dt = 0, dtdt = 0
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Then

dX(t) = σ(t)dW (t) +
(
µ(t)− 1

2
σ2(t)

)
dt,

and

dX(t)dX(t) = σ2(t)dW (t)dW (t) = σ2(t)dt.

Consider an asset price process given by

S(t) = S(0)eX(t) = S(0)exp
{∫ t

0

σ(s)dw(s) +

∫ t

0

(
µ(s)− 1

2
σ(s)

)
ds

}
, (2.15)

where S(0) is nonrandom and positive. The asset price S(t) has instantaneous

mean rate of return µ(t) and volatility σ(t). Both the instantaneous mean rate

of return and the volatility are allowed to be time-varying and random. If µ and

σ are constants, we have the usual geometric Brownian motion model, and the

distribution of S(t) is log-normal.

In the case of constant µ and σ,(2.15) become

S(t) = S(0)exp
{(

µ− 1

2
σ2

)
t+ σW (t)

}
(2.16)

2.2.6 Multiple Brownian motions

Definition 2.2.7. A d-dimension Brownian motion is a process

W (t) = (W1(t), . . . ,Wd(t))

with following properties:

(i) Each Wi(t) is a one-dimensional Brownian motion.

(ii) If i �= j, then the processes Wi(t) and Wj(t) are independent. Associated

with a d-dimensional Brownian motion, we have a filtration F(t), t ≥ 0,

such that the following holds.

(iii) (Information accumulates) For 0 ≤ s < t, every set in F(s) is also in

F(t).

(iv) (Adaptivity) For each t ≥ 0, the random vector W (t) in F(t) is measur-

able.

(v) (Independent of future increments) For 0 ≤ t < u, the vector of increme-

nts W (u)−W (t) is independent of F(t).
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2.2.7 Itô-Doeblin formula for multiple processes

To keep the notation as simple as possible, we write the Itô formula for two

processes driven by a two-dimensional Brownian motion. In the obvious way, the

formula generalizes to any number of processes driven by a Brownian motion of

any number(not necessarily the same number) of dimensions.

Let X(t) and Y (t) be Itô processes, which means they are processes of the

form

X(t) = X(0) +

∫ t

0

Θ1(u)du+

∫ t

0

σ11(u)dW1(u) +

∫ t

0

σ12(u)dW2(u),

Y (t) = Y (0) +

∫ t

0

Θ2(u)du+

∫ t

0

σ21(u)dW1(u) +

∫ t

0

σ22(u)dW2(u).

The integrands Θi(u) and σij(u) are assumed to be adapted processes. In differ-

ential notation, we write

dX(t) = Θ1(t)dt+ σ11(t)dW1(t) + σ12(t)dW1(t), (2.17)

dY (t) = Θ2(t)dt+ σ21(t)dW1(t) + σ22(t)dW1(t). (2.18)

The Itô integral
∫ t

0
σ11(u)dW1(u) accumulates quadratic variation at rate σ2

11(t)

per unit time, and the Itô integral
∫ t

0
σ12(u)dW1(u) accumulates quadratic varia-

tion at rate σ2
12(t) per unit time. Because both of these integral appear in X(t),

the process X(t) accumulates quadratic variation at rate σ2
11(t) + σ2

12(t) per unit

time:

[X,X](t) =

∫ t

0

(σ2
11(u) + σ2

12(u))du.

We may write this equation in differential form as

dX(t)dX(t) = (σ2
11(t) + σ2

12(t))dt. (2.19)

One can informally derive (2.19) by squaring (2.17) and using the multiplication

rules

dtdt = 0, dtdWi(t) = 0, dWi(t)dWi(t) = dt, dWi(t)dWj(t) = 0 for i �= j.

In a similar way, we may derive the differential formulas

dY (t)dY (t) = (σ2
11(t) + σ2

12(t))dt, (2.20)

dX(t)dY (t) = (σ11(t)σ21(t) + σ12(t)σ22(t))dt. (2.21)
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The following theorem generalizes the Itô-Doeblin formula of Theorem 2.2.5.

The justification, which we omit, is similar to that of Theorem 2.2.5.

Theorem 2.2.8. Two-dimensional Itô-Doeblin formula. Let f(t, x, y) be a func-

tion whose partial derivatives ft, fx, fy, fxx, fxy, fyx, and fY Y are defined and

are continuous. Let X(t) and Y (t) be Itô processes as discussed above. The two-

dimensional Itô-Doeblin formula in differential form is

df(tX(t), Y (t))

= ft(t,X(t), Y (t))dt+ fx(t,X(t), Y (t))dX(t) + fY (t,X(t), Y (t))dY (t)

+
1

2
fxx(t,X(t), Y (t))dX(t)dX(t) + fxy(t,X(t), Y (t))dX(t)dY (t)

+
1

2
fyy(t,X(t), Y (t))dY (t)dY (t). (2.22)

We rewrite it, leaving out t wherever possible, to obtain the same formula in

the more compact notation

df(t,X, Y ) =ftdt+ fxdX + fydY

1

2
fxxdXdX + fxydXdY +

1

2
fyydY dY. (2.23)

The differential dX, dY, dXdX, dXdY, and dY dY appearing in (2.23) are

given by (2.17)-(2.21). Making these substitutions and then integrating (2.23), we

obtain the Itô-Doeblin formula in integral form:

f(t,X(t), Y (t))− F (o,X(0), Y (0))

=

∫ t

0

[
σ11(u)fx(u,X(u), Y (u)) + σ12(u)fy(u,X(u), Y (u))

]
dW1(u)

+

∫ t

0

[
σ21(u)fx(u,X(u), Y (u)) + σ22(u)fy(u,X(u), Y (u))

]
dW2(u)

+

∫ t

0

[
ft(u,X(u), Y (u))

+ Θ1(u)fx(u,X(u), Y (u)) + Θ2(u)fy(u,X(u), Y (u))

+
1

2
(σ2

11(u) + σ2
12(u))fxx(u,X(u), Y (u))

+ (σ11(u)σ21(u) + σ12(u)σ22(u))fxy(u,X(u), Y (u))

+
1

2
(σ2

21(u) + σ2
22(u))fyy(u,X(u), Y (u))

]
(2.24)
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Corollary 2.2.9. Itô product rule. Let X(t) and Y (t) be Itô processes. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

2.3 Risk neutral probability measures

Theorem 2.3.1. (Girsanov, one dimension). Let W (t), 0 ≤ t ≤ T, be a Brownian

motion on a probability space (Ω,F , P ), and let F(t) 0 ≤ t ≤ T, be a filtration for

this Brownian motion. Let Θ(t), 0 ≤ t ≤ T, be an adapted process. Define

Z(t) = exp
{
−

∫ t

0

Θ(u)dW (u)− 1

2

∫ t

0

Θ2(u)du
}
, (2.25)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du, (2.26)

and assume that

E

∫ t

0

Θ2(u)Z2(u)du < ∞. (2.27)

Set Z = Z(t). Then EZ = 1 and under the probability measure Q given by

Q(A) =

∫
A

Z(ω)dP (ω) for all A ∈ F ,

the process W̃ (t), 0 ≤ t ≤ T, is a Brownian motion.

Proof. See [13, p 212-214]. �

2.3.1 Martingale representation with one Brownian motion

The existence of a hedging portfolio in the model with one stock one Brownian

motion depends on the following theorem.

Theorem 2.3.2. Martingale representation, one dimension. Let W (t), 0 ≤ t ≤
T , be a Brownian motion on a Probability space (Ω,F , P )(actual probability), and

let F(t), 0 ≤ t ≤ T , be a filtration generated by this Brownian motion. Let M(t),

0 ≤ t ≤ T , be a martingale with respect to this filtration (i.e., for every t, M(t)



17

is F(t)-measurable and for 0 ≤ s ≤ t ≤ T , E[M(t)|F(s)] = M(s)). Then there is

an adapted process Γ(u), 0 ≤ u ≤ T, such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u), 0 ≤ t ≤ T. (2.28)

Now, we would like to construct a probability measure Q, under which the

discounted security price e−rtS(t) is a martingale where

e−rtS(t) = S(0)exp
{
(µ− r − σ2)t+ σW (t)

}
(2.29)

the right hand side of (2.29) is the solution for the following stochastic differential

equation:

dX(t) = X(t)
{
(µ− r)dt+ σdW (t)

}
(2.30)

where X(t) = e−rtS(t) and X(0) = S(0).

Observe that from the Girsanov’s Theorem, if a process Θ(t), t ∈ [0, T ] satisfies

Girsanov’s conditions then the probability measure Q exists and under Q,

W̃ (t) = W (t) +

∫ t

0

θ(s)ds

is a standard Brownian motion. Then

dW (t) = dW̃ (t)− θ(t)dt. (2.31)

Therefore

dX(t) = X(t)
{
(µ− r)dt+ σ(dW̃ (t)− θ(t)dt)

}
= X(t)

{
(µ− r − σθ(t))dt+ σdW̃ (t)

}
.

So, if we want X(t) to be a martingale, there would be no drift term. That is

µ− r − σθ(t) = 0

which means

θ(t) = θ =
µ− r

σ
.
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So now with this choice of θ(t) = θ, we will verify that the discounted price

e−rtS(t) is a martingale under Q, a probability measure equivalent to P . In-

deed, let

Z(t) = exp
{
−

∫ t

0

θdW (s)− 1

2
θ2ds

}
= exp

{
− θW (t)− 1

2
θ2t

}
= exp

{
− (µ− r

σ

)
W (t)− 1

2

(µ− r

σ

)2
t
}
.

Since θ(t) is a constant, the Novikov’s condition satisfies in Girsanov’s theorem.

More over, instead of Novikov’s condition, if the following condition is used:

EP

∫ T

0

Z2(t)θ2(t)dt < ∞

we still can verify this condition. Indeed, since θ(t) is constant and

EP

[
Z2(t)

]
= EP

[
exp

{− 2θW (t)− θ2t
}]

= exp
[
θ2t

]
< ∞

then by Fubini’s theorem, we have

Ep

∫ T

0

Z2(t)θ2(t)dt = θ2
∫ T

0

EP

[
Z2(t)

]
dt < ∞.

Therefore, by Girsanov’s theorem, we have

EP

[
Z(t)

]
= 1.

If we fix t = T and let Z = Z(t) then Q can be defined on F by

Q(A) =

∫
A

Z(ω)dP (ω)

which is a probability equivalent to P .

Moreover, under Q,

W̃ (t) = W (t) +
µ− r

σ
t

is a standard Brownian motion and

dS(t) = S(t)
{
µdt+ σ

(− µ− r

σ
dt+ dW̃ (t)

)}
= S(t)

{
rdt+ σdW̃ (t)

}
.
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So,

S(t) = S(0)exp
{(

r − σ2

2

)
t+ σW̃ (t)

}
(2.32)

Theorem 2.3.3. (Girsanov, multiple dimensions). Let T be a fixed positive time,

and let Θ(t) = (Θ1(t),Θ2(t), . . . ,Θd(t)) be a d-dimensional adapted process. Define

Z(t) = exp
{
−

∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖Θ(u)‖2du
}
, (2.33)

W̃ (t) = W (t) +

∫ t

0

Θ(u)du, (2.34)

and assume that

E

∫ t

0

‖Θ(u)‖2Z2(u)du < ∞. (2.35)

Set Z = Z(t). Then EZ = 1, and under the probability measure Q given by

Q(A) =

∫
A

Z(ω)dP (ω) ∀A ∈ F ,

The process W̃ (t) is a d-dimensional Brownian motion.

The Itô integral in (2.33) is∫ t

0

Θ(u) · dW (u) =

∫ t

0

d∑
j=1

Θj(u)dWj(u) =
d∑

j=1

∫ t

0

Θj(u)dWj(u).

Also, in (2.33), ‖Θ(u)‖ denote the Euclidean norm

‖Θ(u)‖ =

(
d∑

j=1

Θ2
j(u)

) 1
2

,

and (2.34) is shorthand notation for W̃ (t) = (W̃1(t), W̃2(t), . . . , W̃d(t)) with

W̃j(t) = Wj(t) +

∫ t

0

Θj(u)du, j = 1, . . . , d.

Theorem 2.3.4. Martingale representation, multiple dimension. Let T be a fixed

positive time, and assume that F(t), 0 ≤ t ≤ T , is the filtration generated by

the d-dimensional Brownian motion W (t), 0 ≤ t ≤ T. Let M(t), 0 ≤ t ≤ T, be
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a martingale with respect to this filtration under P . Then There is an adapted,

d-dimensional process Γ(u) = (Γ1(u), Γ2(u), . . . , Γd(u)), 0 ≤ t ≤ T, such that

M(t) = M(0) +

∫ t

0

Γ(u) · dW (u), 0 ≤ t ≤ T. (2.36)

If in additional, we assume the notation and assumption of Theorem 2.3.3 and

if M̃(t), 0 ≤ t ≤ T, is a Q-martingale, then there is an adapted, d-dimensional

process Γ̃(u) = (Γ̃1(u), Γ̃2(u), . . . , Γ̃d(u)) such that

M̃(t) = M̃(0) +

∫ t

0

Γ̃(u) · dW̃ (u), 0 ≤ t ≤ T. (2.37)

2.4 Existence and uniqueness of the risk neutral mea-

sure

We define a discount process by

D(t) = exp
{−

∫ t

0

R(u)du
}
. (2.38)

We assume that the interest rate process R(t) is adapted. In addition to stock

price, we shall often work with discounted stock prices. Their differentials are

d
(
D(t)Si(t)

)
= D(t)

[
dSi(t)−R(t)Si(t)dt

]
= D(t)Si(t)

[
(µi −R(t))dt+

n∑
j=1

σij(t)dWj(t)
]
, i = 1, 2, . . . , n.

(2.39)

Definition 2.4.1. A probability measure Q is said to be risk neutral if

(i) Q and P are equivalent(i.e., for every A ∈ F , P (A) = 0 if and only if

Q(A) = 0), and

(ii) under Q the discount stock price D(t)Si(t) is a martingale for every

i = 1, 2, . . . , n.

In order to make discounted stock prices be martingales, we would like to

rewrite (2.39) as

d
(
D(t)Si(t)

)
= D(t)Si(t)

n∑
j=1

σij(t)
[
Θj(t)dt+ dWj(t)

]
. (2.40)
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If we can find the market price of the risk process Θj(t) that make (2.40) hold,

with one such process for each source of uncertainty Wj(t), we can then use the

multidimensional Girsanov Theorem to construct an equivalent probability mea-

sure Q under which W̃ (t) given by (2.34) is an n-dimensional Brownian motion.

This permits us to reduce (2.40) to

d
(
D(t)Si(t)

)
= D(t)Si(t)

n∑
j=1

σij(t)dW̃j(t) (2.41)

and hence D(t)Si(t) is a martingale under Q. The problem of finding a risk neutral

measure is simple one of finding process Θj(t) that make (2.39) and (2.40) agree.

Since these equations have the same coefficient multiplying each dWj(t), they agree

if and only if the coefficient dt is the same in both cases, which means that

µi(t)−R(t) =
n∑

j=1

σij(t)Θj(t), i = 1, 2, . . . , n. (2.42)

We call these the market price of risk equations. These are m equations in the n

unknown processes Θ1(t), . . . ,Θn(t).

Definition 2.4.2. A market is complete if every derivative security can be hedged.

Theorem 2.4.3. Second fundamental theorem of asset pricing. Consider a mar-

ket model that has a risk-neutral probability measure. the model is complete if and

only if the risk-neutral probability measure is unique.

Proof. See [13, p 232-234]. �

2.5 Multiple stock model or multiple asset model

So far we have assumed that the market consists of a riskless cash bond and a

single “risky” asset. However, we need to model whole portfolios of options or

more complex equity products leads us to seek models describing several securi-

ties simultaneously. The models must encode the interdependence between the

differences of security prices.

Suppose that we are modelling the evolution of m risky assets and, as ever, a
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single risk-free cash bond. We assume that it is not possible to exactly replicate

one of the assets by a portfolio composed entirely of the others. In the most natu-

ral extension of the classical BlackScholes model, considered individually the price

of each risky asset follows a geometric Brownian motion, and interdependence of

different asset prices is achieved by taking the driving Brownian motions to be

correlated. Equivalently, we take a set of m independent Brownian motions and

drive the asset prices by linear combinations of these. This suggests the following

market model.

The multiple asset model: Our market consists of a cash bond B(t), 0 ≤ t ≤ T

and n different securities with prices S1(t), S2(t), . . . , Sm(t), o ≤ t ≤ T, governed

by the system of stochastic differential equations

dB(t) = rB(t)dt

dSi(t) = Si(t)
( m∑

j=1

σij(t)dWj(t) + µi(t)dt
)
, i = 1, 2, . . . ,m, (2.43)

where {Wj(t)}t≥0, j = 1, . . . ,m, are independent Brownian motions, µi(t) are the drift,

σij(t) are volatility. We assume that the matrix σ = (σij) is invertible. By Itô

formula with initial value Si(0) we have

Si(t) = Si(0)exp
{∫ t

0

(
µi(s)− 1

2

m∑
j=1

σ2
ij(s)

)
ds+

∫ t

0

m∑
j=1

σij(s)dWj(s)
}
.

Let µi, σij be constants and assume known.

So, we have

Si(t) = Si(0)exp
{(

µi − 1

2

m∑
j=1

σ2
ij

)
t+

m∑
j=1

σijWj(t)
}

i = 1, 2, . . . ,m and Wj(t) � N(0, t) =
√
tzj. We have

Si(t) = Si(0)exp
{(

µi − 1

2

m∑
j=1

σ2
ij

)
t+

m∑
j=1

σij

√
tzj

}
.

Under risk neutral probabilities when µi are replaced by r, then the multiple asset

model is

dB(t) = rB(t)dt

dSi(t) = Si(t)
( m∑

j=1

σij(t)dW̃j(t) + rdt
)
i = 1, 2, . . . ,m. (2.44)
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Where {W̃j(t)}t≥0, j = 1, 2, . . . ,m, are independent Brownian motion, from Gir-

sanov’s Theorem, if a process θ(t), t ∈ [0, T ] satisfies Girsanov’s condition then

the risk neutral probability measure Q exists and under Q,

W̃j(t) = Wj(t) +

∫ ∞

0

θ(s)ds.

2.6 Financial risk measures

2.6.1 Some popular risk measures

In financial market, there are many ways to measure risk.

2.6.1.1 Value-at-Risk

For a loss random variable X with distribution function F where F (x) = P (X ≤
x), the Value-at-Risk of X, denoted by V aRα(X), is taken to be the α-quantile of

F , i.e.

V aRα(X) = F−1(α) = inf{x ∈ R : F (x) ≥ α}

for α ∈ (0, 1). The α−quantile F−1(α) is the position such that P (X ≤ F−1(α)) ≥
α. Thus, P (X > F−1(α)) ≤ 1− α. And any quantile function is nondecreasing.

Viewing X as a loss variable, V aRα(X) is the maximum possible loss at level

α in the sense that the probability that the loss will exceed V aRα(X) is less than

1− α. Which means V aRα(X) assesses the risk at some confidence level. So risk

is a matter of degree.

2.6.1.2 Tail Value-at-Risk

A risk measure Tail Value-at-Risk, TV aRα(.), is defined by considering the average

of V aRα(.) over the α-upper tail. For α ∈ (0, 1), and X with distribution F , the

tail value-at-risk at level α is defined as

TV aRα(.) =
1

1− α

∫ 1

α

F−1(t)dt.

Clearly TV aRα(X) ≥ V aRα(X).
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2.6.2 Distortion risk measures

Wang (1996)[1] introduced the notion of distortion risk measure in actuarial

literature. He defines a class of distortion risk measures by means of the concept

of distortion function and popular risk measures in financial economics are of the

form[1]

ρh(X) =

∫ ∞

0

h(1− FX(x))dx+

∫ 0

−∞
[h(1− FX(x))− 1]dx.

Let X is a loss random variable with distribution FX and h : [0, 1] → [0, 1]

be an increasing function with h(0) = 0 and h(1) = 1, The transform F ∗(x) =

h(FX(x)) defines a distorted probability, where h call a distortion function. For

example[1], the Value-at-Risk, V aRα(X) = F−1
X (α) and the Tail Value-at-Risk,

TV aRα(X) =
1

1− α

∫ 1

α

F−1
X (t)dt, correspond to distortion functions

hα(u) = 1(1−α,1](u) and hα(u) = min{1, u

1− α
}, respectively.

In 2000, S. Wang proposed Wang transform which is a use full class of distor-

tion functions, for pricing financial and insurance risks[2-4]. These are distortion

functions of the form

hλ(u) = Φ[Φ−1(u) + λ]

where λ ∈ R and Φ is the distribution of the standard normal random variable.

Distortion risk measures obey the following properties :

1. Positive homogeneity: For any positive constant λ and any distortion

function h

ρh(λx) = λρh(x).

If to think of ρh(x) as amount of capital requirement for the risk X, this

property means that the capital requirement is independent of the currency in

which risk is measures.

2. Comonotonic additivity: If X1, X2, . . . , Xn are comonotonic and any dis-

tortion function h it holds

ρh(X1 +X2 + . . .+Xn) =
n∑

i=1

ρh(Xi).
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This property means, that the capital requirement for combined risks will

be equal to the capital requirements for the risks treated separately.

3. Monotonicity: If X ≤ Y for all possible outcomes, then

ρh(X) ≤ ρh(Y )

for any distortion function h. This implies, that if one risk always has greater

loses than another risk, the capital requirement should be greater.

4. Translation invariance: For any positive constant a and any distortion

function h

ρh(X + a) = ρh(X) + a.

This means, that there is no additional capital requirement for an additional

risk for which there is no uncertainty. In particular, making X identically zero, the

total capital required for a certain outcome is exactly the value of that outcome.

2.7 Desirable properties of risk measures

We consider now a systematic framework for risk modeling. It consists essentially

of listing basic desirable properties that a risk measure should possess in order to

be qualified as a realistic quantification of risk.

The current literature does not reach a consensus on which risk measures should

be used in practice, rather the focus is on studying properties that a risk measure

must satisfy to avoid, e.g., inadequate portfolio selections.

As stated in previous sections, we wish to assign a numerical value to each ran-

dom variable X to describe its risk, where X could stand for the capital needed to

hold for an insurance company to avoid insolvency. Such a “risk measure” ρ(X)

would be of course a function of X, i.e., only depend on X. But the complete

information about X is in distribution function FX (we consider the setting of

real-value random variables for our discussions) so that ρ(X) is of the form θ(FX),

some population parameter.

Just like probability measures, we first need to specify the domain and range
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for risk measures. Note that here we talk only about risk in financial economics!

Range of risk measures: In the financial context, random variables of interest

are either total future returns of investment portfolios or total possible claims for

insurance companies. The risk of a risk could be the maximum possible loss of

money. Thus, for investment, the value of a risk could be the minimum amount

of money the company should hold to avoid insolvency, i.e., sufficient to meet its

obligations. In either case, the numerical value assigned to the qualitative notion

of risk could be any real numbers, with negative numbers representing losses. Thus

the range for risk measures will taken to be the real line R.

Domain of the risk measures: Clearly risk measures operate on real-valued

random variables. With the range taken to be R, we could consider the domain of

risk measures to be the vector space L of all possible real-valued random variables.

However, for practical settings or to be rigorous, proper subsets of L should be

considered.

As we will see, any proposed risk measure should be consistent with appealing

economic principles, such as reducing risk by diversification. To investigate such

common sense principles, we need to include elements such as X =
∑k

i=1 λiYi,

λi > 0,
∑n

i=1 λi = 1, into the domain of risk measures. Note that a total return of

an investment portfolio is of the form X =
∑k

i=1 λiYi, where λi > 0,
∑n

i=1 λi = 1,

Yi being the rate of return of the asset i in the portfolio. Thus if the Yi are in a

domain X ⊆ L, we want to talk also about risk of
∑k

i=1 λiYi as well.

A cone X in L is a subset of L such that λX ∈ X whenever X ∈ X and λ > 0.

If a cone is also a convex subset of L, then it is called a comvex cone. Thus, in the

following, the domain for risk measures will be taken as cone, then
∑n

i=1 λiYi ∈ X ,

whenever Yi ∈ X and λi > 0, so that X + Y ∈ X , when X, Y ∈ X . in fact X is a

convex cone if and only if is a cone and X + Y ∈ X , when X, Y ∈ X .

Example of convex cones of L are the class of almost surely finite random

variables, the class of essentially bounded random variables. Such a structure for

the domain X or risk measures is sufficient for stating desirable properties of risk

measures as we will see next.
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Basically, assigning a number to a random variable is defining a map from a

class X of random variables to the real line, i.e., a functional ρ : X → R. Such

functionals are meant to quantify the concept of risk random variables. When

appropriate, they are call risk measures This explains a host of risk measures pro-

posed in the literature! For example, if we are interested in defining quantitative

risks for future net worths of financial positions, we could want to consider the risk

ρ(X) of the future net worth X of a financial position to be the amount of money

which needs to be added to X to make the position acceptable. In this case, risk

is interpreted as a capital requirement. On the other hand, we could consider X
as the class of losses of financial positions. In this case, ρ(X) is interpreted as the

risk of a possible loss.

The problem of quantitative modeling of risks is still an art. Any “reasonable”

ρ : X → R can be considered as a risk measure. Are there ways to judge the

appropriateness of a proposed risk measure? Perhaps one obvious way is to see

whether a given risk measure satisfies some common sense properties in a given

economic context. For such a purpose, we need to have a list of desirable prop-

erties of risk. The following is such a list from current economic literature. Of

course, the list can be modified or added. It is used to set some standard for risk

measurement.

In the following, X, Y are any element of X which is a convex cone of loss

random variables of financial positions, containing constants. we follow.

Consider the following properties for a risk measure ρ(.).

Axiom 1. (Monotonicity) if X ≤ Y . almost surely (a.s.), i.e.,P (X ≤ Y ) = 1,

then ρ(X) ≤ ρ(Y ).

Axiom 2. (Positive homogeneity) ρ(λX) = λρ(X) for λ ≥ 0.

Axiom 3. (Translation invariance) ρ(X + a) = ρ(X) + a for a ∈ R.

Axiom 4. (Subadditivity) ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Definition 2.7.1. A functional ρ : X → R satisfying the above axioms is called a

coherent risk measure.

While, formally, any such functional could be considered as a reasonable candi-



28

date for measuring risks of a given context, we do not use the above axioms as “an

axiomatic approach” for constructing risk measures. For example, if we search for

functionals satisfying the above axioms, then the mean operator ρ(X) = E(X),

on the class of random variables with finite means, is obviously a candidate, but

we never use it as a risk measure! The reason is this. As stated earlier, in financial

economics, we are dealing with random variables which are themselves considered

as risks. We wish to assess quantitatively these risks by what we call risk mea-

sures for decision-making. given the context, we could propose some adequate risk

measure. Then, we use he above list of axioms, for example, to examine whether

our proposed risk measure has these desirable properties.

Here are the reasons leading to the above axioms. In the case of loss vari-

ables, small losses should have smaller risks. That is the natural motivation for

axiom 1. If we have the viewpoint of capital requirement for future net worths of

financial positions, then axiom 1 will be written in reverse order, i.e., X ≤ Y. a.s.

→ ρ(X) ≥ ρ(Y ), since the risk is reduced if payoff profile is increased.

The risk of a loss of financial position should be proportional t the size of the

loss of the position. This leads to axioms 2 and 3.

If we take the viewpoint of capital requirement for future net worths of finan-

cial positions, then axioms 3 takes the form ρ(X + a) = ρ(X)− a for a ∈ R, since

here, ρ(X) is interpreted as the (minimum) amount of money, which, if added to

X, and invested in a risk-free manner, makes the position acceptable.

A self evidence in investment science is this. Diversification should reduce risk.

Specifically, one way to reduce risk in, say, portfolio selection is diversification, ac-

cording to the old saying “don’t put all your eggs in one basket”, meaning that we

should allocate our resources to different activities whose outcomes are not closely

related.

In term of risk measures, this economic principle is translated into the convexity

of ρ, namely

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), λ ∈ [0, 1].

