CHAPTER 4

RESULTS AND DISCUSSION

4.1 Equipment, materials and chemicals

General experimental procedures

Optical rotations were measured using a JASCO DIP-370 polarimeter. ¹H (300 or 500 MHz), ¹³C (75 or 125 MHz), and 2D NMR spectra were recorded on Varian Mercury 300 and Varian Unity 500 spectrometers. High resolution EIMS were recorded on a Fison/VG Autospec-TOF-oa mass spectrometer (70 eV). High resolution ESIMS (for MH⁺) were obtained with a Micromass Q tof 2 mass spectrometer using a cone voltage of 30 V and polyethyleneglycol (PEG) as an internal reference. TLC was performed on aluminium-backed Merck 60 GF₂₅₄ silica gel and bands were detected by UV light (λ 254 nm) or by staining with Dragendroff's reagent and ammonium molybdate reagent. Column chromatography was performed using Merck GF₂₅₄ flash silica gel (40-63 µm).

ลิปสิทธิมหาวิทยาลยเชียงเหม Copyright[©] by Chiang Mai University All rights reserved

4.2 Collection of plant materials

Two different *Stemona* spp. i.e. *Stemona curtisii* Hook F., collected from Trang and Petchaboon Provinces and *Stemona aphylla* Craib. collected from Lampang Province were identified by Mr. James F. Maxwell from the Department of Biology, Chiang Mai University.

Stemona curtisii Hook F. (Trang Province)

The roots of *S. curtisii* were collected at Tumbol Kaunmao, Amphur Rasda, in the North of Trang province, Thailand, in November 2008. A voucher specimen was deposited at the Herbarium (number 17581) of the Department of Biology, Chiang Mai University.

Stemona curtisii Hook F. (Petchaboon Province)

This plant was growing naturally at Tumbol Bo Thai, Amphur Nong Phai, Petchaboon province, Thailand, in May 2010. A voucher specimen was deposited at the Herbarium (number SC-1) of the Department of Biology, Chiang Mai University.

Stemona aphylla Craib. (Lampang Province)

This plant was growing naturally in Amphur Chae Hom, Lampang province, Thailand, in March 2009. A voucher specimen was deposited at the Herbarium (number 09-111) of the Department of Biology, Chiang Mai University.

Copyright[©] by Chiang Mai University All rights reserved

Figure 4.1 Root, flower and stem of *Stemona* species.

- (a) S. curtisii, Petchaboon Province.
- (b) S. curtisii, Trang Province.
- (c) S. aphylla, Lampang Province.

4.3 Extraction and isolation

The chemical structures of each pure compound isolated from two different *Stemona* spp. i.e. *S. curtisii* from Trang Province, *S. curtisii* from Petchaboon Province and *S. aphylla* from Lampang Province, Thailand were established and elucidated from interpretation of their spectroscopic data compared with those of known compounds.

The dried root samples of *S. curtisii* from Trang Province, Petchaboon Province and *S. aphylla* from Lampang Province were extracted with 95% ethanol and the extracts were then evaporated and dried. The ethanolic crude extract of *S. curtisii* from Petchaboon Province represented about 10.40 % of the dry weight, followed by *S. curtisii* from Trang Province (8.43 % of dry weight) and *S. aphylla* from Lampang Province (7.92 % of dry weight) (Table 4.1).

Table	4.1	Ethanolic	crude	extract	of S	Stemona	species	from	different	origins
										0

plant material	fresh weight (kg)	dry weight (kg)	crude extract (g)	% of dry weight
S. curtisii - Trang Province	6.10	1.00	84.34	8.43
S. curtisii - Petchaboon Province	17.50	2.50	259.89	10.40
S. aphylla - Lampang Province	6.80	0.98	78.00	7.92

4.3.1 S. curtisii extraction and isolation (Trang Province)

The dried roots of *S. curtisii* were extracted with 95% ethanol for 4 days and the combined extracts were evaporated using a rotary evaporator to obtain the crude ethanol extract. The extract resembled a dark brown gum. The ethanolic crude extract was subsequently partitioned between water, petroleum spirit, chloroform, ethyl acetate, 3% hydrochloric acid solution and dichloromethane. The aqueous solution was basified with aqueous ammonia and extracted with dichloromethane. Successive purifications of this crude residue by column chromatography and preparative TLC gave pure samples of one new benzofuran, stemofuran L (1), and six known compounds namely, stemofuran K (2), stemofuran J (3), stemofuran F (4), stemocurtisinol (5), dehydro- γ - tocopherol (6) and stigmasterol (7).

4.3.2 S. curtisii extraction and isolation (Petchaboon Province)

The dried roots of *S. curtisii* were extracted with 95% ethanol for 4 days and the combined extracts were evaporated using a rotary evaporator to obtain the crude ethanol extract. The extract was a dark brown gum. The ethanolic crude extract was partitioned with dichloromethane. Successive purifications of this crude residue by column chromatography and preparative TLC gave pure samples of one new benzofuran, stemofuran S (8), and three known alkaloids namely oxystemokerrin (9), oxystemokerrin-*N*-oxide (10) and oxyprotostemonine (11).

4.3.3 S. aphylla extraction and isolation (Lampang Province)

The dried roots of *S. aphylla* were extracted with 95% ethanol for 4 days and the combined extracts were evaporated using a rotary evaporator to obtain the crude ethanol extract. The extract was a dark sticky residue. The ethanolic crude extract was partitioned between water, petroleum spirit, 5% hydrochloric acid solution and dichloromethane. The aqueous solution was basified with aqueous ammonia and extracted with dichloromethane. Successive purifications of this crude residue by column chromatography and preparative TLC gave pure samples of three known compounds namely, dehydro- δ - tocopherol (12), stigmasterol (7) and stemofuran J (3) and one new benzofuran, stemofuran L (1), corresponding to that isolated from *S*. *curtisii* in Trang Province.

4.4 Structure elucidation

The structural elucidation of the isolated compounds were established by analysis of their spectroscopic data and comparison of the spectral data with those published previously in literature. The details of the structural elucidation of each compounds are as follows.

Stemofuran L (1)

Stemofuran L (1) was isolated as a light brown gum; HRMS analysis (EI, m/z [M⁺⁺] 268.1095, calcd 268.1099) indicated that this compound had the molecular formular C₁₇H₁₆O₃. This benzofuran compound was characterized by two independent aromatic systems separated by the furan ring of the benzofuran moiety. The connectivities of the directly coupled protons were determined using H/H-COSY experiments, and the positions of methyl and methoxy groups in ring B were elucidated by NOESY experiments. The ¹H NMR showed resonances for five benzofuran protons at 7.62 (d, 1H, J = 7.5 Hz, H-2), 7.50 (d, 1H, J = 8.0, H-5), 7.30 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, H-4), 7.28 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H, H-3) and 6.63 (s, 1H, H-1") ppm. The substituted phenyl group showed a singlet aromatic proton signal at 6.51 (s, 1H, H-6') ppm, a hydroxyl resonance at 5.20 (s, 1H, 3'-OH) ppm and resonances for a methoxy group at 3.78 (s, 3H, 5'-OCH₃) ppm and two aromatic

methyl groups 2.01 (s, 3H, 2'-CH₃) and 1.98 (s, 3H, 4'-CH₃) ppm. The positions of these substituents were established from NOESY and HMBC NMR experiments (summarized in Table 4.2). In particular the diagnostic NOESY correlations were between, H-1" and the 2'-CH₃, H-6' and the 5'-OMe and 4'-CH₃ and the 3'-OH and the 5'-OCH₃. From a search of SciFinder scholar this compound was a new natural product.

 Table 4.2 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of stemofuran L (1) in CDCl₃ solution

position	δ _C	DEPT	$\delta_{\rm H}$	gHMBC
	128.7	С		H-1", H-3, H-5
25	120.8	CH 🖧	7.62 (d, J = 7.5 Hz)	H-4
3	122.6	CH	7.28 (ddd, J = 8.0, 8.0, 1.5 Hz)	Н-5
4	123.8	CH	7.30 (ddd, J = 8.0, 8.0, 1.5 Hz)	H-2
5	111.2	CH	7.50 (d, J = 8.0 Hz)	H-3
6	154.5	С	- ////	H-2, H-4, H-1"
1'	132.3	С	-	H-2′
2'	115.5	С		H-2′
3'	152.2	С		H-2'
4'	119.5	С		H-4'
5'	156.2	С	- LE 33 E.J	H-5′
6′	101.1	CH	6.51 (s)	- '
1"	106.3	CH	6.63 (s)	H-2
2"	154.7	С	-	H-4, H-1"
2'-Me	12.9	CH ₃	2.01 (s)	H-4'
3'-OH	-	OH	5.20 (s)	-
4'-Me	12.6	CH ₃	1.98 (s)	H-4'
5'-OMe	55.7	OCH_3	3.78 (s)	H-6′

 $3 \xrightarrow{2}{4} \xrightarrow{1}{5} \xrightarrow{2'}{6'} \xrightarrow{OH}{3'} \xrightarrow{2'}{CH_3}$ $4 \xrightarrow{2}{6} \xrightarrow{1''}{6'} \xrightarrow{5'}{OCH_3}$ Stemofuran L (1)

Stemofuran K (2)

Stemofuran K (2) was isolated as a yellow gum; HRMS analysis (EI, m/z [M⁺⁺] 282.1254, calcd 282.1256) indicated that this compound had the molecular formular C₁₈H₁₈O₃. Stemofuran K was characterized by one methoxy group at position 5', three methyl groups and an additional hydroxyl group at position 3' in ring B. The structure of stemofuran K was established from a comparison of the ¹H NMR spectroscopic data of stemofuran K reported in the literature (Pacher *et al.*, 2002).

Table 4.3 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of stemofuran K (2) in acetone-d₆ solution

position	$\delta_{\rm C}$	DEPT	$\delta_{\rm H}$ in acetone-d ₆	$\delta_{\rm H}$ Literature in acetone-d ₆
				(Pacher et al., 2002).
1	129.7	С	-	- 0
2	121.7	CH	7.52 (d, J = 8.0 Hz)	7.52 (dd, J = 7.6, 1.5 Hz)
3	123.5	СН	7.26 (dd, J = 7.5, 7.0 Hz)	7.27 (ddd, J = 7.6, 7.6, 1.5 Hz)
4	124.6	СН	7.30 (ddd, J = 7.5, 7.0, 0.5 Hz)	7.31 (ddd, J = 7.6, 7.6, 1.5 Hz)
5	111.7	CH	7.66 (d, J = 7.5 Hz)	7.67 (ddd, J = 7.6, 1.5, 0.8 Hz)
6	152.7	С		- / / /
1'	130.3	С		
2'	123.0	С	-	
3'	155.6	С	-T - T - T - T - T - T	
4'	120.0	C		-//
5'	156.2	С		_
6′	121.3	С	-	-
1"	107.0	CH	6.75 (br s)	6.76 (d, J = 0.8 Hz)
2"	155.9	С	-	2
2'-Me	14.0	CH ₃	2.07 (s)	2.07 (s)
3'-OH		OH	7.34 (br s)	7.36 (br s)
4'-Me	9.9	CH_3	2.25 (s)	2.25 (s)
5'-OMe	60.2	OCH ₃	3.69 (s)	3.69 (s)
6'-Me	13.5	CH ₃	2.07 (s)	2.05 (s)

Stemofuran K (2)

Stemofuran J (3)

Stemofuran J (3) was isolated as a dark blue gum; HRMS analysis (EI, m/z [M⁺⁺] 298.1205, calcd 298.1273) indicated that this compound had the molecular formular C₁₈H₁₈O₄. Stemofuran J was characterized by methoxy groups at positions 3' and 5' and additional methyl groups at positions 2' and 4' in ring B. The structure of stemofuran J was established from a comparison of the ¹H NMR spectroscopic data of stemofuran J reported in the literature (Pacher *et al.*, 2002).

 Table 4.4 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of stemofuran J (3) in acetone-d₆ solution

	•	DEDT		C T
position	٥ _C	DEPI	$o_{\rm H}$ in acetone-d ₆	o _H Literature in acetone-d ₆
				(Pacher et al., 2002).
1	119.2	С	-	-
2	156.6	OH	8.87 (br s)	8.90 (br s)
3	108.5	CH	6.71 (d, J = 7.5 Hz)	6.71 (dd, J = 8.1, 0.9 Hz)
4	125.9	CH	7.15 (t, J = 8.5 Hz)	7.15 (dd, J = 8.1, 8.1 Hz)
5	103.3	CH	7.07 (d, J = 8.0 Hz)	7.07 (ddd, J = 8.1, 0.9, 0.9 Hz)
6	151.8	С	-	-
1'	129.5	С	- 18778	
2'	121.7	С		
3'	158.8	С	Cances	
4'	120.6	С	_	SY
5'	157.3	С	1-7	
6'	106.4	CH	7.19 (br s)	7.19 (s)
1"	103.2	СН	7.10 (br s)	7.10 (d, J = 0.9 Hz)
2"	154.6	С		
2'-Me	13.6	CH_3	2.43 (s)	2.43 (s)
3'- OMe	60.2	OCH_3	3.73 (s)	3.73 (s)
4'-Me	9.3	CH ₃	2.17 (s)	2.17 (s)
5'-OMe	55.8	OCH ₃	3.91 (s)	3.91 (s)

Stemofuran J (3)

Stemofuran F (4)

Stemofuran F (**4**) was isolated as a dark brown gum; MS analysis (EI, m/z [M⁺⁺] 298.1305) indicated that this compound had the molecular formular C₁₈H₁₈O₄. Stemofuran F was characterized by one methoxy group at position 5', methyl groups at positions 2', 4' and 6' and an additional hydroxyl group at position 3' in ring B. The structure of stemofuran F was established from a comparison of the ¹H NMR spectroscopic data of stemofuran F reported in the literature (Pacher *et al.*, 2002).

Table 4.5 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of stemofuran F (4) in acetone-d₆ solution

position	δ _C	DEPT	$\delta_{\rm H}$ in acetone-d ₆	$\delta_{\rm H}$ Literature in acetone-d ₆
				(Pacher et al., 2002).
1	119.0	С	-	-
2	156.4	С	-	- / /
3	108.6	CH	6.71 (d, J = 8.0 Hz)	6.71 (dd, J = 7.9, 1.0 Hz)
4	125.5	CH	7.12 (t, J = 8.5 Hz)	7.12 (dd, J = 7.9, 7.9 Hz)
5	103.6	CH	7.03 (d, J = 8.0 Hz)	7.03 (ddd, J = 7.9, 1.0, 0.9 Hz)
6	151.8	С	-	
1'	130.3	С	-	_
2'	123.2	С	- 18788	
3'	152.8	С	- 1200	
4′	120.3	С		-
5'	157.3	С	-	SY /
6′	121.4	С	1-7G	2
1"	104.2	CH	6.79 (br s)	6.80 (d, J = 0.9 Hz)
2"	154.0	С		_
2'-Me	14.1	CH_3	2.07 (s)	2.08 (s)
3'-OH	-	OH	-	7.30 (br s)
4'-Me	9.9	CH_3	2.24 (br s)	2.25 (s)
6'-Me	13.5	CH ₃	2.05-2.04 (m)	2.06 (s)
5'-OMe	60.2	OCH ₃	3.68 (s)	3.69 (s)

Stemofuran F (4)

Stemocurtisinol (5)

Stemocurtisinol (5) was isolated as a yellow brown gum; $[\alpha]^{25}_{D} + 247^{\circ}$ (*c* 0.15, CHCl₃); lit. (Sastraruji, 2006). $[\alpha]^{25}_{D} + 233^{\circ}$ (*c* 0.33, CHCl₃). HRMS analysis (EI, *m/z* [M⁺⁺] 405.2103, calcd 405.2151) indicated that this compound had the molecular formular C₂₂H₃₁NO₆. The structure of stemocurtisinol was established from a comparison of its ¹H spectroscopic data with those of stemocurtisinol reported in the literature (Sastraruji, 2006). The NMR chemical shifts were in agreement with those previously reported as summarized in Table 4.6.

Table 4.6 ¹³C NMR (100 MHz) and ¹H NMR (400 MHz) spectroscopic data of stemocurtisinol (5) in CDCl₃ solution

position	Stemocurtisinol	Literature in CDCl ₃ solution (Sastraruji, 2006) ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz)				
. (]	δ _Η	δ _C	DEPT	δ _H		
1	4.04 (s)	75.4	CH	4.05 (s)		
2a	1.94 (m)	22.4	CH ₂	1.95 (m)		
2b	1.73 (m)			1.73 (dd, J = 12.3, 5.8 Hz)		
3a	1.94 (m)	18.4	CH_2	1.96 (m)		
3b	1.34 (m)			1.37 (m)		
4	2.53 (m)	65.5	CH	2.53 (m)		
ба	3.48 (m)	54.8	CH_2	3.48 (m)		
6b	2.92 (dd, J = 15.6, 4.0 Hz)			2.92 (dd, J = 15.5, 4.5 Hz)		
7a	2.00 (m)	25.8	CH ₂	2.00 (m)		
7b	1.65 (m)			1.65 (m)		
8a	2.37 (dd, J = 13.2, 3.2 Hz)	33.5	CH_2	2.37 (dd, J = 13.0, 4.1 Hz)		
8b	1.77 (dd, J = 13.6, 5.6 Hz)			1.76 (dd, J = 13.0, 5.8 Hz)		
9	-	120.1	С	-		
10	2.70 (d, J = 4.8 Hz)	56.9	CH	2.70 (d, J = 4.7 Hz)		
10a	3.40 (s)	57.5	CH	3.40 (s)		
11	3.04 (m)	39.3	CH	3.06 (quin, J = 6.1 Hz)		
12		146.8	С			
13		125.0	С			
14	sht≌ hv (`hi	162.7	C	l-Iniversity		
15		97.5	С	enversity		
16		169.7	С	-		
17	2.06 (s)	9.2	CH_3	2.07 (s)		
18	1.37 (d, J = 6.8 Hz)	22.6	CH_3	1.38 (d, J = 7.0 Hz)		
19	3.48 (m)	67.9	CH	3.50 (m)		
20a	1.60 (m)	26.4	CH_2	1.61 (m)		
20b	1.24 (m)	75.4		1.25 (m)		

Dehydro-γ-tocopherol (6)

Dehydro- γ -tocopherol (6) was isolated as a dark brown gum; $[\alpha]^{25}{}_{D}$ +14.85° (*c* 1.0, EtOH); lit. (Brem *et al.*, 2004) $[\alpha]^{25}{}_{D}$ +11.0° (*c* 0.2, EtOH). MS analysis (EI, *m/z* [M⁺⁺] 414.3570) indicated that this compound had the molecular formular C₂₈H₄₆O₂. The structure of dehydro- γ -tocopherol was characterized by an olefinic AB system at 6.22 (dd, *J* = 10.0, 3.0 Hz, H-4) ppm and 5.54 (dd, *J* = 9.5, 3.5 Hz, H-3) ppm. Additionally, two aromatic methyl group resonances appeared at 2.13 and 2.11 (s, 6H, 7-CH₃, 8-CH₃), respectively. A phenolic OH resonance was observed at 4.32 (br s, 1H, H-6) ppm.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

	Dehydro-y-toco	pherol in CDCl ₃ solution	Literature in acetone-d ₆			
position			(Brem et al., 2004)			
-	δ _C	δ _H	δ _C	$\delta_{\rm H}$		
2	77.82	_	77.82 s	<u> </u>		
3	130.25	5.54 (dd, J = 9.5, 3.5 Hz)	130.25/130.27 d	5.54 (d, J = 9.8 Hz)		
4	122.62	6.22 (dd, J = 10.0, 3.0 Hz)	122.61 d	6.22 (d, J = 9.8 Hz)		
4a	118.88	NKK -	118.90 s			
5	109.77	6.30 (s)	109.76 d	6.31 (s)		
6	146.83	4.32 (br s)	146.84 s	4.22 (br s)		
7	123.47		123.45 s	-		
8	125.25	G	125.24 s	-		
8a	144.70	A CONTRACTOR OF THE CONTRACTOR OF TO CONTRAC	144.74 s	-		
2-Me	25.64	1.33 (s)	25.66 q	1.34 (s)		
7-Me	12.09	2.13 (s)	12.08 q	2.14 (s)		
8-Me	11.66	2.12 (s)	11.65 q	2.12 (s)		
125	40.92/40.87	1.62 (m)	40.95/40.91 t	1.61 (m)		
2'	21.33	1.05-1.41 (m)	21.33/21.31 t	1.0-1.4 (m)		
3', 5',	37.43, 37.33,	1.05-1.41 (m)	37.45, 37.43,	1.0-1.4 (m)		
$7', 9'^{a}$	37.28, 37.20		37.35, 37.26 t			
4'	32.68	1.05-1.41 (m)	32.68 d	1.0-1.4 (m)		
6'	24.44	1.05-1.41 (m)	24.44 t	1.0-1.4 (m)		
8'	32.79	1.05-1.41 (m)	32.79 d	1.0-1.4 (m)		
10′	24.78	1.05-1.41 (m)	24.79 d	1.0-1.4 (m)		
11′	39.36	1.05-1.41 (m)	39.37 t	1.0-1.4 (m)		
12'	27.97	1.52 (m)	27.98 d	1.52 (nonett, J = 6.6 Hz)		
4'-Me	19.68/19.63	0.83 (d, J = 6.5 Hz)	19.68/19.65 g	0.83 (d, J = 6.6 Hz)		
8'-Me	19.73	0.83 (d, J = 6.5 Hz)	19.74 g	0.83 (d, J = 6.6 Hz)		
12'-Me	22.71	0.85 (d, J = 6.0 Hz)	22.71 g	0.86 (d, J = 6.6 Hz)		
13'	22.61	0.85 (d, J = 6.0 Hz)	22.62 q	0.86 (d, J = 6.6 Hz)		

dehydro- γ -tocopherol (6) in CDCl₃ solution

HO CH₃ CH₃ ⊥^{8′} 3 4' H₃C Ì8 CH₃ O Ş 13' 5' 9' 11' 1' 3' 7' Dehydro-γ-tocopherol (6)

All rights reserved

Table 4.7 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of

Stigmasterol (7)

Stigmasterol (7) was isolated as a white solid; $[\alpha]^{25}_{D}$ -45.35° (*c* 1.0, CHCl₃), mp 152-154 °C; lit. (Chaiyadej *et al.*, 2004) mp 135-136 °C. MS analysis (EI, *m/z* [M⁺⁺] 412.270) indicated that this compound had the molecular formular C₂₇H₄₄O₂. The ¹H NMR spectrum showed a peak of the H-6 olefinic proton at 5.35 ppm. Another two olefinic protons resonances at 5.15 and 5.02 ppm (dd, *J* = 15.0, 8.4 Hz) were identified as those from H-22 and H-23 on the side-chain, respectively. A one proton multiplet appeared at 3.52 ppm which was assigned to the H-3 methine proton. Moreover, six methyl group were observed at 0.70, 1.01, 1.02, 0.85-0.83, 0.80 and 0.79 ppm. The ¹³C NMR spectroscopic data of stigmasterol was also quite similar to the data reported in the literature (Forgo and Kover, 2004).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

St	tigmastero	ol in CDCl ₃ solution	Literature in CDCl ₃ solution (Forgo and Kover, 2004)			
position	δ _C	δ _H	δ _C	$\delta_{\rm H}$		
1	37.3	1.86 (m)	37.6	1.84 (m)		
2	31.6	1.82 (m)	31.9	1.83 (m)		
3	71.8	3.52 (m)	72.0	3.51 (m)		
4	42.3	2.22-2.33 (m)	42.5	2.23-2.30 (m)		
5	140.7	- 1 D	140.8			
6	121.7	5.35 (br d, J = 5.4 Hz)	121.8	5.34 (m)		
7	31.9	1.95-2.08 (m)	32.1	1.97 (m)		
8	32.0	1.47 (m)	32.2	1.46 (m)		
9	50.2	0.93 (m)	50.5	0.94 (m)		
10	36.5	17	36.5			
11	21.2	1.51 (m)	21.2	1.50 (m)		
12	39.7	1.18-2.0 (m)	40.0	1.18-2.0 (m)		
13	42.2	- 1	42.2			
14	56.9	1.09 (m)	57.1	1.01 (m)		
15	24.3	1.57 (m)	24.5	1.56 (m)		
16	28.9	1.69 (m)	28.9	1.72 (m)		
17	55.9	1.15 (m)	56.3	1.15 (q)		
18	12.0	0.70 (s)	12.2	0.70 (s)		
19	19.4	1.01 (s)	19.5	1.01 (s)		
20	40.5	2.08 (m)	40.4	2.06 (m)		
21	21.1	1.02 (d, J = 6.6 Hz)	21.4	1.03 (d, J = 6.2 Hz)		
22	138.3	5.15 (dd, J = 15.3, 8.7 Hz)	138.3	5.17 (dd, J = 15.2, 8.6 Hz)		
23	129.3	5.02 (dd, J = 15.3, 8.7 Hz)	129.7	5.04 (dd, J = 15.2, 8.6 Hz)		
24	51.3	1.53 (m)	51.5	1.54 (m)		
25	32.0	1.57 (m)	32.2	1.55 (m)		
26	21.2	0.86 (br s)	21.2	0.85 (d, J = 6.4 Hz)		
27	19.0	0.84 (br s)	19.2	0.80 (d, J = 6.4 Hz)		
28	25.4	1.43 (m)	25.4	1.43 (m)		
		1.16 (m)		1.18 (m)		
29	12.2	0.79 (br m)	12.2	0.81 (t, J = 7.3 Hz)		

Table 4.8 ¹³C NMR (75 MHz) and ¹H NMR (300 MHz) spectroscopic data of stigmasterol (7) in CDCl₃ solution

Stemofuran S (8)

Stemofuran S (8) was isolated as a dark brown amorphous powder; HRMS analysis (EI, m/z [M-H]⁺ 270.0870, calcd 270.0892) indicated that this compound had the molecular formular C₁₆H₁₄O₄. The ¹H NMR showed resonances for five benzofuran protons at 7.62 (d, 1H, J = 5.0 Hz, H-2), 7.52 (d, 1H, J = 5.0, H-5), 7.28 (m, 1H, H-4), 7.22 (m, 1H, H-3) and 6.90 (s, 1H, H-1'') ppm. The substituted phenyl group showed a singlet aromatic proton signal at 7.18 (s, 1H, H-6') ppm and a singlet resonance for a methoxy group at 3.81 (s, 3H, 3'-OCH₃) ppm. Additionally, an aromatic methyl group resonance was observed at 2.39 (s, 3H, 2'-CH₃) ppm and OH correspond to the C-3' position of stemofuran L. From a search of SciFinder scholar this compound was a new natural product.

Table 4.9 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of stemofuran S (8) in acetone-d₆ solution

position	δ _c	DEPT	δ _H	gHMBC	NOESY
1	121.7	С	- Control		Y
2	121.6	CH	7.62 (d, J = 5.0 Hz)	H-6, H-4	-
3	123.6	CH	7.22 (m)	H-1′, H-5	-
4	124.7	CH	7.28 (m)	H-6, H-4	-
5	111.4	CH	7.52 (d, J = 5.0 Hz)	H-4	-
6	154.9	С		-	-
1'	130.3	С	-	-	-
2'	122.0	С	-	-	-
3'	147.8	С	-	-	- 0
- 4'	144.7	OH			CI O 1 2
5'	140.0	OH			2101 n
6'	111.7	CH	7.18 (s)	H-2", H-4', H-5', H-2'	H-1"
1"	104.7	CH	6.90 (s)	H-2", H-6, H-1'	H-2, H-3, H-2'CH
2"	156.8	C	v (hian	g Mai U	niversi
2'-Me	13.6	CH_3	2.39 (s)	H-3', H-2'	H-1", H-3'OCH ₃
3'-OMe	60.5	OCH_3	3.81 (s)	H-3'	H-2'CH ₃
		8	$H_{3}C$ $H_{3}C$ 2''''''''''''''''''''''''''''''''''''	OCH_3 $_{3'}^{3'}$ $\lambda_{4'}$ OH	

Stemofuran S (8)

Oxystemokerrin (9)

Oxystemokerrin (9) was isolated as a yellow brown gum; $[\alpha]^{25}_{D}$ +79.26° (*c* 1.5, CHCl₃); lit. (Kaltenegger *et al.*, 2003) $[\alpha]^{20}_{D}$ +289° (*c* 0.40, MeOH). HRMS analysis (EI, *m/z* [M⁺⁺] 405.2220, calcd 405.2230) indicated that this compound had the molecular formular C₂₂H₃₂NO₆.

 Table 4.10
 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of oxystemokerrin (9) in CDCl₃ solution

position	Оху	stemoker	rrin in CDCl ₃	Literature in CDCl ₃ (Kaltenegger <i>et al.</i> , 2003)			
-	δ _C	DEPT	δ _H	δ _C	DEPT	δ _H	
	74.9	CH	4.04 (br s)	75.0	CH	4.02 (m)	
2a	26.9	CH_2	1.75-1.62 (m)	**	CH_2	2.23 (m)	
b			1.36-1.27 (m)			2.0-1.3 (m)	
3a	29.7	CH_2	1.28-1.25 (m)	**	CH_2	2.0-1.3 (m)	
b			1.24-1.22 (m)			2.0-1.3 (m)	
4	65.8	CH	2.48 (m)	65.8	CH	2.43 (ddd, 12.0, 9.0, 2.0)	
ба	42.9	CH_2	3.21 (br m)	42.8	CH_2	3.20 (br m)	
b						2.94 (br t, ~15, ~12)	
7a	20.5*	CH_2	1.41 (m)	**	CH_2	2.0-1.3 (m)	
b						2.0-1.3 (m)	
8a	37.2*	CH_2	1.28 (m)	**	CH_2	2.28 (m)	
b						2.0-1.3 (m)	
9	117.22*	С	- 000	119.9	С		
10	56.4	CH	2.72 (s)	56.5	CH	2.70 (d, 5.0)	
10a	65.03*	CH	3.42 (br s)	**	CH	3.39 (br s)	
11	39.7	CH	3.03 (br m)	39.7	CH	3.03 (br m)	
12	152.9*	C		**	С	_	
13	120.0*	С	-	**	С	-	
14	162.8	С	-	162.9	С	-	
15	97.5	С	-	97.5	С	-	
16	169.9	С		169.9	С	~ 2	
17	9.1	CH ₃	2.07 (s)	9.1	CH ₃	2.08 (s)	
18	22.5	CH_3	1.40 (d, 5.0)	22.5	CH_3	1.40 (d, 7.0)	
19	70.6	CH	3.52 (br s)	70.5	CH	3.53 (br m)	
20a	26.9	CH_2	1.83-1.60 (m)	26.9	CH_2	2.0-1.3 (m)	
bo			1.35-1.20 (m)			2.0-1.3 (m)	
21	9.6	CH ₃	1.01 (br s)	9.6	CH_3	1.02 (t, 7.4)	
OM	58.9	CH	4.13(s)	58.9	CH_2	4.15(s)	

** = signals for these carbon atoms too weak for detection in literature

Oxystemokerrin (9)

Oxystemokerrin-N-oxide (10)

Oxystemokerrin-*N*-oxide (**10**) was isolated as a yellow brown gum; $[\alpha]^{25}_{D}$ +41.3° (*c* 1.5, CHCl₃); lit. (Kaltenegger *et al.*, 2003). $[\alpha]^{20}_{D}$ +247° (*c* 0.30, MeOH). HRMS analysis (EI, *m/z* [M⁺⁺] 421.2171, calcd 421.2179) indicated that this compound had the molecular formular C₂₂H₃₂NO₇. The structure of oxystemokerrin-*N*-oxide was established from a comparison of the ¹H and ¹³C NMR spectroscopic data of oxystemokerrin-*N*-oxide with that in the literature (Kaltenegger *et al.*, 2003). The NMR chemical shifts were in agreement with those previously reported as summarized in Table 4.11.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

	Ovvet	makannin	N ovido in CDCl		Literature in CDCl ₃				
position	Oxysu	emokerrn	I-IV-OXIDE III CDCI3		(Kaltenegger et al., 2003)				
	$\delta_{\rm C}$	DEPT	$\delta_{\rm H}$	δ _C	DEPT	δ_{H}			
1	75.1	CH	4.33 (br s)	75.0	CH	4.31 (br s)			
2a	22.5	CH ₂	2.20-1.87 (m)	22.2	CH_2	2.20-1.80 (m)			
b			2.20-1.87 (m)			2.20-1.80 (m)			
3a	22.3	CH_2	2.20-1.87 (m)	22.0	CH_2	2.20-1.80 (m)			
b			2.20-1.87 (m)			2.20-1.80 (m)			
4	77.9	CH	3.14 (m)	77.9	CH	3.13 (ddd, 11.6, 8.8, 2.8)			
6a	61.0	CH_2	3.91 (m)	60.4	CH_2	3.90 (ddd, 12.4, 11.5, <1)			
b			3.59 (m)			3.59 (ddd, 12.4, 6.5, <1)			
7a 🔍	18.6	CH_2	2.69 (br s)	18.6	CH_2	2.69 (m)			
b			2.20-1.87 (m)			2.20-1.80 (m)			
8a 💽	31.8	CH_2	2.20-1.87 (m)	31.7	CH_2	2.20-1.80 (m)			
b			2.20-1.87 (m)			2.20-1.80 (m)			
9	124.7	С		155.6	С	-			
10	51.0	CH	3.48 (br s)	50.9	CH	3.48 (d, 3.6)			
10a	84.8	CH	3.75 (br s)	84.8	CH	3.72 (br s)			
11	39.2	CH	2.93 (m)	39.1	CH	2.92 (dq, 4.1, 7.1)			
12	146.9	С	- Lust	146.7	С				
13	119.3	С	- 10 3	119.2	С	- / / /			
14	162.7	С	-	162.6	С	-			
15	97.9	С	-	97.9	С	-			
16	169.7	С	-	169.6	С				
17	9.2	CH_3	2.07 (s)	9.1	CH ₃	2.08 (s)			
18	22.1	CH_3	1.42 (m)	22.5	CH ₃	1.42 (d, 7.1)			
19	72.6	CH	3.98 (m)	72.5	CH	3.98 (ddd, 9.6, 7.1, 2.8)			
20a	28.1	CH_2	1.63 (m)	28.0	CH_2	1.63 (m)			
b			1.42 (m)			1.41 (m)			
21	8.6	CH ₃	1.02 (t, 5)	8.5	CH_3	1.01 (t, 7.3)			
OMe	59.1	CH ₃	4.15 (s)	59.0	CH ₃	4.15 (s)			

 Table 4.11
 ¹³C
 NMR
 (125
 MHz)
 and
 ¹H
 NMR
 (500
 MHz)
 spectroscopic
 data of

 oxystemokerrin-N-oxide
 (10)
 in
 CDCl₃
 solution

Oxystemokerrin-*N*-oxide (10)

General Stress Stress

Oxyprotostemonine (**11**) was isolated as a yellow brown gum; $[\alpha]^{25}_{D} + 80.21^{\circ}$ (*c* 1.5, CHCl₃); lit. (Mungkornasawakul *et al.*, 2004) $[\alpha]^{25}_{D} + 328^{\circ}$ (*c* 0.17, CHCl₃). HRMS analysis (EI, *m/z* [M⁺⁺] 431.2025, calcd 431.2022) indicated that this compound had the molecular formular $C_{23}H_{30}NO_7$. The ¹H and ¹³C NMR spectroscopic data of oxyprotostemonine was very similar to the data reported in the literature (Mungkornasawakul *et al.*, 2004).

 Table 4.12
 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of oxyprotostemonine (11) in CDCl₃ solution

	Ox	yprotoster	nonine in CDCl ₃		Literatu	re in CDCl ₃
position _		DEDT		(Mu	ngkornasa	wakul et al., 2004)
	δ _C	DEPT	δ _H	δ _C	DEPT	δ _H
	87.8	СН	4.76 (s)	87.8	СН	4.67 (s)
2a	33.0	CH_2	2.32 (m)	33.0	CH_2	2.25 (m)
b			1.74 (m)			1.74 (m)
3	66.3	CH	3.33 (s)	66.3	CH	3.31 (br s)
5a	50.7	CH_2	3.10 (m)	50.8	CH_2	3.08 (m)
b			2.98 (m)			2.97 (m)
6а	20.7	CH_2	1.74 (m)	20.9	CH_2	1.74 (m)
b			1.45 (m)			1.45 (m)
7a	32.3	CH_2	2.24 (m)	32.4	CH_2	2.25 (m)
b			1.74 (m)			1.74 (m)
8	120.7	CH	- · · · · · · · · · · · · · · · · · · ·	120.6	CH	
9	56.9	CH	2.57 (s)	57.0	CH	2.56 (br s)
9a	69.8	CH	3.62 (s)	69.8	CH	3.60 (br s)
10	39.6	CH	3.10 (m)	39.6	CH	3.08 (m)
11	146.8	С	-	146.5	С	
12	125.7	С	-	125.6	C	- '
13	162.9	С	- 1132	162.7	C	-
14	97.5	С	- mo	97.5	С	-
15	170.0	С	_	169.8	С	
16	9.1	CH ₃	2.04 (m)	9.2	CH ₃	2.08 (s)
17	22.0	CH ₃	1.37 (d, J = 7.5 Hz)	22.2	CH ₃	1.38 (d, J = 6.5 Hz)
18	82.2	CH	4.26 (m)	82.2	CH	4.23 (t, J = 4.5 Hz)
19a	34.0	CH_2	2.24 (m)	34.1	CH_2	2.27 (m)
b		-	1.70 (m)		-	1.80 (m)
20	35.8	CH	2.69 (m)	35.9	CH	2.68 (m)
21	179.3	С	-	179.1	С	-
22	14.9	CH ₃	1.28 (m)	15.1	CH_3	1.30 (d, J = 7.0 Hz)
OMe	59.0	CH ₃	4.16 (s)	58.9	CH ₃	4.15 (s)

e r v e d

Oxyprotostemonine (11)

Dehydro-δ-tocopherol (12)

Dehydro- δ -tocopherol (**12**) was isolated as a yellow brown gum; $[\alpha]^{25}_{D} + 8.56^{\circ}$ (*c* 1.0, EtOH); lit. (Brem *et al.*, 2004) $[\alpha]^{25}_{D} + 11.0^{\circ}$ (*c* 1.0, EtOH). HRMS analysis (EI, *m/z* [M⁺⁺] 401.3405, caled 401.3396) indicated that this compound had the molecular formular C₂₇H₄₄O₂. The structure of dehydro- δ -tocopherol was characterized by an olefinic AB system at 6.23 and 5.58 ppm (d, *J* = 10.0 Hz, H-4, H-3). Additionally, a singlet aromatic methyl group resonance appeared at 2.13 (s, H-8, CH₃) ppm. An aromatic AB system resonated at 6.47 and 6.32 (d, *J* = 2.5 Hz, H-7, H-5) ppm, characteristic of meta coupled aromatic protons. A hydroxyl group resonance was observed at 4.35 (br s, 1H, H-6) ppm. All other protons were aliphatic, consisting of a methyl group at 1.36 (t, *J* = 4.05 Hz, 2-CH₃) ppm and a saturated terpenoid side chain characterized by four methyl groups resonated at 1.62 (t, *J* = 8.0 Hz, H-1') and 1.52 (t, *J* = 4.05 Hz, H-12') ppm with two methyl groups and one methylene group as neighbours. The remaining aliphatic protons resonated in the range of 1.0-1.4 ppm. The ¹³C NMR spectroscopic data of dehydro- δ -tocopherol was also quite similar with the data reported in the literature (Brem *et al.*, 2004).

Copyright[©] by Chiang Mai University All rights reserved

			Litera	ture in acetone-d ₆
nosition	Dehydro-ð	-tocopherol in CDCl ₃	(Br	rem et al., 2004)
position	δ _c	δ _Η	δ _c	δ_{H}
2	77.96		77.97 s	-
3	131.09	5.58 (d, J = 10.0 Hz)	131.09/131.11	5.59 (d, J = 9.7 Hz)
			d	
4	122.69	6.23 (d, J = 10.0 Hz)	122.68 d	6.24 (d, J = 9.7 Hz)
4a	121.46		121.46 s	-21
5	110.22	6.32 (d, J = 2.5 Hz)	110.21 d	6.32 (d, J = 2.9 Hz)
6	148.48	4.35 (br s)	148.47 s	4.32 (br s)
7	116.98	6.47 (d, J = 2.5 Hz)	116.97 d	6.47 (d, J = 2.9 Hz)
8	126.41	(9)	126.42 s	-
8a	144.92		144.95 s	-
2-Me	25.73	1.34 (s)	25.75 q	1.35 (s)
8-Me	15.48	2.13 (s)	15.47 q	2.13 (s)
1	40.98/40.94	1.62 (t, J = 8.0 Hz)	41.00/40.96 t	1.62 (m)
2'	21.29	1.22-1.11 (m)	21.29/21.28 t	1.22-1.11 (m)
3', 5', 7',	37.43, 37.31,	1.22-1.11 (m)	37.42, 37.34,	1.22-1.11 (m)
9' ^a	37.28, 37.23		37.33, 37.27 t	
4'	32.67	1.22-1.11 (m)	32.67 d	1.22-1.11 (m)
6'	24.44	1.22-1.11 (m)	24.43 t	1.22-1.11 (m)
8'	32.79	1.22-1.11 (m)	32.79 d	1.22-1.11 (m)
10′	24.79	1.26 (m)	24.78 d	1.22-1.11 (m)
11′	39.36	1.22-1.11 (m)	39.37 t	1.22-1.11 (m)
12'	27.97	1.52 (m)	27.97 d	1.53 (nonett, J = 6.6 Hz)
4'-Me	19.67/19.63	0.83 (s)	19.67/19.62 q	0.839/0.833 (d, J = 6.6 Hz)
8'-Me	19.74	0.83 (s)	19.74 q	0.839 (d, J = 6.6 Hz)
12'-Me	22.72	0.86 (s)	22.71 g	0.87 (d, J = 6.6 Hz)
13′	22.63	0.87 (s)	22.62 q	0.87 (d, J = 6.6 Hz)

Table 4.13 ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) spectroscopic data of dehydro- δ -tocopherol (12) in CDCl₃ solution

HO $_{6}^{5}$ $_{7}^{4}$ $_{8}^{3}$ $_{7}^{2'}$ $_{3'}^{2'}$ $_{5'}^{4'}$ $_{7'}^{6'}$ $_{9'}^{8'}$ $_{10'}^{10'}$ $_{12'}^{12'}$ $_{13'}^{13'}$ CH₃ Dehydro- δ -tocopherol (**12**)

The chemical diversity of *Stemona* spp. have been investigated. From these results indicated that there are quite variable in alkaloids component among two different samples of *S. curtisii* collected from Trang Province and Petchaboon Province. The extract of *S. curtisii* which was collected from Trang Province,

Thailand contained stemocurtisine as a major component with trace amounts of others alkaloids (Mungkornasawakul *et al.*, 2004). Whereas, oxystemokerrin, oxystemokerrin-*N*-oxide and oxyprotostemonine were isolated from the extract of *S. curtisii* in Petcaboon Province. This was in contrast to previous investigations that the presence of stemofoline was reported as the main component in *S. curtisii* which was collected from the Satun Province (HG 865), Thailand (Kaltenegger *et al.*, 2003). These differences may be due to the fact that these plants were harvested from different geographical regions and genetic factors. Another possibility is environmental factors, such as differences in age and seasons of collection.

4.5 Screening bioactive compounds

Brine shrimp assays

The toxic activities of the pure compounds from *Stemona* spp. on *Artemia* salina Leach (brine shrimp) were determined. The brine shrimp were treated with pure samples of stemofuran L (1), stemofuran K (2), stemofuran J (3), stemofuran F (4), stemocurtisinol (5), dehydro- γ -tocopherol (6), stigmasterol (7), stemofuran S (8) oxystemokerrin (9), oxystemokerrin-*N*-oxide (10), oxyprotostemonine (11) and dehydro- δ -tocopherol (12). The ratio of dead/alive nauplii was analysed to determine the percentage of mortalities and the LC₅₀ values were culculated by Probit analysis. The results indicated that stemofuran J (3) had the highest activity against brine shrimp with the LC₅₀ value less than 1.0 ppm, followed by stemofuran S (8), stemofuran L (1), stemofuran K (2), stemofuran F (4), oxystemokerrin (9), oxyprotostemonine (11), stemocurtisinol (5), dehydro- δ -tocopherol (12), dehydro- γ -tocopherol (6), oxystemokerrin-*N*-oxide (10) and stigmasterol (7) with LC₅₀ values of

2.83, 4.96, 7.22, 10.66, 13.45, 21.71, 56.14, 82.62, 89.52, 211.25 and 285.69 ppm, respectively (Table 4.14). Concerning the percentage mortalities it was found that stemofuran J (**3**) had the highest mortality rates of 100% at the concentration less than 1.0 ppm followed by stemofuran S (**8**) at the concentration 10.0 ppm, stemofuran L (**1**), stemofuran K (**2**), stemofuran F (**4**), oxystemokerrin (**9**) and oxyprotostemonine (**11**) at the concentration 50.0 ppm, stemocurtisinol (**5**) at the concentration 100.0 ppm, dehydro- δ -tocopherol (**12**) and dehydro- γ -tocopherol (**6**) at the concentration 500.0 ppm and stigmasterol (**7**) and oxystemokerrin-*N*-oxide (**10**) at the concentration more than 500.0 ppm. (Table 4.15-4.26). The percentage mortalities could be correlated with LC₅₀ values.

A wide variety of biological active compounds, in particular cytotoxic agents, are toxic to brine shrimp. Especially, the stilbenes and stilbenoids play important roles in plants such as inducible defense mechanisms, growth inhibition and in dormancy. Some of them are toxic to insects and other organisms, and have antifeedant and nematicidal properties (Gorham *et al.*, 1995; Croteau *et al.*, 2000). In this study it would seem that the LC₅₀ values were different for each compound possibly due to the high sensitivity of the brine shrimp. However, while the brine shrimp assay is rather inadequate regarding the elucidation of the mechanism of action, it is very useful to assess the toxicity.

Copyright[©] by Chiang Mai University All rights reserved

$LC_{50} \pm S.D. (ppm)^a$
4.96 ± 0.13
7.22 ± 0.12
< 1 ± 0.61
10.67 ± 0.46
56.14 ± 0.10
89.52 ± 0.57
285.69 ± 0.28
$2.83\pm~0.70$
13.45 ± 0.39
211.25 ± 0.21
21.71 ± 0.36
82.62 ± 0.98
> 500

Table 4.14 The mean LC_{50} values of isolated compounds from *Stemona* species on Artemia salina Leach (brine shrimp)

Table 4.15 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose (nnm)	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio Dead Total	Mortality (%)
250	2.3979	30	0	99	0	30/30	100
100	2.0000	30	0	69	0	30/30	100
50	1.6989	30	0	39	0	30/30	100
1	0	9	21	9	21	9/30	30.0

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)			dead	alive	Dead:Total	(%)
250	2.3979	30	0	97	0	30/30	100
100	2.0000	30 9	0	67	0	30/30	100
50	1.6989	30	0	37	0	30/30	100
1	0 0	7	23	7	23	7/30	23.3
E.C.							

concentrations of stemofuran K (2)

Estimated LC₅₀ = 7.22 ppm.

Table 4.17 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose (ppm)	Dosage (log dose)	Dead	Alive	Accumulated dead	Accumulated alive	Ratio Dead:Total	Mortality (%)
250	~ 2.3979	30	0	120	0	30/30	100
100	2.0000	30	0	90	0	30/30	100
50	1.6989	30	0	60	0	30/30	100
1	0	30	0	30	0	30/30	100

concentrations of stemofuran J (3)

concentrations of stemofuran F (4)

Estimated $LC_{50} < 1.00$ ppm.

Table 4.18 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)		47	dead	alive	Dead:Total	(%)
250	2.3979	30	0	94	0	30/30	100
100	2.0000	30	0	64	0	30/30	100
50	1.6989	30	0	34	0	30/30	100
1	0	4	26	4	26	4/30	13.3

Estimated $LC_{50} = 10.67$ ppm.

Table 4.19 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)	U		dead	alive	Dead:Total	(%)
250	2.3979	30	0	69	0	30/30	100
100	2.0000	30	0	39	0	30/30	100
50	1.6989	9	21	9	21	9/30	30.0
1	0	0	30	0	51	0/30	0

concentrations of stemocurtisinol (5)

Estimated $LC_{50} = 56.14$ ppm.

96

Table 4.20 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)			dead	alive	Dead:Total	(%)
500	2.6989	30	0	52	0	30/30	100
100	2.0000	19	11	22	11	19/30	63.3
50	1.6989	3	27	3	38	3/30	10.0
1	0 9	0	30	0	68	0/30	0

concentrations of dehydro- γ -tocopherol (6)

Estimated $LC_{50} = 89.52$ ppm.

Table 4.21 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose (ppm)	Dosage (log dose)	Dead	Alive	Accumulated dead	Accumulated alive	Ratio Dead:Total	Mortality (%)
500	2.6989	24	6	29	6	24/30	80.0
100	2.0000	3	27	5	33	3/30	10.0
50	1.6989	2	28	2	61	2/30	6.7
10	1	0	30	0	91	0/30	0.0
1	0	0	30	0	121	0/30	0.0

concentrations of stigmasterol (7)

Estimated $LC_{50} = 285.69$ ppm.

Table 4.22 Mortality of the brine shrimp larvae after 24 hr of exposure to various

concentrations of stemofuran S (8)

Dose (ppm)	Dosage (log dose)	Dead	Alive	Accumulated dead	Accumulated alive	Ratio Dead:Total	Mortality (%)
250	2.3979	30	0	125	0	30/30	100
100	2.0000	30	0	95	0	30/30	100
50	1.6989	30	0	65	0	30/30	100
10	1	30	0	35	0	30/30	100
1	0	5	25	5	25	5/30	16.7
Estimated	$LC_{50} = 2.83$	ppm.					
Estimated	$1 LC_{50} - 2.03$	ppm.					

Table 4.23 Mortality of the brine shrimp larvae after 24 hr of exposure to various concentrations of oxystemokerrin (9)

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)			dead	alive	Dead:Total	(%)
250	2.3979	30	0	94	0	30/30	100
100	2.0000	30	0	64	0	30/30	100
50	1.6989	30	0	34	0	30/30	100
10	1	4	26	4	26	4/30	13.3
1	0	0	30	0	56	0/30	0

Estimated $LC_{50} = 13.45$ ppm.

 Table 4.24 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)			dead	alive	Dead:Total	(%)
250	2.3979	19	11	29	11	19/30	63.3
100	2.0000	4 9	26	10	37	4/30	13.3
50	1.6989	4	26	6	63	4/30	13.3
10	10	2	28	2	91	2/30	6.7
1	0	0	30	0	121	0/30	0

concentrations of oxystemokerrin-N-oxide (10)

Estimated $LC_{50} = 211.25$ ppm.

Table 4.25 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose (ppm)	Dosage (log dose)	Dead	Alive	Accumulated dead	Accumulated alive	Ratio Dead:Total	Mortality (%)
250	2.3979	30	0	94	0	30/30	100
100	2.0000	30	0	64	0	30/30	100
50	1.6989	30	0	34	0	30/30	100
10	1	3	27	4	27	3/30	10.0
1	0	1	29	1 🕺	56	0/30	0

concentrations of oxyprotostemonine (11)

Estimated LC₅₀ = 21.71 ppm.

Table 4.26 Mortality of the brine shrimp larvae after 24 hr of exposure to various

Dose	Dosage	Dead	Alive	Accumulated	Accumulated	Ratio	Mortality
(ppm)	(log dose)			dead	alive	Dead:Total	(%)
500	2.6989	30	0	55	0	30/30	100
100	2.0000	24	6	25	6	24/30	80.0
50	1.6989	1	29	1	35	1/30	3.3
10		0	30	0	65	0/30	0.0
\sim 1	0	0	30	0	95	0/30	0.0

concentrations of dehydro- δ -tocopherol (12)

 $\frac{1}{\text{Estimated LC}_{50} = 82.62 \text{ ppm.}}$

Copyright[©] by Chiang Mai University All rights reserved

4.6 Determination of efficiency on acetylcholinesterase inhibitory activity by TLC bioautographic assay

A study of the acetylcholinesterase inhibitory activity of the isolated compounds from Stemona species was performed by TLC bioautographic assay in which AChE inhibition appeared as white spots on a purple background of the chromatogram (Fig. 4.2). This bioassay is easy to apply test samples and convenient for screening various samples at the same time. The result showed that stemofuran S (8), stemofuran K (2), oxystemokerrin-N-oxide (10), oxystemokerrin (9) and stemocurtisinol (5) were able to inhibit the acetylcholinesterase activity with a minimum inhibit requirement (MIR) of 100-1,000 ng as shown in (Table 4.27). Two of them, stemofuran S (8) and oxystemokerrin-N-oxide (10) were found to be the most active compounds with a MIR of 100 ng. In this case stemofuran S (8) showed a more intense inhibition zone indicating that it may be more active than oxystemokerrin-N-oxide (10). However, both compounds were not as active as the positive control, eserine and galanthamine (MIR values of 1 and 5 ng, respectively). On the other hand, stigmasterol (7), dehydro- δ -tocopherol (12), dehydro- γ -tocopherol (6), stemofuran F (4), stemofuran J (3), stemofuran L (1) and oxyprotostemonine (11) had no acetylcholinesterase inhibitory activity at 1,000 ng. Morever, stemofuran J (3), stemofuran F (4), dehydro- δ -tocopherol (12) and dehydro- γ -tocopherol (6) changed colour to reddish brown on the TLC plate because of their chemical instability to the reagents or the silica gel.

	Minimum inhibito	ory requirement
compounds	ng	nmol
Stemofuran L (1)	> 1,000	> 3.73
Stemofuran K (2)	500	0.56
Stemofuran J (3)	> 1,000	> 3.35
Stemofuran F (4)	> 1,000	> 3.35
Stemocurtisinol (5)	1,000	2.47
Dehydro-γ-tocopherol (6)	> 1,000	> 2.42
Stigmasterol (7)	> 1,000	> 2.43
Stemofuran S (8)	100	0.37
Oxystemokerrin (9)	1,000	2.47
Oxystemokerrin-N-oxide (10)	100	0.24
Oxyprotostemonine (11)	> 1,000	> 2.32
Dehydro-δ-tocopherol (12)	> 1,000	> 2.50
Eserine	33 60	0.003
Galanthamine	5	0.017

Table 4.27 Minimum inhibitory concentrations of samples required to inhibit AChE

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 4.2 Bioautographic thin layer chromatography showing the acetylcholinesterase inhibition of the *Stemona* compounds and standards (galanthamine, eserine).

4.7 Determination of antimicrobial activities

Antimicrobial activities of the isolated compounds from Stemona species against the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and bacteria Staphylococcus the Gram-positive aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pyogenes and the antifungal activities against Candida albicans and Cryptococcus neoformans were determined. Two antibiotic agents, gentamycin and amphotericin B, were used as the positive controls for the antibacterial activity and antifungal activity, respectively. The results showed that all of the tested compounds were less active than the positive control. It was found that stemofuran J (3) could effectively inhibit Cr. neoformans and MRSA at the MIC of 7.8 and 15.6 µg/mL, respectively. Whereas, stigmasterol (7), dehydro- δ -tocopherol (12), dehydro- γ -tocopherol (6), stemofuran F (4), stemofuran K (2), stemofuran L (1), stemofuran S (8), stemocurtisinol (5), oxystemokerrin (9), oxystemokerrin-N-oxide (10) and oxyprotostemonine (11) displayed weak inhibitory activity with MIC values ranging from 62.5 to 125 µg/mL. The previous study showed that a variety of stilbenoids has been shown to inhibit fungal growth or spore germination (Gorham, 1995). Meanwhile, several stilbenoids from the roots of S. sessilifolia exhibited antibacterial activities against S. aureus and S. epidermidis (Yang et al., 2006). In addition, Adams et al. (2005) has studied fifteen stilbenoids from S. collinsae, S. tuberosa, and S. pierrei. The stilbenoids, dihydropinosylvin, stilbostemin A, B, D, F, G, stemofuran B, C, D, G, J, and stemanthrene A, B, C, D showed structure-dependent activities with IC₅₀ values ranging from 6.7 to $>50 \mu$ M.

According to Pacher *et al.* (2002), stemofuran B showed the highest antifungal activity against the four parasitic fungi, *Alternaria citri*, *Fusarium avenaceum*,

Pyricularia grisea and *Botrytis cinerea* with MIC₅₀ values ranging from 50-200 μ g/mL but only weak effects against *Cladosporium herbarum*. In contrast, weaker activities were also determined for stilbostemin A and the dihydrophenanthrene racemosol, showing EC₅₀ values of more than 200 μ g/mL against *F. avenaceum* and *C. herbarum*. Furthermore, dihydrostilbene displayed strong antimicrobial activitiy against *Bacillus pumilus* with MIC₅₀ values ranging from 12.5–25 μ g/mL Meanwhile, this compound exhibited moderate activity against *Klebsiella pneumoniae* with a MIC₅₀ value of 50 μ g/mL (Lin *et al.*, 2008). From these results, it could be concluded that the antimicrobial activities of these stilbenoids is dependent upon the types and position of substituents.

For the microbicidal activity, all compounds were effective against the test organisms with the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) values from 31.3 to 250 μ g/mL as shown in Table 4.29. All of them were antifugicidal against *Cr. neoformans* at a concentration of 31.3 μ g/mL. While dehydro- δ -tocopherol possessed the least activity against MRSA with a MBC value of 500 μ g/mL.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

125

62.5

125

62.5

22.5

62.5

62.5

62.5

62.5

45

62.5

5.6

Table 4.28 The minimum inhibitory concentrations (MIC) values of isolated compounds from Stemona species

125

62.5

62.5

62.5

11.3

62.5

62.5

62.5

125

11.3

Oxystemokerrin (9)

gentamicin

amphotericin B

Oxystemokerrin-*N*-oxide (10)

Dehydro - δ - tocopherol (12)

Oxyprotostemonine (11)

Cr. neoformans

31.3

31.3

7.8

31.3

31.3

31.3

31.3

15.6

15.6

15.6

15.6

31.3

3.9

31.1

31.1

31.1

31.3

15.6

Table 4.29 The minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) values of isolated compounds from *Stemona* species

Isolated compounds		Minimum bacter	ricidal concen (µg/ml)	Minimum fungicidal concentration (MFC) (µg/ml)			
	E. coli	K. pneumoniae	S. aureus	MRSA	Str. pyogenes	C. albicans	Cr. neoformans
Stemofuran L (1)	250	250	125	125	62.5	31.3	31.3
Stemofuran K (2)	250	250	125	125	62.5	31.3	31.3
Stemofuran J (3)	250	250	250	125	62.5	31.3	31.3
Stemofuran F (4)	250	250	125	125	62.5	62.5	31.3
Stemocurtisinol (5)	250	250	125	125	62.5	31.3	31.3
Dehydro- γ - tocopherol (6)	250	250	125	125	62.5	62.5	31.3
Stigmasterol (7)	250	250	125	125	125	62.5	31.3
Stemofuran S (8)	250	250	62.5	250	A-//	31.3	31.3
Oxystemokerrin (9)	250	250	125	250		125	31.3
Oxystemokerrin-N-oxide (10)	250	250	62.5	250	-	125	31.3
Oxyprotostemonine (11)	250	250	125	250	-	125	31.3
Dehydro - δ - tocopherol (12)	250	250	250	500	62.5	62.5	31.3
gentamicin	45	22.5	22.5	>90	22.5	nIJ	-
amphotericin B	• 1 • (-			15.6	3.9

4.8 Determination of insecticidal properties

Leaf disk assays were carried out in the laboratory with third instar larvae of *Spodoptera littoralis* Boisduval (*S. littoralis*). The insecticidal activities of the crude extracts from two different *Stemona* species i.e. *S. curtisii* and *S. aphylla* were determined. The results are presented in Tables 4.30. The ethanolic crude extracts from *S. curtisii* displayed antifeedant activity at the concentration of 0.1 % while weaker activities were found in *S. aphylla*, in comparison with the commercial insecticide methomyl which showed antifeedant inhibition at the concentration of 0.01 %. In contrast, only the crude extracts of *S. curtisii* demonstrated repellent activity against larvae of *S. littoralis*. While the crude extracts of *S. aphylla* had no repellent activity. There was no mortality from the control solvent.

The higher antifeedant activity of the crude alkaloid extracts of *S. curtisii* and *S. aphylla* were responsible for the activity due to the chemicals contained in this fraction. These effects would expectedly result in larvae being unable to feed on the treated disks, paralysis and softening of the larval body causing death of the insect. A diverse range of secondary plant compounds such as alkaloids have a wide variety of insecticidal effects. For example, Brem *et al.* (2002) reported the potent insecticidal activity of stemofoline was assumed to be caused by neurotoxic interactions resulting in uncontrolled hyperactivity of larvae. In addition, the extracts from *S. collinsae* displayed strong antifeedant activity, whereas *S. tuberosa* showed repellent activity. In another report, the extracts from *S. curtisii* exhibited strong antifeedant properties at a concentration of 25 ppm, while the pure compounds from *S. curtisii* showed that oxyprotostemonine was the most active compound; it displayed strong antifeedant properties at a concentration of 1 ppm (Mungkornasawakul, 2004). According to

106

Jiwajinda *et al.* (2001) they also found antifeedant activities of *Stemona* alkaloids such as 16,17-didehydro-16(*E*)-stemofoline and its isomer at C-4, 16-17-didehydro-4(E)-16(*E*)-stemofoline against the diamondback moth larvae. Furthermore, methanol extracts of *S. sessilifolia* exhibited moderate feeding-deterrent activity against the two stored-grain insects, *Sitophilus zeamais* and *Tribolium castaneum* (Liu *et al.*, 2007).

However, the crude extracts are usually complex mixtures of various substances and less active than the isolated pure compounds. This reason should be taken into consideration due to synergistic effects (Kaltenegger *et al.*, 2003).

Table 4.30 Antifeeding activities of the ethanolic crude extracts, alkaloid crude extracts and non-alkaloid crude extracts from *S. curtisii* from Petchaboon Province and *S. aphylla* from Lampang Province

Sample	Concentration of the total formulation (%w/v)							
	5.0	1.0	0.5	0.1	0.05	0.01		
S. curtisii Petchaboon Province								
- Crude ethanol	R	A	А	a		-		
- Crude alkaloid	R	А	A	a	a	-		
- Crude non-alkaloid	R	A	А	a	а	-		
S. aphylla Lampang Province								
- Crude ethanol	а	a	-	-	-9	-		
- Crude alkaloid	A	A	A	a	a	141		
- Crude non-alkaloid	А	А	a		_	-		
Methomyl (commercial insecticide)	R	g R	R	A	a	Sla		
Control solvent	с -	r c	ā	0 ⁻ r	1	0		

- R = repellent activity, feeding inhibition without testing treated leaf disk.
- A = strong antifeedant activity, less than 5% of total area of treated leaf disks in each Petri dish was consumed.
- a = antifeedant activity, 5-20% of total area of treated leaf disks in each Petri dish was consumed.
- $\cdot =$ inactive.

4.9 Determination of antioxidant activities

The antioxidant activity was assessed by measurement of the scavenging ability of each *Stemona* spp. crude extracts and some pure compounds on the free radical, 2, 2'-diphenyl-1-picryldrazyl (DPPH). When the DPPH radical was scavenged by an antioxidant through the donation of H[•] to form the reduced DPPH-H, its color changes from purple to yellow. The results are shown in Tables 4.31 and Fig. 4.3-4.12. The non-alkaloid crude extracts of *S. aphylla* and *S. curtisii* showed ability to scavenge DPPH radical with IC₅₀ values of 113.80 and 148.70 µg/mL, respectively followed by the ethanolic crude extract and the alkaloid crude extract of *S. aphylla* (IC₅₀ = 539.32 and 671.55 µg/mL). It appeared that their potencies were about five folds less than that of the non-alkaloid crude extracts of *S. aphylla* and *S. aphylla* and *S. curtisii*.

Antioxidant activity of the non-alkaloid crude extracts (e.g. stilbenoids, phenolic compounds) was correlated to their chemical structures, which free radical scavenging mainly depends on the presence of number and position of hydrogendonating hydroxyl groups on the aromatic ring of the phenolic molecules (Rice-Evans *et al.*, 1996; Nakatani, 2000; Zheng and Wang, 2001). These results assumed that the non-alkaloid crude extracts contains substances capable of quenching free radicals.

While the alkaloid crude extract and ethanolic crude extract of S. curtisii showed lower antioxidant capacity with IC $_{50}$ values of 760.04 and 1,017.34 µg/mL, respectively. In contrast, the pure compound (stemofuran S) displayed the highest antioxidant capacity with an IC₅₀ value of 30.19 μ g/mL whereas, BHA was the most potent antioxidant compared to the other 2 standard antioxidants (trolox and α tocopherol). From a structural point of view, the reason of the antioxidant activity of stemofuran S may be the hydroxyl groups at the position 4' and 5' which has the ability to quench the absorption free radicals. Morever, it can release hydrogen atoms to combine with the radicals produced from auto-oxidation and breaking the chain reaction. The other stilbene from natural sources was also observed for antioxidant activity. For example, pieceid-2"-O-gallate from the roots of Pleuropterus ciliinervis had an inhibitory scavenging effect on DPPH with a IC₅₀ value of 16.5 µM (Lee et al., 2003). In addition, four prenylated arylbenzofurans, (moracins R-U) displayed potent of antioxidant activity with EC_{50} values of 7.17, 5.06, 4.12 and 6.08 µg/mL, respectively (Kapche et al., 2009). The antioxidant assay based on scavenging of DPPH radical is dependent on the solubility of the test compound, sensitivity of DPPH to light and pH (Sharma and Bhat, 2009). Whereas, other studies on Stemona species found that dehydrotocopherols also showed high antioxidant capacities (Brem *et al.*, 2004).

Sample	IC ₅₀ \pm S.D. (µg/mL)
S. curtisii Petchaboon Province	ยนดิ
- Crude ethanol	1017.34 ± 11.71
- Crude alkaloid	760.04 ± 11.17
- Crude non-alkaloid	148.70 ± 0.23
S. aphylla Lampang Province	
- Crude ethanol	539.32 ± 4.08
- Crude alkaloid	671.55 ± 19.76
- Crude non-alkaloid	113.80 ± 1.24
Stemofuran S	30.19 ± 0.15
Standard	
- α-tocopherol (vitamin E)	24.62 ± 0.47
- BHA	6.67 ± 0.07
- Trolox	12.77 ± 0.08

Table 4.31 The scavenging activity of *Stemona* spp. crude extracts and some pure

 compounds on DPPH free radical

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 4.4 Radical scavenging curve of the alkaloid crude extract from S. curtisii.

111

Figure 4.10 Radical scavenging curve for α-tocopherol.

Copyright[©] by Chiang Mai University All rights reserved