TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN ENGLISH	v
ABSTRACT IN THAI	viii
LIST OF TABLES	xv
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS AND SYMBOLS	xxi
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Research objectives	2
CHAPTER 2: LITERATURE REVIEW	3
2.1 Stemona plants	5
2.2 Biological activities	8
2.3 Structural classification of <i>Stemona</i> alkaloids	12
2.4 Phytochemical studies	er24ty
2.5 Proposed biosynthesis of Stemona alkaloid	36

TABLE OF CONTENTS (continued)

	Page
CHAPTER 3: EXPERIMENTAL	38
3.1 Equipment, materials and chemicals	38
3.1.1 Equipment	38
3.1.2 Materials	39
3.1.3 Chemicals	39
3.2 Collection of plants materials	41
3.3 Extraction and isolation	42
3.3.1 S. curtisii extraction and isolation	43
(Trang Province)	
3.3.2 S. curtisii extraction and isolation	51
(Petchaboon Province)	
3.3.3 S. aphylla extraction and isolation	56
(Lampang Province)	
3.4 Structure elucidation	64
3.5 Screening bioactive compounds	64
3.6 Determination of efficiency on acetylcholinesterase	66
inhibitory activity by TLC bioautographic assay	
3.7 Determination of antimicrobial activities	67
3.8 Determination of insecticidal properties	68
3.9 Determination of antioxidant activities	69

TABLE OF CONTENTS (continued)

		Page
СНАРТЕР	R 4: RESULTS AND DISCUSSION	71
	4.1 Equipment, materials and chemicals	71
	4.2 Collection of plant materials	72
	4.3 Extraction and isolation	74
	4.3.1 S. curtisii extraction and isolation	74
	(Trang Province)	
	4.3.2 S. curtisii extraction and isolation	75
	(Petchaboon Province)	
	4.3.3 <i>S. aphylla</i> extraction and isolation	75
	(Lampang Province)	
	4.4 Structure elucidation	76
	4.5 Screening bioactive compounds	93
	4.6 Determination of efficiency on acetylcholinesterase	99
	inhibitory activity by TLC bioautographic assay	
	4.7 Determination of antimicrobial activities	102
	4.8 Determination of insecticidal properties	106
	4.9 Determination of antioxidant activities	108
СНАРТЕН	R 5: CONCLUSIONS	116
	5.1 Conclusions	116
	5.2 Future work	119

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
2.1 Stemona alkaloids from Stemona spp.	24-31
2.2 Non-alkaloid constituents from Stemona spp	32-35
4.1 Ethanolic crude extract of Stemona species from different origins	74
4.2 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of stemofuran L (1) in CDCl ₃ solution	77
4.3 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of stemofuran K (2) in acetone- d_6 solution	78
4.4 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of stemofuran J (3) in acetone-d ₆ solution	79
4.5 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of stemofuran F (4) in acetone-d ₆ solution	80
4.6 ¹³ C NMR (100 MHz) and ¹ H NMR (400 MHz) spectroscopic data of stemocurtisinol (5) in CDCl ₃ solution	81
4.7 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of dehydro-γ-tocopherol (6) in CDCl ₃ solution	83
4.8 ¹³ C NMR (75 MHz) and ¹ H NMR (300 MHz) spectroscopic data of stigmasterol (7) in CDCl ₃ solution	85
4.9 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of stemofuran S (8) in acetone-d ₆ solution	86
4.10 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of	87
oxystemokerrin (9) in $CDCl_3$ solution	
4.11 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of oxystemokerrin- <i>N</i> -oxide (10) in CDCl ₃ solution	89
4.12 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of oxyprotostemonine (11) in CDCl ₃ solution	90

LIST OF TABLES (continued)

Table	Page
4.13 ¹³ C NMR (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data of	92
dehydro- δ -tocopherol (12) in CDCl ₃ solution	
4.14 The mean LC ₅₀ values of isolated compounds from Stemona species	95
on Artemia salina Leach (brine shrimp)	
4.15 Mortality of the brine shrimp larvae after 24 hr of exposure to	95
various concentrations of stemofuran L (1)	
4.16 Mortality of the brine shrimp larvae after 24 hr of exposure to	96
various concentrations of stemofuran K (2)	
4.17 Mortality of the brine shrimp larvae after 24 hr of exposure to	96
various concentrations of stemofuran J (3)	
4.18 Mortality of the brine shrimp larvae after 24 hr of exposure to	96
various concentrations of stemofuran F (4)	
4.19 Mortality of the brine shrimp larvae after 24 hr of exposure to	96
various concentrations of stemocurtisinol (5)	
4.20 Mortality of the brine shrimp larvae after 24 hr of exposure to	97
various concentrations of dehydro- γ -tocopherol (6)	
4.21 Mortality of the brine shrimp larvae after 24 hr of exposure to	97
various concentrations of stigmasterol (7)	
4.22 Mortality of the brine shrimp larvae after 24 hr of exposure to	97
various concentrations of stemofuran S (8)	
4.23 Mortality of the brine shrimp larvae after 24 hr of exposure to	97
various concentrations of oxystemokerrin (9)	
4.24 Mortality of the brine shrimp larvae after 24 hr of exposure to	98
various concentrations of oxystemokerrin-N-oxide (10)	
4.25 Mortality of the brine shrimp larvae after 24 hr of exposure to	98
various concentrations of oxyprotostemonine (11)	

LIST OF TABLES (continued)

Table	Page
4.26 Mortality of the brine shrimp larvae after 24 hr of exposure to	98
various concentrations of dehydro- δ -tocopherol (12)	
4.27 Minimum inhibitory concentrations of samples required to inhibit	100
AChE	
4.28 The minimum inhibitory concentrations (MIC) values of isolated	104
compounds from Stemona species	
4.29 The minimum bactericidal concentrations (MBC) and minimum	105
fugicidal concentrations (MFC) values of isolated compounds from	
Stemona species	
4.30 Antifeeding activities of the ethanolic crude extracts, alkaloid crude	107
extracts and non-alkaloid crude extracts from S. curtisii from	
Petchaboon Province and S. aphylla from Lampang Province	
4.31 The scavenging activity of <i>Stemona</i> spp. crude extracts and some	110
pure compounds on DPPH free radical	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
2.1 A summary of acetylcholine synthesis and degradation.	3
2.2 Stemona alkaloid groups.	13
2.3 Stemona alkaloids of the stenine group.	17
2.4 Stemona alkaloids of the stemoamide group.	18-19
2.5 Stemona alkaloids of the tuberostemospironine group.	19
2.6 Stemona alkaloids of the stemonamine group.	20
2.7 <i>Stemona</i> alkaloids of the parvistemoline group.	20
2.8 Stemona alkaloids of the stemofoline group.	21
2.9 <i>Stemona</i> alkaloids of the stemocurtisine group.	22
2.10 Stemona alkaloids of the miscellaneous group.	23
2.11 Proposed biosynthesis of pyrido[1,2-a]azaepine alkaloids.	37
3.1 General extraction procedure of S. curtisii from Trang Province.	42
3.2 Isolation of the chloroform crude extract of <i>S. curtisii</i> from Trang Province.	45-48
3.3 Isolation of the petroleum spirit crude extract of <i>S. curtisii</i> from Trang Province.	49
3.4 General extraction procedure of S. curtisii from Petchaboon Province.	50
3.5 Isolation of the dichloromethane crude extract of <i>S. curtisii</i> from Petchaboon Province.	53-54
3.6 General extraction procedure of <i>S. aphylla</i> from Lampang Province.	55
3.7 Isolation of the chloroform crude extract of <i>S. aphylla</i> from Lampang Province.	58-60

LIST OF FIGURES (continued)

Figure	Page
3.8 Isolation of the petroleum spirit crude extract of S. aphylla from	61-63
Lampang Province.	
3.9 Brine shrimp assays.	65
(a) hatching brine shrimp in artificial seawater.	
(b) live brine shrimp.	
(c) determination of lethal brine shrimp under stereomicroscopy.	
3.10 Reaction of acetylcholinesterase with naphthyl acetate and the	67
subsequent formation of the purple dye in the TLC bioassay.	
3.11 Leaf disk choice test.	69
(a) Chinese kale leaf infested with 3 rd instar larvae of <i>S. littoralis</i> .	
(b) Leaf disks with test solution.	
4.1 Root, flower and stem of <i>Stemona</i> species.	73
(a) S. curtisii, Petchaboon Province.	
(b) S. curtisii, Trang Province.	
(c) S. aphylla, Lampang Province.	
4.2 Bioautographic thin layer chromatography showing the	101
acetylcholinesterase inhibition of the Stemona compounds and	
standards (galanthamine, eserine).	
4.3 Radical scavenging curve of the ethanolic crude extract from S. curtisii.	111
4.4 Radical scavenging curve of the alkaloid crude extract from S. curtisii.	111
4.5 Radical scavenging curve of the non-alkaloid crude extract from <i>S</i> .	112
4.6 Radical scavenging activity curve of the ethanolic crude extract from <i>S. aphylla</i> .	G ₁₁₂

LIST OF FIGURES (continued)

Figure	Page
4.7 Radical scavenging curve of the alkaloid crude extract from S. aphylla.	113
4.8 Radical scavenging curve of the non-alkaloid crude extract from <i>S. aphylla</i> .	113
4.9 Radical scavenging curve for stemofuran S.	114
4.10 Radical scavenging curve for α -tocopherol.	114
4.11 Radical scavenging curve for BHA.	115
4.12 Radical scavenging curve for trolox.	115

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

δ	Chemical shift
λ	wavelength
[α] _D	Specific rotation
Ø	diameter
μm	Micrometer
μL	Microlitre
°C	Degree celsius
1D	One dimension
2D	Two dimensions
3D	Three dimensions
¹ H NMR	Proton nuclear magnetic resonance
¹³ C NMR	Carbon nuclear magnetic resonance
ANOVA	Analysis of variance
Aq.	Aqueous
br.s.	Broad singlet
calcd	Calculated
cmright	Centimeter Chiang Mai University
cm ²	Square centimeter
CC	Column chromatography
CDCl ₃	Deuterated chloroform

CD ₃ OD	Deuterated methanol
CHCl ₃	Chloroform
CeCl ₃ .H ₂ O	Cerium chloride
COSY	correlation spectroscopy
d	doublet
dd	doublet of doublets (NMR)
dq	doublet of quartets (NMR)
dt 🖸	doublet of triplets (NMR)
ddd	doublet of doublets (NMR)
ddq	doublet of doublet of quartets (NMR)
dddd	doublet of doublet of doublets (NMR)
DCM/CH ₂ Cl ₂	Dichloromethane
DEPT	Distortionless Enhanced Polarization Transfer
etc.	et cetera.
eV	electron volt
EIMS	Electron impact mass spectrum
EI +ve	electron impact (positive ion mode)
ESIMS	electrospray ionization mass spectrum
ESI +ve	electrospray ionization (positive ion mode)
Fig.	figure by Chiang Mai University
g	graments reserved
h/hr	hours

H_2O_2	Hydrogen peroxide
HCl	Hydrochloric acid
HMBC	Heteronuclear Multiple Bond Correlation
HPTLC	High Performance Thin Layer Chromatography
HRMS	High Resolution Mass Spectroscopy
HSQC	Heteronuclear Single Quantum Correlation
Hz	Hertz
i.e.	That is
J	coupling constant (NMR)
kg	kilogram
K_2CO_3	Potassium carbonate
KI	Potassium iodide
lit.	literature
LC 50	lethal concentration for 50% mortality of the test organism
m	multiplet (NMR)
m/z,	mass number divided by its charge
m^2	Square meters
mg	milligram
mm	millimetre
multight	multiplicity (NMR)
mL	millilitre hts reserved
M^+	molecular ion

Me	methyl
MeOH	Methanol
MHz	megahertz
nm	nanometre
NH ₃	Ammonia
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear overhauser effect spectroscopy
ОН	Hydroxy
OMe	Methoxy
ppm	parts per million
Ph	Phenyl
PTLC	Preparative Thin Layer Chromatography
q	quartet (NMR)
qd	quartet of doublets (NMR)
quin	quintet (NMR)
RT	room temperature
S	singlet (NMR)
S.D.	Significant Difference
Sp.	Singular specie
Spp.	Plural species Chiang Mai University
SPSS	Statistical Package for the Social Sciences (SPSS Inc.)
t	triplet (NMR)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved