Chapter 3

Main results

From a multiple asset model

0( X a0 + pt)d)

where {W;(t)}i>0, j = 1,...,m, are independent Brownian motions, s;(t) are the
drift, o;;(t) are volatility. We assume that the matrix o = (0;;) is invertible. By

[t6 formula with initial value S;(0) we have

Si(t) = SZ-(O)exp{ /Ot (pi(s) — %ia?j(s))ds + /Ot i O'Z'j(S)de<S)}.

Let p;, 0;; be constants and assume known.

We have
1 m m
Si(t) = Si(O)exp{(r ~3 Zafj)t + Zaijo(t)}
=1 =1
i=1,2,...,m and W;(t) v N(0,t) = v/tz;. We have

S;(t) = 5;(0) exp{ '——ZO'” t—l—Zam\/_zJ}

Then, we find cumulative distribution function(CDF) to compute distortion risk

measures.

P(Si(t) <x)= P(S:(0 exp{ ; — —Zal] )t + Zaw\/_zj} < x)
- P((,ui b Zafj)t + Zaij\/l_fzj < <Sj(€())))
= PVEY a5 < Inlgrs) = (= 3 D o))




Since
m m m
2 2
E gijz; « N(0, g Uij) - E 0%
=1 i=1 \ i=1
m m
then, from here let denote o2 = E afj and o; = E afj.
=1 =1

Therefore the actual probability distribution Fi(z) of S;(t), a geometric Brownian

motion, is

Fila) = P(s(0) <) = P+ < 250~ U2 3700)

Ui\/f

— 0 (Z”(sffm) ;\(Z \ Wﬁ) (3.1)

and by using choquet integral the risk measure of Y;(¢) is of the form

(Y1) = / T WPY(E) > 2))de + | i > 0) - 1o

where h(.) ia an arbitrary distortion function.

Under risk neutral probabilities when p; are replaced by r, then the multiple asset

model is
dsS;(t) = Si(t) ( 3oy (0dW (1) + rdt) .
j=1
Where {Wj(t)}tzo, j=1,2,...,m, are independent Brownian motion, from Gir-

sanov’s Theorem, if a process 6(t),t € [0,7] satisfies Girsanov’s condition then

the risk neutral probability measure () exists and under @,

—

W;(t) = W;(t) + /00 0(s)ds

therefore the risk neutral probability distribution Fy(z) of S;(#) in Black-Scholes

model, is

Y (znu;fm) (- %o?)t) | 5
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3.1 General case for risk in Black-Scholes model

Under actual probabilities, we will find a distortion risk measure. Consider a risk

measure of portfolio V (¢).

By Choquet integral, we have

where

and h is increasing and strictly concave.

Recall that

P(Yi(t) > x) = P(S;(0)e™ — Si(t) > x)
= P(Si(t) < S;(0)e™ — z)

Si(0)e™t —zy ~/ 142
o (M)~ =20 )y - g 0)er
Uz’\/T_f

0 otherwise.

e [ ([ ],
0 O'i\/%

/0 [ ( [ () — (ui—%af)t]>_1] dr.
0o 0‘1\/¥

_ Si(0)e" =z
Yi = —Si(())

(D) = /Osi(O)e” , <q> [ln(%) _UEI;L/Z'Z_ %af)tD "

/0 {h (q) [ln(?/i) _gff/i%— %Uf)t]) - 1] da.

—00

Therefore

_|_

Now, if we let

we have

+



38

Let ]
l”(%) - (,Ui - 5‘72'2)15
Zi =

Ui\/l_f

then
1
Yi = exp{ (,U' T 50 >t—|—al\/¥( Z)}
Let
C; =

01;\/%

we obtain

p(Yi(t)) = Si(0) /_Ci h(®[z))oVt exp{ </Li - %af)t + aix/gzi}dzi

o0

+ 5;(0) /C %[h((l)[zi]) 1ok exp{ (ui - %af)t + ai\/%zi}dzi.

Note that since A is increasing. h has countable discontinuity points. Moreover,
for cohorent risk measures, the distortion h is strictly concave which implies that
R’ is continuous almost everywhere.

By integration by parts, if we let
u; = h(®[z]) ,du; = h'(®[z])d®[z;] and
1 1
dv; = Ji\/f exp{ (,ui — 501-2)75 + cri\/gzi}dzi ,UV; = exp{ (ui — 503)25 + Ui\/l_fzi}.

The first part of p(¥;(£)) is
i) = 50 (|~ [ v

= s,(0)(h(@f: ]>exp{( i—300)t+aia |

/CZ expf (i — 502)t + o0z (R[z) =)

o0

C;

— 5,(0) <h(<I>[C])exp{ (1 = 502t + i)

< /Ci exp{ (ui — %Jf)?f + Ui\/gzi}h/(q)[zi})dq)[zi])-

—00

And by integration by parts, if we let
u; = h(®[z]) — 1 ,du; = W' (P[z])d®[z;] and

1 1
dv; = oVt eXp{ <,Ui — §U,2>t + O_i\/zzi}dzi Vi = exp{ <Ui - §U?>t + Uiﬁzi}-
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The second part of p(Y;(t)) is

_ Si(0)<[h(<1>[zi]) texp{ (11 - %a )i+ o }]
2)t+0 Vizi bh } (®[2,])d[> i])

—00

Then

0 (h(@[Ci])exp{ (,uz — %0 )t + oVIC; }

o0

—0o0

then

exp{(,u - %0 )t—i—ax/_z }d@[ ;] = exp{(u —%0 >t+0\/_z}\/_ﬁexp{ . %( Z.)Q}dzi

— \/12_7Texp{<,u —%0 )t—i—ax/_z ——( )2 }dzi

1 1 1
= ex it ex { — —(z;)" + O'Z'\/—Zi — —aft}dzi
esplutep] — 5(:)° :

- \/12_7TeXp{Hit}eXp{ — %(zz - O’i\/l_fzi>2}dzi,
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So that

mnw%aﬂm@mvﬂ—/Zw@mnéimmmwm{—%@rmw@oﬁwg

= 5;(0)e™ {1 — elHi—mt /C: h'(@[zi])\/%exp{ - %(zZ — ai\/f>2}dz,~] .

The present value of p(Y;(t)) are
PV (p(Y(t))) = e " p(Yi(t))

= 5;(0) {1 — elHimt /Z h’(@[zi])\/%exp{ ~ %(zl — ai\/z>2}dzi1 .
Observe that if

i —r <0

then p(Y;(t)) or PV (p(Yi(t))) are always increasing as t goes to oc.

So we only consider the case when
pwi—r>0 Vi, 1 =1,2,...,m.

We have risk measure of portfolio is

Y 0) = 3 (0
- gnisz'(())e?"t [1 _ plui—m)t /c: h,(q)[zi])\/%exp{ / %(22 B O'i\/¥>2}dzi]

ee 1 1 2
if p; —r >0 and/ h’(@[zi])ﬁexp{ b (zl - a,-ﬁ) }dzz- are never equal

to 0 then p(Y'(t)) is eventually negative at long horizons. The following Theorems

llustrate the situation under some conditions.

Theorem 3.1.1. For each i = 1,2,....,m if h'(®(z;)) is bounded below by some

constants C # 0 on [0,1], i =1,2,...,m then p(Y(t)) is negative as t goes to cc.

Proof. We have

/_00 ’(@[zi})%exp{ — %(zl — ai\/¥>2}dzi > C’/_OO \/12_7Texp{ — %(zl — Ji\/z>2}dzi

e}
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Therefore
et /00 h'(fb[zi])iexp{ — 1(21 - oi\/Z)2}dzi i=1,2,....m
. /_27'( 9 ) y 4y ;
. InC; .
tend to 0o as t — oo. So, p(Y;i(t)) are negative for ¢t > ,i=1,2,...,m.
i —T

Hence p(Y (t)) is negative as t goes to co. W
It implies that under “actual probability”, the risk measure of portfolio in

Theorem 3.1.1 is not consistent with time.

1
Theorem 3.1.2. If yu; —r — 50? >0,i=1,2,...,m then p(Y (t)) is negative as t

goes to oo.

Proof. Note that since h is increasing then h'(®[z;]) is nonnegative. Moreover,
since A’ is continuous and A’ cannot be 0 (due to the definition of p(Y;(t))), there
exists a closed subset A; of [0, 1] with non-zero measure and a constant aj such
that

R (u) > af for all u € A;

then

SO

Te 1 2
ah———ex { — = (zz — 0»\/5) }dz~
<I>—1(Ai) 0 /_27'(' p 9 7 9

+ /R\<I>1(Ai) h’(@[zi])\/%_ﬂexp{ — %(21 — oi\/¥>2}dzi.

Since for each i = 1,2,...,m, A; is close subset of [0, 1], we can assume that

_l’_
S
—
9
=
=
|
N
ﬂ)_‘
e
"~
o

A; is an interval in [0,1]. Therefore for each A;, ®7'(A;) is also an interval and

assume that

oA = [ai,b] L i=1,2,...,m
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where a; # b;, Hence,

> /ail aé \/12_7Texp{ — %(zl — ai\/f>2}dzi

+ / | h’(@[zi])iexp{ — %(zl - ai\/¥)2}dzi
>a}| @ (b — 0:vE) = ®(a; - oii) |

+ /R\Ai h’(@[zi])\/%exp{ — %(zz — ai\/z>2}dzi.

By Mean Value Theorem, we have

(@ (b; — 0:v/T) — ®(a; — ai\/%)] > (b — ai)\/%eXp{ . %(bi _ aiﬂ)?}.

Therefore

plpi=r)t /_Z h'(®[z]) \/12_7Texp{ - %(zl — O'i\/¥>2}d2’i

>kt gl (b, — ai)\/%exp{ — %(bl Ll Ui\/g>2}

- 1 1 1
>ay(b; — ai)EeXP{(Mi — T(F 503)t+ bioiVt — éb?} ,i=1,2,....m

implies
et /_OO h’(@[zi])\/%exp{ — %(zl — O'Z'\/Z>2}d2i

are getting larger than 1 for ¢ large and therefore p(Y;(t)) are becoming negative
for ¢ large Vi, 1 = 1,2,...,m.
Hence p(Y (t)) is negative as ¢ goes to oo. W

Therefore under “actual probability”, the risk measure of portfolio in Theorem

3.1.2 is not monotone increasing with time.
Theorem 3.1.3. If h'(1) > 0 then p(Y(t)) is negative as t goes to co.

Proof. Since h is the concave distortion function, so h’ is deceasing.
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So, we have

— 1(22 — O’i\/£>2}dzi

| @) —=en{ -3
2/_:ﬂh’(®[zl])\/%_7rexp{ —é(zi—a@-\/%f}dzi
E%h’(q)[m\/ﬂ)

z%h’(n >0 Vi, i=1,2,...,m.

Therefore

plpi—r)t /Z h’(@[zi])\/%exp{ - %(z, — Ui\/f>2}dzi

are getting larger than 1 for ¢ large and hence p(Y;(t)) are becoming negative for
IN In2 — Inh/(1)

i — T
Hence p(Y(t)) is also negative as t goes to co. B

Vi, i=1,2,...,m.

Therefore under “actual probability”, the risk measure of portfolio in Theorem

3.1.3 is not consistent with time.

Theorem 3.1.4. If

lim (e(‘“*r)th' <® <UZ\/¥)>) =400 Vi, 1 =1,2,....m

t—o00

then p(Y (t)) is negative as t goes to co.

Proof. Indeed, similar to the above theorem, we have

elHi =t /C: h'(@[zi])\/%exp{ -~ %(z, — O'i\/£>2}dzi

>0 (@01 ),
Therefore,

et /_Z h’(@[zi])\/%_ﬂexp{ — %(zz — al-\/f)Q}dzi

are getting larger than 1 for ¢ large and therefore p(Y;(t)) are becoming negative

for t large Vi, 1 =1,2,....m
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Hence p(Y (t)) is negative as t goes to oo. W
Therefore under “actual probability”, the risk measure of portfolio in Theorem
3.1.4 is not consistent with time.

Under risk neutral probabilities, multiple asset model is
asi(t) = Si(t) (3 o (AW, (t) + rat)
j=1

Then we use (3.2) to find a distortion risk measure. When u; = r Vi, i =

1,2,...,m. We have a risk measure of portfolio is
p(Y (1)) =Y nip(Yi(t)
i=1

| Zf;msim)e” 1= [ o] -4 (s - i) Jas]

which result in that p(Y'(t)) is increasing with respect to ¢ (since h/(¢[z]) > 0
and exp{—3(z; — 0:V/1)?} is decreasing with respect to t). In conclusion, the risk

measure of portfolio under “risk neutral probability” is consistent with time.

3.2 Value-at-Risk in Black-Scholes model

For the case of VaR,(.), the distortion function is

ha(u) = Ligay(uw).

Finding VaR,(.) by using Choquet integral, we have

VaRa(Y (1) = 3 _niVaRa(Yi(t))

m 0

- an[/ooo ho(P(Y;(t) > x))dx +/ [ha(P(Y;(t) > x)) — 1}dm].

—0o0

Since

Si@et—ay () 1,2
@(m(&@ ) W12@”> it 2 < S,(0)e"

0 otherwise
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then

if and only if

” (m<“ﬁ> ~ (i = %a?)t) N,
Uz‘\/E
if and only if
(M) = (i — oDt

Sl(O) 271
Ui\/Z

if and only if
rt 1 2 -1
7 < Si(0)e" = Si(0)exp{ (i — 507t + o/i0 (o) }
if and only if

x < S;(0)e" — Si(O)exp{(ui - %Uf)t — o Vtd (1 — a)}.

Let
* 7t 1 2 -1
z* = 5;(0)e"™ — Si(O)exp{(ui — 50 )t — o V/td (1 — a)}
1
—g. Tt o 2oVt — o -1
= Si(0)e [1 exp{(uz T 50 )t —oV/td (1 a)H.
Case 1: If
1
i — T — 50’12 <0
or )
1, o, (1 — )
,— 1 — —0; dt <
i —r 20Z>0an _((Mi_r_%0?>
then
" >0
S0
VaR,(Yi(t)) = de ="
0
1
_ rt o o 2 o -1 o
= 5;(0)e [1 exp{(,uz r 202)15 oV/td (1 a)}]
Case 2:
If

1
ui—r—§02>0andt><

' (wi =7 — 307
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then

So
VaR,(Yi(t) :/ (=1)dz = o*.

Therefore, in both cases, we have
* Tt 1
VaR.(Yi(t)) = * = Si(0)e [1 N exp{(u —r— o)t — oI (1 - a)H.
Thus, the present value of VaR,(Y;(t)) are

PV(VaRa(Yi()) = ¢ ""VaRa(Yi(1))
= 5;(0) [1 - eXp{(ui —r— %O’?)t — o V/td (1 — a)H .

Thus, if
1
m—r—iaf >0Vi, i=1,2,....m
then for each 7, : = 1,2,...,m the value for VaR,(Y;(t)) or PV (VaR,(Y;i(t)))

O'iq)il(l — O!)

,u—r—l 2

Since, portfolio V' (t) = n1S1(t) + n2S t% sz .+ NS (t), n; = number of stock
in S;(t),i=1,2,...,m
We have

2
will become negative for ¢t > ( ) and keep decreasing afterwards.

VaR,(Y(t)) = VaR,(V

—~

0)e" — V(1))

n:Si(0)e™ — Y " niSi(t))

1 i=1

Ms

= VaR,((

<.
Il

= VaR, (3 (miSi(0)e™ — niSi(t)))

'MS

I
—

]

by comonotonic property, we have

VaRa( ZVaR ni(Si(0)e’ — S(1)))
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If

1 2
,ul—T—§O'Z-

>0 Vi,t=1,2,....m

then
Vala( (60 1= ew{n = - gotit —envie- - e} )
a ;n —expy (i —r 50 Dt — g/t 1 — )
The value for VaR, (Y (t)) will become negative for ¢ large and keeps decreasing
afterwards. Thus, under actual probability, VaR,(Y (¢)) is not monotone with
time horizons. So that, The Value-at-Risk of portfolio is not consistent with time.

In risk neutral probability measure when p; are replace by r fori =1,2,...,m

the value of VaR, (Y (t)) reduce to

VaR.(Y (1)) = in (si(())e” {1 2 exp{(—%a?)t o1 - a)}] )

i=1
It implies that VaR, (Y (t)) is always increasing as t is increasing in risk neutral

probability. Thus, the Value-at-Risk of portfolio is consistent with time.

3.3  Tail Value-at-Risk in Black-Scholes model
The distortion function in TVaR,(.) is
u
ha(u) = mi {1, —}
(u) = min =
Finding TVaR,(.) by using Choquet integral, we have

i nTVaR,(Y;(t))

=1

TVaR,(

0

in[/m P(Yi(t) > x))dx+/ [ha(P(Yi(t) > z)) — 1]@].

=1 -

Observe that
ho|P(Y;(t) > x)] =1

if and only if
P(Y(t) > z)

«

> 1
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if and only if
PY(t)>z)>a«
if and only if

PY(t)<z)<1-a

if and only if
x < VaR,(Yi(t)) = x".

Note that

PYi(t) > z) = P(Si(0)e"™ — Si(t) > x)
= P(Sz@) < Si(O)e” — x)

Si(0)e™ —xy 1.2
P (ln< S:(0) ) (:U’l 202 )t> if ¢ < Si<0)ert

= Uz’\/?_5
0 otherwise.
Case 1:
If
" >0
Then
x* S;(0)e"t P(Y.(t
TVaR.(Yi(t)) :/ dr + [ (Yi(t) > x)]d:c
0 T «
S;(0)ert 1 Sz 0)6” — X L2
oo e (ln( s ) Ciet) )
& oVt
Now, if we let
_ Si(0)e" —x
Yi Si(O)

we have

S; —
S; :
TVaR,(Y;(t) = 2" + 0(40) / R
0

Now, let
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then

) —d " (1-a)
TVaR,(vi(t) =z + 2V vz / o (z)exp{ (i - %J?)iﬁ +oiviz fdz

«

By integration by parts, if we let
1
u; = ®(z;) and dv; = ai\/%exp{ (,ui — §0§>t + ai\/fzi}dzi

then we have

TVaR,(Y(t))
@(1 - a)exp{ (,ui — %U?)t + o Vtd (1 — a)}
_ SiT(O) fi‘ol(lfa) exp{ (Mi = %gf)t + Ji\/fzi}\/%exp{ - %zf}dzz

= x* + S,;(O)exp{ (,ui — %U?)?ﬁ + oVt N1 — a)}

s S"T(O)exp{ (,ui — %a?)t}exp{%taf} /_:_1(10{) \/12_7Texp{ — %(zz = aiﬂ)Z}dzi
= S,(0)ert — 2exp{pit}®| — @711~ a) — oiv1]
= S, (0)et [1 — Lexp{(pi — )t}B[ — &L(1 — a) — ai\/ﬂ} .
Case 2 : if

:x*—f—

¥ <0
then

TVaRa(Yi(t)) = / EAtaUES) P / O [—P(Y"(t) 7 1]

e} (0
S;(0)ert Si(0)e™ —a\ _ ¢, 12
:l/ o (M)~ =300t )
@ Jo o/t
0 Si(0)e™—axy 12
+/ 1o (g )~ W= 3908 _ gy
& & Uz‘\/E

Now, if we let

_ Si(0)e"t —x 8 1, )
Yi = W, di = eXp{(,Ui - 5‘%’)754— oiVte (1~ a)}
we have
) ert D o 1,2
(0% 0 O'i\/%

+ S;(0) /d [é@ (l"(yi) _UE’”\%_ %J"Qﬁ) - 1} dy;.
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Now, let
_In(y) = (i — 307)t vt — (i — 507)t
2 = and q; =
o/t o/t
then
TYaR,

R.(i(0)
= @ /_ . cI>(Z)<7i\/¥eXp{( ; — %a )t + zlal\/l_f}dzi
0) fq:q’_l(l_o‘) {@(ji) ] ai\/z_fexp{(ui — LNt + ziai\/f}dzi.

By integration by parts, if we let

1
u; = ®(z) and dv; = aiﬁexp{ (ui — 50?)15 + al-\/gzi}dzi
then the first part of TVaR,(Y;(t)) is

var.vi(t) = 2 Vg {M} o

« gVt
SZ( ) 4, _152)¢
> cHit [% _ giﬁ] .

And by integration by parts, if we let
1 1,
u; = —®(z;) — 1 and dv; = Ui\/z_fexp{ (,ui - §O'i>t + aiﬂzi}dzi
a
then the second part of TV aR,(Y;(t)) is

TVaR2(Yi(t)) = —5;(0) < [M} - 1) et

aiVt
io) Mtq)[ (1 — a) _Ui\/;}
SZ(iO) uth){ (H;jiaf)t] .

Then
1
TVaR,(Yi(t)) = Si(0)e" = ~S;(0)e" [ (1 —a) - oi\/i}
Hence, in both cases, TV aR,(Y;(t)) has the same form and is

TVaR.(Yi(t)) = Si(0)e"" — éSZ-(O)eXp{,uit}CI)[ 01— a) — o]

= S;(0)e™ |1 — éexp{(pi —rt}e[ - @ (1 —a) — O’i\/ﬂ:|.



ol

The present value of TVaR,(Y;(t)) are
PV(TVaR,(Yi(t))) = TV aRa(Yi(t))

— 5,(0) [1 - éexp{(ui e[ - (1 - a) - ai\/ﬂ].

Since
@{—ﬁﬂl—w—@¢ﬂ<¢j—®%1—®]
—o|e7(0)] —a.
Therefore
if

wi—r >0V, 1=12,....m

then TVaR,(Y;(t)) or PV(TVaR,(Yi(t))), Vi, i = 1,2,...,m will be decreasing
and becoming negative for large value of ¢.

If

wi—r <0

then TVaR,(Y;(t)) or PV(TVaR,(Yi(t))) are increasing as ¢ gets to oo.
Since, portfolio V(t) = n1S1 + naSa(t) + ... + 1y Sin(t), n; = number of stock in
Si(t),i=1,2,...,m.
So that

TVaR.(Y (t)) = TVaR,(V(0)e™ — V(1))

= TV&R@((Z 1;5;(0))e" — (Z niSi(t)))
=TVaR, ( Z(nisi(o)eﬁ - nZSZ(t)))

by comonotonic property, we have
TVaR(Y(t)) =Y TVaRa(ni(Si(0)e” — Si(1)))
i=1
= Z niTVaRa (SZ(O)GN - Sz (t))

i=1

= i n,TVaR, (Yz (t))

=1
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- 1
TVaR,(Y(t)) = ;:1 n; <SZ(O)€ [1 Qexp{(uz rt}e[— o1 - a) Ul\/ﬂD
then TVaR, (Y (t)) will becoming negative for large value of ¢ if u; —r > 0,

Vi, i =1,2,...,m and at t = 0, we have TVAR,(Y(0)) = 0. Thus, under actual
probability, TV aR, (Y (t)) is not increasing as ¢ increasing. So that the Tail Value-
at-Risk of portfolio is not consistent with time.

In risk neutral probability measure when p; are replace by r fori =1,2,...,m

, the value of TVaR, (Y (t)) reduce to
¢ 1
TVaR.(Y (1)) = Zni(Si(O)eTt [1 o[-0 (1—a) - ai\/ﬂ})
a
i=1
so that it is always increasing as t is increasing in risk neutral probability.

Hence, the Tail Value-at-Risk of portfolio is consistent with time under risk neutral

probability.

3.4 Risks based on Wang’s distortion function in Black-
Scholes model

The Wang’s distortion function is
ha(u) =®[® 7 (u) +A],  A>0.

The risk measure under Wang’s distortion function is

[Ia(P(Yi(t) > ) = 1)dz]

and

Si@et—ay () 1.2
@(Z”( s ) — 2“@“) it 2 < S,(0)e"

0 otherwise.
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Therefore
Si(0)er" siet—a) _ (L o
pW(Yi(t)):/ i) ln( 5;(0) ) (Mz QUi)tJr)\ s
0 O-i\/g
0 Si(0)e™—x\ _1 2
+/ o [(35) ~ 27| -1
— 00 O'Z-\/'E
Now if we let
O\ Si(0)e™ — x
Yi = —SZ-(O)
we have
Si(0)ert N 2
PW(Yi(t))Z/ P In(yi) — (ui 202)t+)\ d
0 Ui\/%
" g (1) — (e~ 500)
+/ o | MW T VR TR |~ de
— O'i\/¥
Let .
ln(yz) v} (Ni W 5012)75 L
2z =
O'i\/g
then
1
Yi = exp{ </~L¢ < §U?>t + oiVt(z — )\)}
Let ( >
rt — i — 50, t
C; = + A
O-i\/g
we obtain
C 1
pw (Yi(1)) :Si(O)/ @[Zi]ai\/gexp{<ui—50?)1&—1—01-\/%(2,-—)\)}dzi
i 1
©) [ @l = totexp{ (s = 02 )t + iz = 2 oz

By integration by parts, if we let
1
u; = ®(z;) and dv; = ai\/fexp{ (/M — 50?)15 + an/%(zi — )\)}dzi
then the first part of py (Y;(t)) is

rt — (/,Li — %0?)?5
Ui\/l_f

- SZ»(O)eXp{,uit - /\02»\/%}(1)

rt

pw (Yi(t)) = Si(0)@ e

+ A

rt — (,ui — %0-2

)
" —i—)\—aix/g]'
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And also by integration by parts, if we let

1
u; = ®(z;) — 1 and dv; = aiﬁexp{ (ui — 50’?)t + al-\/f(zi — )\)}dzi
then the second part of py (Y;(t)) is

rt — <ui — %af)t

— 1) et
Ui\/¥

Si(O)exp{uit — )\O'Z'\/E} (1 —® [Tt B (:Z\;{f%a?)t AN Uiﬁ]) )

;ﬁxma»::—&«»(®[ i\

Then
o (Yi(t)) = ow (V1)) 4 P (Vi) = S.(0)¢” — S, (O)esp] ut — 0:/1A}
= Si(O)ert [1 N eXp{(Mi 7 T)t > O'Z\/l_f/\}] .
The present value of py (Y;(t)) are
PV (pw(Yi(t))) = e pw (Yi(t))
= S;(0) [1 £ exp{(,ui —r)t — az»\/z_f/\}]
if
wi—r>0 Y, 1=1,2,....m

A\’
then py (Y;(t)) are become negative for ¢ > ( 7 ) Vi, i =1,2,...,m.
My — T
As same as VaR,(Y(t)) and TVaR,(Y (t)). We have risk measure of portfolio

under Wang’s distortion function is

pw (Y (t) = Zn (Si(O)e” [1 - exp{(m — )t — az-\/iA}] )

=1

If p; —r>0,Vi, i=1,2,...,m then py (Y (t)) is becoming negative for ¢ large.
In conclusion, “under actual probability”, the risk measure of portfolio under
Wang’s distortion function is not consistent with time.
Under risk neutral probability, when p; =r Vi, ¢ = 1,2,...,m, we have a risk

measure of portfolio is

m

pw (Y (1)) = Zni<5i(0)e” [1 - exp{ - al-\/z_f)\}D.

i=1



)

So that, py (Y (t)) is increasing as t is increasing.
In conclusion, “under risk neutral probability”, the risk measure of portfolio

under Wang’s distortion function is consistent with time.