This convexity of ρ is a consequence of axioms 2 and 4. In fact, axiom 2 and
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convexity imply axiom 4, since for λ = 1/2, we have

1

2
ρ(X + Y ) = ρ(

X + Y

2
) ≤ 1

2
(ρ(X) + ρ(Y )).

Convexity could be also taken as a basic desirable property for risk measures,

independently with others.

While the problem of risk modeling seems to be an art, the above concept

of coherent risk measures provides a reasonable class of risk measures. before

discussing existing risk measures in economics, let’s take a closer look at the above

axioms.

First of all, unlike probability measures, the above four axioms do not specify

the definition of a risk measure. They are only “reasonable” properties for risks.

With such a list, every time we have a risk measure at our disposition, we should

check whether it is coherent or not. This constitutes an advance in the art of risk

modeling.

2.7.1 The Choquet integral

For general h, observe that

h(1− F (t)) = h(P (X > t)) = (h ◦ P )(X > t).

So that if we let υ = h ◦ P, then the extension of distortion takes the form∫ ∞

0

υ(X > t)dt+

∫ 0

−∞
[υ(X > t)− 1]dt

in which the set function υ, defined on A, is no longer additive (let alone a prob-

ability measure). However υ is nondecreasing, i.e., A ⊆ B =⇒ υ(A) ≤ υ(B) and

υ(∅) = 0, υ(Ω) = 1. Any such set function is call a capacity.

Definition 2.7.2. Let (Ω,A) be a measurable space. A map υ : A → [0, 1] is call

a capacity if υ is increasing (i.e., A ⊆ B =⇒ υ(A) ≤ υ(B)) and υ(∅) = 0,

υ(Ω) = 1.

For a capacity υ and a random variable X (measurable), the expression∫ ∞

0

υ(X > t)dt+

∫ 0

−∞
[υ(X > t)− 1]dt
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make sense since the function t → υ(X > t) is monotone (decreasing) and hence

measurable.

Definition 2.7.3. The Choquet integral of X with respect to the capacity υ, denoted

as Cυ(X), is defined to be

Cυ(X) =

∫ ∞

0

υ(X > t)dt+

∫ 0

−∞
[υ(X > t)− 1]dt.

This type of integral is termed a Choquet integral in honor of Gustave Choquet

who consider it in his work on capacity theory.

The above popular risk measure are Choquet integrals of the risky position X

with respect to different and special capacities, namely the h ◦ P . These func-

tion h, when composed with P , distort the probability measure P (destroying its

“measure” properties), so we call distortion functions, and the special capacities

h ◦ P are call distorted probabilities.

What is a such representation for risks in term of Choquet integral?

(i) If a risk measure is Choquet integral, then it is easy to check its coherence.

(ii) In particular, if a risk measure is a Choquet integral with respect to a

distorted probability, the consistency with respect to Stochastic dominance

can be easily checked.

(iii) The Choquet integral risk measures have some desirable properties in ac-

tuarial science.

(iv) Together with the above, the class of risk measures constructed from distor-

tion functions seems to be a plausible class of “good” risk measure to in-

vestigate. In fact, this seems to be the current trend in risk modeling.

Of course, there are risk measures which are not Choquet integrals or not Cho-

quet integrala with respect to distorted probabilities. however, if the property of

“comonotonicity” is part of a list of desirable properties for risk measures, then

risk measures as a Choquet integral can be justified by Schmeidler’s theorem.
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2.7.2 Comonotonicity

Definition 2.7.4. Two random variable X, Y are said to be comonontonic, or sim-

ilarly ordered if for any ω, ω′, we have

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0.

Comonotonic random variables are similarly ordered so that they exhibit a strong

dependence between themselves.

Definition 2.7.5. If for X, Y comonotonic, if Cυ(X + Y ) + Cυ(X) + Cυ(Y ), then

we say that Cυ(.) is comonotonic additive.

It turns out that the concept of comonotonic additive is essential for the char-

acterization of Choquet integrals.

Here are a few elementary facts about comonotonic functions.

1. The comonotonic relation is symmetric and reflexive, but not transitive.

2. Any function X is comonotonic with a constant function, so that Cυ(X+

a) = Cυ(X) + a, for any a ∈ R.

3. if X and Y are comonotonic and r and s are positive numbers, then rX

and sY are comonotonic.

4. As we above, two function X =
∑n

j=1 aj1Aj
and Y =

∑n
j=1 bj1Aj

, with the

Aj pairwise disjoint and the aj and bj increasing and non-negative are como-

notonic. In fact, the converse is also true: Two arbitrary simple random var-

iables X, Y or comonotonic. if and only if they are of the above forms with

{aj}, {bj} increasing, positive or negative.

If H(X) =
∫
Ω
Xdµ with µ a Lebesgue measure, then H is additive, and in par-

ticular, comonotonic additive. Here are some facts about comonotonic additivity.

1. if H is comonotonic additive, then H(0) = 0. This follows since 0 is comono-

tonic with itself, whence H(0) = H(0 + 0) = H(0) +H(0).

2. if H is comonotonic additive, then for positive integers n, H(nX)H(X).

This is an easy induction. It is clearly true for n = 1, and for n > 1 and the
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using the induction hypothesis,

H(nX) = H(X + (n− 1)X) = H(X) +H((n− 1)X)

= H(X) + (n− 1)H(X)H(X).

3. If H i comonotonic additive, then for positive integer m and n,

H
(m
n
X
)
=

m

n
H(X).

Indeed,

m

n
H(X) =

m

n
H
(X
n

)
= mH

(
n
X

n

)
= H

(m
n
X
)

4. If H is comonotonic additive and monotonic increasing, then H(rX) =

rH(X) for positive r, i.e., H is positively homogeneouss of degree one. Just

take an increasing sequence of positive rational numbers ri converging to r.

Then H(riX) = riH(X) converges to rH(X) and riH(X) converges to rX.

Thus H(riX) converge also to H(rX).

Definition 2.7.6. The random variables X1, X2 . . . , Xn are said to be (mutually)

comonotonic if the range o the random vector (X1, X2 . . . , Xn) is a totally ordered

subset of Rn.

It turn out that we can also define the comonotonicity of several random vari-

able form that of two random variables. In other words,

Theorem 2.7.7. Mutual comonotonicity is equivalent to pairwise comonotonicity.

Proof. See [5, p 152-153]. �
There are several equivalent conditions for comonotonicity. For simplicity we

consider the case of two variables. The general case is similar. We write FX for

the distribution of X.

Theorem 2.7.8. The following are equivalent:

i) X and Y are comonotonic.

ii) F(X,Y )(x, y) = FX(x) ∧ FY (y).
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iii) (X, Y ) = (F−1
X (U), F−1

Y (U)) in distribution where U is uniformly distribu-

tion on (0,1).

iv) There exist a random variable Z. and nondeceasing function u, v : R → R
such that X = u(Z), Y = v(Z) both in distribution.

Remark 2.7.9. Another equivalent condition is this. There exist two nondecreasing

and continuous functions g, h : R → R, with g(x) + h(x) = x, for all x ∈ R, such

that X = g(X + Y ), and Y = h(X + Y ).

Proof. See [5, p 153-54]. �

Remark 2.7.10. For any random variables X1, X2 . . . , Xn, the associated ran-

dom variables F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U) are comonotonic. They are called the

comonotonic component of (X1, X2 . . . , Xn).

We turn now to the proof of comonotonic additive of the Choquet integral. We

have seen that the Choquet integral is comonotonic additive for special comono-

tonic simple random variables. This turns out to be true for general comonotonic

random variables.

Note that if Cυ(.) is comonotonic additive for the sum of any two comonotonic

random variables, then it is comonotonic additive for any finite sum of comono-

tonic random variables. This is so because if X1, X2, . . . , Xn are comonotonic,

then X1 and
∑n

i=2 Xi are comonotonic. Thus it suffices to consider the case of two

arbitrary random variables.

Here the theorem.

Theorem 2.7.11. If X and Y are comonotonic, then

Cυ(X + Y ) = Cυ(X) + Cυ(Y ).

Proof. See [5, p 156-160]. �

Lemma 2.7.12. If h(X) + h(Y ) with h(.) nondecreasing and qY (.) is a quantile

function of Y with respect to a capacity υ, then h(qY )(.) is a quantile function of

X with respect to υ.
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Proof. See [5, p 160]. �

Lemma 2.7.13. Let qX be a quantile function of X with respect to a capacity υ.

Then

Cυ(X) =

∫ 1

0

qX(α)dα.

Proof. See [5, p 160-161]. �

2.7.3 A characterization theorem

The comonotonic addiitve is characteristic for the Choquet integral in several

aspects. When we model a risk measure as a Choquet integral, such as V aRα(.),

we get comonotonic for free. If we have a risk measure which is not comonotonic

additive (for comonotonic risks) then that risk measure is not a Choquet integral.

Now suppose that we are in a context where additivity of the risk measure is

desirable for comonotonic risks (random variables), i.e., we add this comonotonic

additivity to our list of desirable properties for an appopriate risk measure, can

we justify our choice of that risk measure as a Choquet integral?

The following theorem does just that.

Theorem 2.7.14. Schmeidler Let B denote the class of real-valued bounded random

variables defined on (Ω,A). Let H be a functional on B satisfying

(i) H(1Ω) = 1,

(ii) H(.) is monotone increasing, and

(iii)H(.) is comonotonic additive.

Then H(.) is of form Cυ(.) for the capacity υ defined on A by υ(A) = H(A).

Proof. See [5, p 162-164]. �


