Chapter 3

Main results

From a multiple asset model

$$dS_i(t) = S_i(t) \left(\sum_{j=1}^m \sigma_{ij}(t) dW_j(t) + \mu_i(t) dt \right)$$

where $\{W_j(t)\}_{t\geq 0}$, $j=1,\ldots,m$, are independent Brownian motions, $\mu_i(t)$ are the drift, $\sigma_{ij}(t)$ are volatility. We assume that the matrix $\sigma=(\sigma_{ij})$ is invertible. By Itô formula with initial value $S_i(0)$ we have

$$S_i(t) = S_i(0) \exp \left\{ \int_0^t \left(\mu_i(s) - \frac{1}{2} \sum_{j=1}^m \sigma_{ij}^2(s) \right) ds + \int_0^t \sum_{j=1}^m \sigma_{ij}(s) dW_j(s) \right\}.$$

Let μ_i , σ_{ij} be constants and assume known.

We have

$$S_i(t) = S_i(0) \exp\left\{ \left(r - \frac{1}{2} \sum_{i=1}^m \sigma_{ij}^2 \right) t + \sum_{i=1}^m \sigma_{ij} W_j(t) \right\}$$

 $i=1,2,\ldots,m$ and $W_j(t)\backsim N(0,t)=\sqrt{t}z_j.$ We have

$$S_i(t) = S_i(0) \exp \left\{ \left(\mu_i - \frac{1}{2} \sum_{j=1}^m \sigma_{ij}^2 \right) t + \sum_{j=1}^m \sigma_{ij} \sqrt{t} z_j \right\}.$$

Then, we find cumulative distribution function(CDF) to compute distortion risk measures.

$$P(S_{i}(t) \leq x) = P(S_{i}(0)\exp\left\{\left(\mu_{i} - \frac{1}{2}\sum_{j=1}^{m}\sigma_{ij}^{2}\right)t + \sum_{j=1}^{m}\sigma_{ij}\sqrt{t}z_{j}\right\} \leq x)$$

$$= P\left(\left(\mu_{i} - \frac{1}{2}\sum_{j=1}^{m}\sigma_{ij}^{2}\right)t + \sum_{j=1}^{m}\sigma_{ij}\sqrt{t}z_{j} \leq \ln\left(\frac{x}{S_{i}(0)}\right)\right)$$

$$= P\left(\sqrt{t}\sum_{j=1}^{m}\sigma_{ij}z_{j} \leq \ln\left(\frac{x}{S_{i}(0)}\right) - \left(\mu_{i} - \frac{1}{2}\sum_{j=1}^{m}\sigma_{ij}^{2}\right)t\right).$$

Since

$$\sum_{j=1}^{m} \sigma_{ij} z_j \backsim N(0, \sum_{j=1}^{m} \sigma_{ij}^2) \backsim \sqrt{\sum_{j=1}^{m} \sigma_{ij}^2} z$$

then, from here let denote $\sigma_i^2 = \sum_{j=1}^m \sigma_{ij}^2$ and $\sigma_i = \sqrt{\sum_{j=1}^m \sigma_{ij}^2}$.

Therefore the actual probability distribution $F_t(x)$ of $S_i(t)$, a geometric Brownian motion, is

$$F_t(x) = P(S_i(t) \le x) = P\left(z \le \frac{\ln(\frac{x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right)$$

$$= \Phi\left(\frac{\ln(\frac{x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right)$$
(3.1)

and by using choquet integral the risk measure of $Y_i(t)$ is of the form

$$\rho_h(Y_i(t)) = \int_0^\infty h(P(Y_i(t) > x)) dx + \int_{-\infty}^0 [h(P(Y_i(t) > x)) - 1] dx$$

where h(.) is an arbitrary distortion function.

Under risk neutral probabilities when μ_i are replaced by r, then the multiple asset model is

$$dS_i(t) = S_i(t) \left(\sum_{j=1}^m \sigma_{ij}(t) d\widetilde{W}_j(t) + r dt \right).$$

Where $\{\widetilde{W}_j(t)\}_{t\geq 0}$, $j=1,2,\ldots,m$, are independent Brownian motion, from Girsanov's Theorem, if a process $\theta(t), t \in [0,T]$ satisfies Girsanov's condition then the risk neutral probability measure Q exists and under Q,

$$\widetilde{W}_j(t) = W_j(t) + \int_0^\infty \theta(s) ds$$

therefore the risk neutral probability distribution $F_t(x)$ of $S_i(t)$ in Black-Scholes model, is

$$F_t(x) = Q(S_i(t) \le x) = Q\left(z \le \frac{\ln(\frac{x}{S_i(0)}) - (r - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right)$$
$$= \Phi\left(\frac{\ln(\frac{x}{S_i(0)}) - (r - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right). \tag{3.2}$$

3.1 General case for risk in Black-Scholes model

Under actual probabilities, we will find a distortion risk measure. Consider a risk measure of portfolio V(t).

By Choquet integral, we have

$$\rho(Y(t)) = \sum_{i=1}^{m} n_i \rho(Y_i(t))$$

$$= \sum_{i=1}^{m} n_i \left[\int_0^\infty h(P(Y_i(t) > x)) dx + \int_{-\infty}^0 [h(P(Y_i(t) > x)) - 1] dx \right]$$

where

$$h: [0,1] \to [0,1]$$

 $h(0) = 0, h(1) = 1$

and h is increasing and strictly concave.

Recall that

$$P(Y_i(t) > x) = P(S_i(0)e^{rt} - S_i(t) > x)$$

$$= P(S_i(t) < S_i(0)e^{rt} - x)$$

$$= \begin{cases} \Phi\left(\frac{\ln(\frac{S_i(0)e^{rt} - x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right) & \text{if } x < S_i(0)e^{rt} \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

$$\rho(Y_i(t)) = \int_0^{S_i(0)e^{rt}} h\left(\Phi\left[\frac{\ln(\frac{S_i(0)e^{rt}-x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right]\right) dx$$
$$+ \int_{-\infty}^0 \left[h\left(\Phi\left[\frac{\ln(\frac{S_i(0)e^{rt}-x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right]\right) - 1\right] dx.$$

Now, if we let

$$y_i = \frac{S_i(0)e^{rt} - x}{S_i(0)}$$

we have

$$\rho(Y_i(t)) = \int_0^{S_i(0)e^{rt}} h\left(\Phi\left[\frac{\ln(y_i) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right]\right) dx + \int_{-\infty}^0 \left[h\left(\Phi\left[\frac{\ln(y_i) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right]\right) - 1\right] dx.$$

Let

$$z_{i} = \frac{ln(y_{i}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}}$$

then

$$y_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}(z_i)\right\}.$$

Let

$$C_i = \frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}}$$

we obtain

$$\rho(Y_i(t)) = S_i(0) \int_{-\infty}^{C_i} h(\Phi[z_i]) \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\} dz_i$$
$$+ S_i(0) \int_{C_i}^{\infty} [h(\Phi[z_i]) - 1] \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\} dz_i.$$

Note that since h is increasing. h has countable discontinuity points. Moreover, for cohorent risk measures, the distortion h is strictly concave which implies that h' is continuous almost everywhere.

By integration by parts, if we let

$$u_i = h(\Phi[z_i]) , du_i = h'(\Phi[z_i])d\Phi[z_i] \text{ and}$$

$$dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}dz_i , v_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}.$$

The first part of $\rho(Y_i(t))$ is

$$\rho^{1}(Y_{i}(t)) = S_{i}(0) \left(u_{i}v_{i}\Big|_{-\infty}^{C_{i}} - \int_{-\infty}^{C_{i}} v_{i}du_{i}\right)$$

$$= S_{i}(0) \left(h(\Phi[z_{i}]) \exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i}\right\}\Big|_{-\infty}^{C_{i}}$$

$$- \int_{-\infty}^{C_{i}} \exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i}\right\}h'(\Phi[z_{i}])d\Phi[z_{i}]\right)$$

$$= S_{i}(0) \left(h(\Phi[C_{i}]) \exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}C_{i}\right\}$$

$$- \int_{-\infty}^{C_{i}} \exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i}\right\}h'(\Phi[z_{i}])d\Phi[z_{i}]\right).$$

And by integration by parts, if we let

$$u_i = h(\Phi[z_i]) - 1 , du_i = h'(\Phi[z_i])d\Phi[z_i] \text{ and}$$

$$dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}dz_i , v_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}.$$

The second part of $\rho(Y_i(t))$ is

$$\rho^{2}(Y_{i}(t)) = S_{i}(0) \left(u_{i}v_{i} \Big|_{C_{i}}^{\infty} - \int_{C_{i}}^{\infty} v_{i}du_{i} \right)$$

$$= S_{i}(0) \left(\left[h(\Phi[z_{i}]) - 1 \right] \exp\left\{ \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2} \right) t + \sigma_{i}\sqrt{t}z_{i} \right\} \Big|_{-\infty}^{C_{i}} \right.$$

$$- \int_{C_{i}}^{\infty} \exp\left\{ \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2} \right) t + \sigma_{i}\sqrt{t}z_{i} \right\} h'(\Phi[z_{i}]) d\Phi[z_{i}] \right)$$

$$= S_{i}(0) \left(- \left[h(\Phi[C_{i}]) - 1 \right] \exp\left\{ \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2} \right) t + \sigma_{i}\sqrt{t}C_{i} \right\}$$

$$- \int_{C_{i}}^{\infty} \exp\left\{ \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2} \right) t + \sigma_{i}\sqrt{t}z_{i} \right\} h'(\Phi[z_{i}]) d\Phi[z_{i}] \right).$$

Then

$$\rho(Y_i(t)) = \rho^1(Y_i(t)) + \rho^2(Y_i(t))$$

$$= S_i(0) \left(h(\Phi[C_i]) \exp\left\{ \left(\mu_i - \frac{1}{2}\sigma_i^2 \right) t + \sigma_i \sqrt{t}C_i \right\} \right.$$

$$- \int_{-\infty}^{C_i} \exp\left\{ \left(\mu_i - \frac{1}{2}\sigma_i^2 \right) t + \sigma_i \sqrt{t}z_i \right\} h'(\Phi[z_i]) d\Phi[z_i] \right)$$

$$+ S_i(0) \left(-\left[h(\Phi[C_i]) - 1 \right] \exp\left\{ \left(\mu_i - \frac{1}{2}\sigma_i^2 \right) t + \sigma_i \sqrt{t}C_i \right\}$$

$$- \int_{C_i}^{\infty} \exp\left\{ \left(\mu_i - \frac{1}{2}\sigma_i^2 \right) t + \sigma_i \sqrt{t}z_i \right\} h'(\Phi[z_i]) d\Phi[z_i] \right)$$

$$= S_i(0) \left(\exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} C_i \right\} \right.$$

$$\left. - \int_{-\infty}^{\infty} \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} z_i \right\} h'(\Phi[z_i]) d\Phi[z_i] \right)$$

$$= S_i(0) \left(\exp\{rt\} - \int_{-\infty}^{\infty} h'(\Phi[z_i]) \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} z_i \right\} d\Phi[z_i] \right).$$

Since

$$d\Phi[z_i] = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(z_i)^2\right\} dz_i$$

then

$$\exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i}\right\}d\Phi[z_{i}] = \exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i}\right\}\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}(z_{i})^{2}\right\}dz_{i}$$

$$= \frac{1}{\sqrt{2\pi}}\exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + \sigma_{i}\sqrt{t}z_{i} - \frac{1}{2}(z_{i})^{2}\right\}dz_{i}$$

$$= \frac{1}{\sqrt{2\pi}}\exp\{\mu_{i}t\}\exp\left\{-\frac{1}{2}(z_{i})^{2} + \sigma_{i}\sqrt{t}z_{i} - \frac{1}{2}\sigma_{i}^{2}t\right\}dz_{i}$$

$$= \frac{1}{\sqrt{2\pi}}\exp\{\mu_{i}t\}\exp\left\{-\frac{1}{2}\left(z_{i} - \sigma_{i}\sqrt{t}z_{i}\right)^{2}\right\}dz_{i}.$$

So that

$$\rho(Y_i(t)) = S_i(0) \left(\exp\{rt\} - \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\{\mu_i t\} \exp\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t} z_i\right)^2\} dz_i \right)$$

$$= S_i(0) e^{rt} \left[1 - e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\} dz_i \right].$$

The present value of $\rho(Y_i(t))$ are

$$PV(\rho(Y_i(t))) = e^{-rt}\rho(Y_i(t))$$

$$= S_i(0) \left[1 - e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left(z_i - \sigma_i \sqrt{t} \right)^2 \right\} dz_i \right].$$

Observe that if

$$\mu_i - r \le 0$$

then $\rho(Y_i(t))$ or $PV(\rho(Y_i(t)))$ are always increasing as t goes to ∞ .

So we only consider the case when

$$\mu_i - r > 0 \quad \forall i, \ i = 1, 2, \dots, m.$$

We have risk measure of portfolio is

$$\rho(Y(t)) = \sum_{i=1}^{m} n_i \rho(Y_i(t))$$

$$= \sum_{i=1}^{m} n_i S_i(0) e^{rt} \left[1 - e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left(z_i - \sigma_i \sqrt{t} \right)^2 \right\} dz_i \right]$$

if $\mu_i - r > 0$ and $\int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_i - \sigma_i\sqrt{t}\right)^2\right\} dz_i$ are never equal to 0 then $\rho(Y(t))$ is eventually negative at long horizons. The following Theorems illustrate the situation under some conditions.

Theorem 3.1.1. For each i = 1, 2, ..., m if $h'(\Phi(z_i))$ is bounded below by some constants $C \neq 0$ on [0, 1], i = 1, 2, ..., m then $\rho(Y(t))$ is negative as t goes to ∞ .

Proof. We have

$$\int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_i - \sigma_i\sqrt{t}\right)^2\right\} dz_i \ge C \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_i - \sigma_i\sqrt{t}\right)^2\right\} dz_i$$

$$\ge C$$

$$> 0.$$

Therefore

$$e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i, \ i = 1, 2, \dots, m$$

tend to ∞ as $t \to \infty$. So, $\rho(Y_i(t))$ are negative for $t > \frac{\ln C_i}{\mu_i - r}$, $i = 1, 2, \dots, m$. Hence $\rho(Y(t))$ is negative as t goes to ∞ .

It implies that under "actual probability", the risk measure of portfolio in Theorem 3.1.1 is not consistent with time.

Theorem 3.1.2. If $\mu_i - r - \frac{1}{2}\sigma_i^2 > 0$, i = 1, 2, ..., m then $\rho(Y(t))$ is negative as t goes to ∞ .

Proof. Note that since h is increasing then $h'(\Phi[z_i])$ is nonnegative. Moreover, since h' is continuous and h' cannot be 0 (due to the definition of $\rho(Y_i(t))$), there exists a closed subset A_i of [0,1] with non-zero measure and a constant a_0^i such that

$$h'(u) \ge a_0^i$$
 for all $u \in A_i$

then

$$\int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i
= \int_{\Phi^{-1}(A_i)} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i
+ \int_{R \setminus \Phi^{-1}(A_i)} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i
\ge \int_{\Phi^{-1}(A_i)} a_0^i \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i
+ \int_{R \setminus \Phi^{-1}(A_i)} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i.$$

Since for each i = 1, 2, ..., m, A_i is close subset of [0, 1], we can assume that A_i is an interval in [0,1]. Therefore for each A_i , $\Phi^{-1}(A_i)$ is also an interval and assume that

$$\Phi^{-1}(A_i) = [a_i, b_i]$$
 , $i = 1, 2, \dots, m$

where $a_i \neq b_i$, Hence,

$$\int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$\geq \int_{a_i}^{b_i} a_0^i \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$+ \int_{R \setminus A_i} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$\geq a_0^i \left[\Phi(b_i - \sigma_i \sqrt{t}) - \Phi(a_i - \sigma_i \sqrt{t})\right]$$

$$+ \int_{R \setminus A_i} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i.$$

By Mean Value Theorem, we have

$$\left[\Phi\left(b_i - \sigma_i\sqrt{t}\right) - \Phi\left(a_i - \sigma_i\sqrt{t}\right)\right] \ge (b_i - a_i)\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}\left(b_i - \sigma_i\sqrt{t}\right)^2\right\}.$$

Therefore

$$e^{(\mu_{i}-r)t} \int_{-\infty}^{\infty} h'(\Phi[z_{i}]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_{i}-\sigma_{i}\sqrt{t}\right)^{2}\right\} dz_{i}$$

$$\geq e^{(\mu_{i}-r)t} a_{0}^{i}(b_{i}-a_{i}) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(b_{i}-\sigma_{i}\sqrt{t}\right)^{2}\right\}$$

$$\geq a_{0}^{i}(b_{i}-a_{i}) \frac{1}{\sqrt{2\pi}} \exp\left\{\left(\mu_{i}-r-\frac{1}{2}\sigma_{i}^{2}\right)t+b_{i}\sigma_{i}\sqrt{t}-\frac{1}{2}b_{i}^{2}\right\}, i = 1, 2, \dots, m$$

implies

$$e^{(\mu_i-r)t}\int_{-\infty}^{\infty}h'(\Phi[z_i])\frac{1}{\sqrt{2\pi}}\exp\left\{-\frac{1}{2}\left(z_i-\sigma_i\sqrt{t}\right)^2\right\}dz_i$$

are getting larger than 1 for t large and therefore $\rho(Y_i(t))$ are becoming negative for t large $\forall i, i = 1, 2, ..., m$.

Hence $\rho(Y(t))$ is negative as t goes to ∞ .

Therefore under "actual probability", the risk measure of portfolio in Theorem 3.1.2 is not monotone increasing with time.

Theorem 3.1.3. If h'(1) > 0 then $\rho(Y(t))$ is negative as t goes to ∞ .

Proof. Since h is the concave distortion function, so h' is deceasing.

So, we have

$$\int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$\geq \int_{-\infty}^{\sigma_i \sqrt{t}} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$\geq \frac{1}{2} h'(\Phi[\sigma_i \sqrt{t}])$$

$$\geq \frac{1}{2} h'(1) > 0 \quad \forall i, \ i = 1, 2, \dots, m.$$

Therefore

$$e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_i - \sigma_i\sqrt{t}\right)^2\right\} dz_i$$

are getting larger than 1 for t large and hence $\rho(Y_i(t))$ are becoming negative for $t > \frac{\ln 2 - \ln h'(1)}{\mu_i - r} \ \forall i, \ i = 1, 2, \dots, m.$

Hence $\rho(Y(t))$ is also negative as t goes to ∞ .

Therefore under "actual probability", the risk measure of portfolio in Theorem 3.1.3 is not consistent with time.

Theorem 3.1.4. *If*

$$\lim_{t \to \infty} \left(e^{(\mu_i - r)t} h' \left(\Phi \left(\sigma_i \sqrt{t} \right) \right) \right) = +\infty \ \forall i, \ i = 1, 2, \dots, m$$

then $\rho(Y(t))$ is negative as t goes to ∞ .

Proof. Indeed, similar to the above theorem, we have

$$e^{(\mu_i - r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(z_i - \sigma_i \sqrt{t}\right)^2\right\} dz_i$$

$$\geq e^{(\mu_i - r)t} h' \Big(\Phi\Big(\sigma_i \sqrt{t}\Big)\Big).$$

Therefore,

$$e^{(\mu_i-r)t} \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(z_i - \sigma_i\sqrt{t}\right)^2\right\} dz_i$$

are getting larger than 1 for t large and therefore $\rho(Y_i(t))$ are becoming negative for t large $\forall i, i = 1, 2, ..., m$

Hence $\rho(Y(t))$ is negative as t goes to ∞ .

Therefore under "actual probability", the risk measure of portfolio in Theorem 3.1.4 is not consistent with time.

Under risk neutral probabilities, multiple asset model is

$$dS_i(t) = S_i(t) \left(\sum_{j=1}^{m} \sigma_{ij}(t) d\widetilde{W}_j(t) + r dt \right)$$

Then we use (3.2) to find a distortion risk measure. When $\mu_i = r \,\forall i, i = 1, 2, \dots, m$. We have a risk measure of portfolio is

$$\rho(Y(t)) = \sum_{i=1}^{m} n_i \rho(Y_i(t))$$

$$= \sum_{i=1}^{m} n_i S_i(0) e^{rt} \left[1 - \int_{-\infty}^{\infty} h'(\Phi[z_i]) \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left(z_i - \sigma_i \sqrt{t} \right)^2 \right\} dz_i \right]$$

which result in that $\rho(Y(t))$ is increasing with respect to t (since $h'(\phi[z_i]) \geq 0$ and $\exp\{-\frac{1}{2}(z_i - \sigma_i\sqrt{t})^2\}$ is decreasing with respect to t). In conclusion, the risk measure of portfolio under "risk neutral probability" is consistent with time.

3.2 Value-at-Risk in Black-Scholes model

For the case of $VaR_{\alpha}(.)$, the distortion function is

$$h_{\alpha}(u) = 1_{(\alpha,1]}(u).$$

Finding $VaR_{\alpha}(.)$ by using Choquet integral, we have

$$VaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_{i} VaR_{\alpha}(Y_{i}(t))$$

$$= \sum_{i=1}^{m} n_{i} \left[\int_{0}^{\infty} h_{\alpha}(P(Y_{i}(t) > x)) dx + \int_{-\infty}^{0} [h_{\alpha}(P(Y_{i}(t) > x)) - 1] dx \right].$$

Since

$$P(Y_{i}(t) > x) = P(S_{i}(0)e^{rt} - S_{i}(t) > x)$$

$$= P(S_{i}(t) < S_{i}(0)e^{rt} - x)$$

$$= \begin{cases} \Phi\left(\frac{\ln(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}}\right) & \text{if } x < S_{i}(0)e^{rt} \\ 0 & \text{otherwise} \end{cases}$$

then

$$h_{\alpha}(P(Y_i(t) > x)) = 1$$

if and only if

$$\Phi\left(\frac{ln(\frac{S_i(0)e^{rt}-x}{S_i(0)}) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}}\right) > \alpha$$

if and only if

$$\frac{\ln(\frac{S_{i}(0)e^{rt}-x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}} > \Phi^{-1}(\alpha)$$

if and only if

$$x < S_i(0)e^{rt} - S_i(0)\exp\left\{(\mu_i - \frac{1}{2}\sigma_i^2)t + \sigma_i\sqrt{t}\Phi^{-1}(\alpha)\right\}$$

if and only if

$$x < S_i(0)e^{rt} - S_i(0)\exp\left\{(\mu_i - \frac{1}{2}\sigma_i^2)t - \sigma_i\sqrt{t}\Phi^{-1}(1-\alpha)\right\}.$$

Let

$$x^* = S_i(0)e^{rt} - S_i(0)\exp\left\{ (\mu_i - \frac{1}{2}\sigma_i^2)t - \sigma_i\sqrt{t}\Phi^{-1}(1-\alpha) \right\}$$
$$= S_i(0)e^{rt} \left[1 - \exp\left\{ (\mu_i - r - \frac{1}{2}\sigma_i^2)t - \sigma_i\sqrt{t}\Phi^{-1}(1-\alpha) \right\} \right].$$

Case 1: If

$$\mu_i - r - \frac{1}{2}\sigma_i^2 \le 0$$

or

$$\mu_i - r - \frac{1}{2}\sigma_i^2 > 0 \text{ and } t \le \left(\frac{\sigma_i \Phi^{-1}(1-\alpha)}{(\mu_i - r - \frac{1}{2}\sigma_i^2)}\right)^2$$

รมหาวทุญกลยเชียงไก

So sight Change Mail University
$$VaR_{\alpha}(Y_{i}(t)) = \int_{0}^{x^{*}} dx = x^{*}$$

$$= S_{i}(0)e^{rt} \left[1 - \exp\left\{(\mu_{i} - r - \frac{1}{2}\sigma_{i}^{2})t - \sigma_{i}\sqrt{t}\Phi^{-1}(1 - \alpha)\right\}\right].$$

Case 2:

If

$$\mu_i - r - \frac{1}{2}\sigma_i^2 > 0 \text{ and } t > \left(\frac{\sigma_i \Phi^{-1}(1-\alpha)}{(\mu_i - r - \frac{1}{2}\sigma_i^2)}\right)^2$$

then

$$x^* < 0.$$

So

$$VaR_{\alpha}(Y_{i}(t)) = \int_{x^{*}}^{0} (-1)dx = x^{*}.$$

Therefore, in both cases, we have

$$VaR_{\alpha}(Y_{i}(t)) = x^{*} = S_{i}(0)e^{rt}\left[1 - \exp\left\{(\mu_{i} - r - \frac{1}{2}\sigma_{i}^{2})t - \sigma_{i}\sqrt{t}\Phi^{-1}(1 - \alpha)\right\}\right].$$

Thus, the present value of $VaR_{\alpha}(Y_i(t))$ are

$$PV(VaR_{\alpha}(Y_i(t))) = e^{-rt}VaR_{\alpha}(Y_i(t))$$
$$= S_i(0) \left[1 - \exp\left\{ (\mu_i - r - \frac{1}{2}\sigma_i^2)t - \sigma_i\sqrt{t}\Phi^{-1}(1 - \alpha) \right\} \right].$$

Thus, if

$$\mu_i - r - \frac{1}{2}\sigma_i^2 > 0 \ \forall i, \ i = 1, 2, \dots, m$$

then for each i, i = 1, 2, ..., m the value for $VaR_{\alpha}(Y_i(t))$ or $PV(VaR_{\alpha}(Y_i(t)))$ will become negative for $t > \left(\frac{\sigma_i \Phi^{-1}(1-\alpha)}{\mu_i - r - \frac{1}{2}\sigma_i^2}\right)^2$ and keep decreasing afterwards. Since, portfolio $V(t) = n_1 S_1(t) + n_2 S_2(t) + ... + n_m S_m(t), n_i = \text{number of stock}$ in $S_i(t), i = 1, 2, ..., m$.

We have

$$VaR_{\alpha}(Y(t)) = VaR_{\alpha}(V(0)e^{rt} - V(t))$$

$$= VaR_{\alpha}(\left(\sum_{i=1}^{m} n_{i}S_{i}(0)\right)e^{rt} - \sum_{i=1}^{m} n_{i}S_{i}(t))$$

$$= VaR_{\alpha}\left(\sum_{i=1}^{m} (n_{i}S_{i}(0)e^{rt} - n_{i}S_{i}(t))\right)$$

by comonotonic property, we have

$$VaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} VaR_{\alpha} \left(n_i (S_i(0)e^{rt} - S_i(t)) \right)$$
$$= \sum_{i=1}^{m} n_i VaR_{\alpha} \left(S_i(0)e^{rt} - S_i(t) \right)$$
$$= \sum_{i=1}^{m} n_i VaR_{\alpha} \left(Y_i(t) \right).$$

If

$$\mu_i - r - \frac{1}{2}\sigma_i^2 > 0 \quad \forall i, \ i = 1, 2, \dots, m$$

then

$$VaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_{i} \left(S_{i}(0)e^{rt} \left[1 - \exp\left\{ (\mu_{i} - r - \frac{1}{2}\sigma_{i}^{2})t - \sigma_{i}\sqrt{t}\Phi^{-1}(1 - \alpha) \right\} \right] \right).$$

The value for $VaR_{\alpha}(Y(t))$ will become negative for t large and keeps decreasing afterwards. Thus, under actual probability, $VaR_{\alpha}(Y(t))$ is not monotone with time horizons. So that, The Value-at-Risk of portfolio is not consistent with time.

In risk neutral probability measure when μ_i are replace by r for i = 1, 2, ..., m the value of $VaR_{\alpha}(Y(t))$ reduce to

$$VaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_{i} \left(S_{i}(0)e^{rt} \left[1 - \exp\left\{ \left(-\frac{1}{2}\sigma_{i}^{2} \right)t - \sigma_{i}\sqrt{t}\Phi^{-1}(1-\alpha) \right\} \right] \right).$$

It implies that $VaR_{\alpha}(Y(t))$ is always increasing as t is increasing in risk neutral probability. Thus, the Value-at-Risk of portfolio is consistent with time.

3.3 Tail Value-at-Risk in Black-Scholes model

The distortion function in $TVaR_{\alpha}(.)$ is

$$h_{\alpha}(u) = \min\left\{1, \frac{u}{\alpha}\right\}$$

Finding $TVaR_{\alpha}(.)$ by using Choquet integral, we have

$$TVaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_i TVaR_{\alpha}(Y_i(t))$$

$$= \sum_{i=1}^{m} n_i \left[\int_0^\infty h_{\alpha}(P(Y_i(t) > x)) dx + \int_{-\infty}^0 [h_{\alpha}(P(Y_i(t) > x)) - 1] dx \right].$$

Observe that

$$h_{\alpha}[P(Y_i(t) > x)] = 1$$

if and only if

$$\frac{P(Y(t) > x)}{\alpha} > 1$$

if and only if

$$P(Y(t) > x) > \alpha$$

if and only if

$$P(Y(t) \le x) \le 1 - \epsilon$$

if and only if

$$x \le VaR_{\alpha}(Y_i(t)) = x^*.$$

Note that

$$P(Y_{i}(t) > x) = P(S_{i}(0)e^{rt} - S_{i}(t) > x)$$

$$= P(S_{i}(t) < S_{i}(0)e^{rt} - x)$$

$$= \begin{cases} \Phi\left(\frac{\ln(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}}\right) & \text{if } x < S_{i}(0)e^{rt} \\ 0 & \text{otherwise.} \end{cases}$$

Case 1:

If

$$x^* > 0$$

Then

$$TVaR_{\alpha}(Y_{i}(t)) = \int_{0}^{x^{*}} dx + \int_{x^{*}}^{S_{i}(0)e^{rt}} \left[\frac{P(Y_{i}(t) > x)}{\alpha} \right] dx$$
$$= x^{*} + \int_{x^{*}}^{S_{i}(0)e^{rt}} \left[\frac{1}{\alpha} \Phi\left(\frac{\ln\left(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}\right) - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}} \right) \right] dx.$$

Now if we let

$$y_i = \frac{S_i(0)e^{rt} - x}{S_i(0)}$$

we have

$$TVaR_{\alpha}(Y_i(t) = x^* + \frac{S_i(0)}{\alpha} \int_0^{\frac{S_i(0)e^{rt} - x^*}{S_i(0)}} \Phi\left(\frac{\ln(y_i) - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}}\right) dy_i.$$

Now, let

$$z_i = \frac{\ln(y_i) - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i \sqrt{t}}$$

then

$$TVaR_{\alpha}(Y_i(t)) = x^* + \frac{S_i(0)}{\alpha}\sigma_i\sqrt{t}\int_{-\infty}^{-\Phi^{-1}(1-\alpha)}\Phi(z_i)\exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}z_i\right\}dz_i.$$

By integration by parts, if we let

$$u_i = \Phi(z_i)$$
 and $dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}dz_i$

then we have

$$TVaR_{\alpha}(Y(t)) = x^* + \frac{S_i(0)}{\alpha} (1 - \alpha) \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} \Phi^{-1} (1 - \alpha) \right\}$$

$$- \frac{S_i(0)}{\alpha} \int_{-\infty}^{\Phi^{-1} (1 - \alpha)} \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} z_i \right\} \frac{1}{\sqrt{2\pi}} \exp\left\{ - \frac{1}{2} z_i^2 \right\} dz_i$$

$$= x^* + S_i(0) \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t + \sigma_i \sqrt{t} \Phi^{-1} (1 - \alpha) \right\}$$

$$- \frac{S_i(0)}{\alpha} \exp\left\{ \left(\mu_i - \frac{1}{2} \sigma_i^2 \right) t \right\} \exp\left\{ \frac{1}{2} t \sigma_i^2 \right\} \int_{-\infty}^{-\Phi^{-1} (1 - \alpha)} \frac{1}{\sqrt{2\pi}} \exp\left\{ - \frac{1}{2} \left(z_i - \sigma_i \sqrt{t} \right)^2 \right\} dz_i$$

$$= S_i(0) e^{rt} - \frac{S_i(0)}{\alpha} \exp\left\{ \mu_i t \right\} \Phi\left[- \Phi^{-1} (1 - \alpha) - \sigma_i \sqrt{t} \right]$$

$$= S_i(0) e^{rt} \left[1 - \frac{1}{\alpha} \exp\left\{ (\mu_i - r) t \right\} \Phi\left[- \Phi^{-1} (1 - \alpha) - \sigma_i \sqrt{t} \right] \right].$$

Case 2: if

$$x^* < 0$$

then

$$TVaR_{\alpha}(Y_{i}(t)) = \int_{0}^{\infty} \frac{P(Y_{i}(t) > x)}{\alpha} dx + \int_{x^{*}}^{0} \left[\frac{P(Y_{i}(t) > x)}{\alpha} - 1 \right] dx$$

$$= \frac{1}{\alpha} \int_{0}^{S_{i}(0)e^{rt}} \Phi\left(\frac{\ln(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}} \right) dx$$

$$+ \int_{x^{*}}^{0} \left[\frac{1}{\alpha} \Phi\left(\frac{\ln(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}} \right) - 1 \right] dx.$$

Now, if we let C by Chiang Mai University

$$y_i = \frac{S_i(0)e^{rt} - x}{S_i(0)}, \ d_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}\Phi^{-1}(1-\alpha)\right\}$$

we have

$$TVaR_{\alpha}(Y_{i}(t)) = \frac{S_{i}(0)}{\alpha} \int_{0}^{e^{rt}} \Phi\left(\frac{\ln(y_{i}) - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}}\right) dy_{i} + S_{i}(0) \int_{e^{rt}}^{d_{i}} \left[\frac{1}{\alpha}\Phi\left(\frac{\ln(y_{i}) - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}}\right) - 1\right] dy_{i}.$$

Now, let

$$z_i = \frac{\ln(y_i) - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i \sqrt{t}} \text{ and } q_i = \frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i \sqrt{t}}$$

then

$$TYaR_{\alpha}(Y_{i}(t))$$

$$= \frac{S_{i}(0)}{\alpha} \int_{-\infty}^{q_{i}} \Phi(z)\sigma_{i}\sqrt{t}\exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + z_{i}\sigma_{i}\sqrt{t}\right\}dz_{i}$$

$$+ S_{i}(0) \int_{q_{i}}^{-\Phi^{-1}(1-\alpha)} \left[\frac{\Phi(z_{i})}{\alpha} - 1\right] \sigma_{i}\sqrt{t}\exp\left\{\left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t + z_{i}\sigma_{i}\sqrt{t}\right\}dz_{i}.$$

By integration by parts, if we let

$$u_i = \Phi(z_i)$$
 and $dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}z_i\right\}dz_i$

then the first part of $TVaR_{\alpha}(Y_i(t))$ is

$$TVaR_{\alpha}^{1}(Y_{i}(t)) = \frac{S_{i}(0)}{\alpha} \Phi\left[\frac{rt - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}}\right] e^{rt} - \frac{S_{i}(0)}{\alpha} e^{\mu_{i}t} \Phi\left[\frac{rt - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}} - \sigma_{i}\sqrt{t}\right].$$

And by integration by parts, if we let

$$u_i = \frac{1}{\alpha}\Phi(z_i) - 1$$
 and $dv_i = \sigma_i\sqrt{t}\exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}z_i\right\}dz_i$

then the second part of $TVaR_{\alpha}(Y_i(t))$ is

$$TVaR_{\alpha}^{2}(Y_{i}(t)) = -S_{i}(0) \left(\frac{1}{\alpha}\Phi\left[\frac{rt - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}}\right] - 1\right)e^{rt}$$

$$-\frac{S_{i}(0)}{\alpha}e^{\mu_{i}t}\Phi\left[-\Phi^{-1}(1-\alpha) - \sigma_{i}\sqrt{t}\right]$$

$$+\frac{S_{i}(0)}{\alpha}e^{\mu_{i}t}\Phi\left[\frac{rt - \left(\mu_{i} - \frac{1}{2}\sigma_{i}^{2}\right)t}{\sigma_{i}\sqrt{t}}\right].$$

Corneright by Chiang Mai University

$$TVaR_{\alpha}(Y_i(t)) = S_i(0)e^{rt} - \frac{1}{\alpha}S_i(0)e^{\mu_i t}\Phi\left[-\Phi^{-1}(1-\alpha) - \sigma_i\sqrt{t}\right]$$

Hence, in both cases, $TVaR_{\alpha}(Y_i(t))$ has the same form and is

$$TVaR_{\alpha}(Y_{i}(t)) = S_{i}(0)e^{rt} - \frac{1}{\alpha}S_{i}(0)\exp\{\mu_{i}t\}\Phi\left[-\Phi^{-1}(1-\alpha) - \sigma_{i}\sqrt{t}\right]$$
$$= S_{i}(0)e^{rt}\left[1 - \frac{1}{\alpha}\exp\{(\mu_{i} - r)t\}\Phi\left[-\Phi^{-1}(1-\alpha) - \sigma_{i}\sqrt{t}\right]\right].$$

The present value of $TVaR_{\alpha}(Y_i(t))$ are

$$PV(TVaR_{\alpha}(Y_i(t))) = e^{-rt}TVaR_{\alpha}(Y_i(t))$$
$$= S_i(0) \left[1 - \frac{1}{\alpha} \exp\{(\mu_i - r)t\}\Phi\left[-\Phi^{-1}(1 - \alpha) - \sigma_i\sqrt{t}\right]\right].$$

Since

$$\Phi\left[-\Phi^{-1}(1-\alpha) - \sigma_i\sqrt{t}\right] < \Phi\left[-\Phi^{-1}(1-\alpha)\right]$$
$$= \Phi\left[\Phi^{-1}(\alpha)\right] = \alpha.$$

Therefore

if

$$\mu_i - r > 0, \forall i, i = 1, 2, \dots, m$$

then $TVaR_{\alpha}(Y_i(t))$ or $PV(TVaR_{\alpha}(Y_i(t)))$, $\forall i, i = 1, 2, ..., m$ will be decreasing and becoming negative for large value of t.

If

$$\mu_i - r \le 0$$

then $TVaR_{\alpha}(Y_i(t))$ or $PV(TVaR_{\alpha}(Y_i(t)))$ are increasing as t gets to ∞ .

Since, portfolio $V(t)=n_1S_1+n_2S_2(t)+\ldots+n_mS_m(t), n_i=$ number of stock in $S_i(t), i=1,2,\ldots,m.$

So that

$$TVaR_{\alpha}(Y(t)) = TVaR_{\alpha}(V(0)e^{rt} - V(t))$$

$$= TVaR_{\alpha}(\left(\sum_{i=1}^{m} n_{i}S_{i}(0)\right)e^{rt} - \left(\sum_{i=1}^{m} n_{i}S_{i}(t)\right)\right)$$

$$= TVaR_{\alpha}\left(\sum_{i=1}^{m} (n_{i}S_{i}(0)e^{rt} - n_{i}S_{i}(t))\right)$$

by comonotonic property, we have

$$TVaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} TVaR_{\alpha}(n_{i}(S_{i}(0)e^{rt} - S_{i}(t)))$$

$$= \sum_{i=1}^{m} n_{i}TVaR_{\alpha}(S_{i}(0)e^{rt} - S_{i}(t))$$

$$= \sum_{i=1}^{m} n_{i}TVaR_{\alpha}(Y_{i}(t))$$

$$TVaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_{i} \left(S_{i}(0)e^{rt} \left[1 - \frac{1}{\alpha} \exp\{(\mu_{i} - r)t\} \Phi \left[- \Phi^{-1}(1 - \alpha) - \sigma_{i} \sqrt{t} \right] \right] \right)$$

then $TVaR_{\alpha}(Y(t))$ will becoming negative for large value of t if $\mu_i - r > 0$, $\forall i, i = 1, 2, ..., m$ and at t = 0, we have $TVAR_{\alpha}(Y(0)) = 0$. Thus, under actual probability, $TVaR_{\alpha}(Y(t))$ is not increasing as t increasing. So that the Tail Value-at-Risk of portfolio is not consistent with time.

In risk neutral probability measure when μ_i are replace by r for $i=1,2,\ldots,m$, the value of $TVaR_{\alpha}(Y(t))$ reduce to

$$TVaR_{\alpha}(Y(t)) = \sum_{i=1}^{m} n_i \left(S_i(0)e^{rt} \left[1 - \frac{1}{\alpha} \Phi \left[-\Phi^{-1}(1-\alpha) - \sigma_i \sqrt{t} \right] \right] \right)$$

so that it is always increasing as t is increasing in risk neutral probability. Hence, the Tail Value-at-Risk of portfolio is consistent with time under risk neutral probability.

3.4 Risks based on Wang's distortion function in Black-Scholes model

The Wang's distortion function is

$$h_{\lambda}(u) = \Phi[\Phi^{-1}(u) + \lambda], \quad \lambda > 0.$$

The risk measure under Wang's distortion function is

$$\rho_w(Y(t)) = \sum_{i=1}^m n_i \rho_w(Y_i(t))$$

$$= \sum_{i=1}^m n_i \left[\int_0^\infty h_\lambda(P(Y_i(t) > x)) dx + \int_{-\infty}^0 [h_\lambda(P(Y_i(t) > x)) - 1] dx \right]$$

and

$$P(Y_{i}(t) > x) = P(S_{i}(0)e^{rt} - S_{i}(t) > x)$$

$$= P(S_{i}(t) < S_{i}(0)e^{rt} - x)$$

$$= \begin{cases} \Phi\left(\frac{\ln(\frac{S_{i}(0)e^{rt} - x}{S_{i}(0)}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}}\right) & \text{if } x < S_{i}(0)e^{rt} \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

$$\rho_W(Y_i(t)) = \int_0^{S_i(0)e^{rt}} \Phi\left[\frac{\ln\left(\frac{S_i(0)e^{rt}-x}{S_i(0)}\right) - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}} + \lambda\right] dx$$

$$+ \int_{-\infty}^0 \left[\Phi\left[\frac{\ln\left(\frac{S_i(0)e^{rt}-x}{S_i(0)}\right) - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}} + \lambda\right] - 1\right] dx.$$
Final let

Now if we let

$$y_i = \frac{S_i(0)e^{rt} - x}{S_i(0)}.$$

we have

$$\rho_W(Y_i(t)) = \int_0^{S_i(0)e^{rt}} \Phi\left[\frac{\ln(y_i) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}} + \lambda\right] dx$$
$$+ \int_{-\infty}^0 \left[\Phi\left[\frac{\ln(y_i) - (\mu_i - \frac{1}{2}\sigma_i^2)t}{\sigma_i\sqrt{t}} + \lambda\right] - 1\right] dx.$$

Let

$$z_{i} = \frac{ln(y_{i}) - (\mu_{i} - \frac{1}{2}\sigma_{i}^{2})t}{\sigma_{i}\sqrt{t}} + \lambda$$

then

$$y_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}(z_i - \lambda)\right\}.$$

Let

$$y_i = \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i\sqrt{t}(z_i - \frac{1}{2}\sigma_i^2)t + \sigma_i\sqrt{t}(z_i - \frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}} + \lambda\right\}$$

we obtain

$$\rho_W(Y_i(t)) = S_i(0) \int_{-\infty}^{C_i} \Phi[z_i] \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}(z_i - \lambda)\right\} dz_i$$
$$= S_i(0) \int_{C_i}^{\infty} \left[\Phi[z_i] - 1\right] \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}(z_i - \lambda)\right\} dz_i.$$

By integration by parts, if we let

$$u_i = \Phi(z_i)$$
 and $dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}(z_i - \lambda)\right\}dz_i$

then the first part of $\rho_W(Y_i(t))$ is

$$\rho_W^1(Y_i(t)) = S_i(0)\Phi\left[\frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}} + \lambda\right]e^{rt} - S_i(0)\exp\left\{\mu_i t - \lambda\sigma_i\sqrt{t}\right\}\Phi\left[\frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i\sqrt{t}} + \lambda - \sigma_i\sqrt{t}\right].$$

And also by integration by parts, if we let

$$u_i = \Phi(z_i) - 1$$
 and $dv_i = \sigma_i \sqrt{t} \exp\left\{\left(\mu_i - \frac{1}{2}\sigma_i^2\right)t + \sigma_i \sqrt{t}(z_i - \lambda)\right\}dz_i$

then the second part of $\rho_W(Y_i(t))$ is

$$\rho_W^2(Y_i(t)) = -S_i(0) \left(\Phi \left[\frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i \sqrt{t}} + \lambda \right] - 1 \right) e^{rt} - S_i(0) \exp\left\{ \mu_i t - \lambda \sigma_i \sqrt{t} \right\} \left(1 - \Phi \left[\frac{rt - \left(\mu_i - \frac{1}{2}\sigma_i^2\right)t}{\sigma_i \sqrt{t}} + \lambda - \sigma_i \sqrt{t} \right] \right).$$

Then

$$\rho_W(Y_i(t)) = \rho_W(Y_i^{1}(t)) + \rho_W^{2}(Y_i(t)) = S_i(0)e^{rt} - S_i(0)\exp\{\mu_i t - \sigma_i \sqrt{t}\lambda\}$$

$$= S_i(0)e^{rt} \left[1 - \exp\{(\mu_i - r)t - \sigma_i \sqrt{t}\lambda\}\right].$$

The present value of $\rho_W(Y_i(t))$ are

$$PV(\rho_W(Y_i(t))) = e^{-rt}\rho_W(Y_i(t))$$
$$= S_i(0) \left[1 - \exp\left\{ (\mu_i - r)t - \sigma_i \sqrt{t}\lambda \right\} \right]$$

if

$$\mu_i - r > 0 \quad \forall i, \ i = 1, 2, \dots, m$$

then $\rho_W(Y_i(t))$ are become negative for $t > \left(\frac{\sigma_i \lambda}{\mu_i - r}\right)^2 \ \forall i, \ i = 1, 2, \dots, m.$ As same as $VaR_{\alpha}(Y(t))$ and $TVaR_{\alpha}(Y(t))$. We have risk measure of portfolio under Wang's distortion function is

$$\rho_W(Y(t)) = \sum_{i=1}^m n_i \Big(S_i(0) e^{rt} \Big[1 - \exp\Big\{ (\mu_i - r)t - \sigma_i \sqrt{t}\lambda \Big\} \Big] \Big).$$

If $\mu_i - r > 0$, $\forall i, i = 1, 2, ..., m$ then $\rho_W(Y(t))$ is becoming negative for t large.

In conclusion, "under actual probability", the risk measure of portfolio under Wang's distortion function is not consistent with time.

Under risk neutral probability, when $\mu_i = r \ \forall i, \ i = 1, 2, \dots, m$, we have a risk measure of portfolio is

$$\rho_W(Y(t)) = \sum_{i=1}^m n_i \Big(S_i(0) e^{rt} \Big[1 - \exp\Big\{ - \sigma_i \sqrt{t} \lambda \Big\} \Big] \Big).$$

So that, $\rho_W(Y(t))$ is increasing as t is increasing.

In conclusion, "under risk neutral probability", the risk measure of portfolio under Wang's distortion function is consistent with time.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved