TABLE OF CONTENTS

Page
iii
iv
vi
xii
xiii
xviii
1
4
6
7
8
12
14
14
18

	Page
1.4.3 Fundamental of Microwave Synthesis	21
1.4.4 Benefits of Microwave Chemistry	25
1.5 Hydrothermal / Solvothermal method	29
1.6 Literature review	31
1.7 Research Objectives	35
CHAPTER 2 EXPERIMENTAL PROCEDURE	
2.1 Chemical reagents, equipments and instruments	36
2.1.1 Chemical reagents	36
2.1.2 Equipments and instruments	36
2.2 Experimental procedure	38
2.3 Characterization	40
2.3.1 X-ray diffraction	40
2.3.2 Fourier transform infrared spectrometer	41
2.3.3 Field Emission Scanning Electron Microscopy	42
2.3.4 Transmission Electron Microscopy	ersi ₄₃
2.3.5 Photoluminescence Spectroscopy	V e 44
2.3.6 Ultraviolet- Visible Near-Infrared Spectroscopy	45

	P	age
CHAPTER 3 RES	ULTS AND DISCUSSION	
3.1 Syntl	hesis of Lanthanum Phosphate by microwave	46
iradia	ation method	
3.1.1	Formation of Lanthanum Phosphate complex	46
3.1.2	X-ray diffraction	47
3.1.3	Fourier transforms infrared spectroscopy	49
3.1.4	Scanning electron microscope	50
3.1.5	Transmission electron microscope	54
3.1.6	Possible formation mechanism of Lanthanum	58
	Phosphate complex	
3.1.7	Ultraviolet-visible near-infrared spectroscopy	60
3.1.8	Photoluminescent spectroscopy	61
3.2 Synth	esis of Cerium Phosphate by microwave radiation method	63
3.2.1	Formation of Cerium Phosphate	63
3.2.2	X-ray diffraction	64
Copyrigh 3.2.3	Fourier transform infrared spectroscopy	66
3.2.4	Scanning electron microscope	67
3.2.5	Transmission electron microscope	71
3.2.6	Possible formation mechanism of Cerium	74
	Phosphate complex	

	Page
3.2.7 Ultraviolet-visible near-infrared spectroscopy	76
3.2.8 Photoluminescent spectroscopy	78
CHAPTER 4 CONCLUSIONS AND SUGGESTIONS	
4.1 Conclusions	79
4.1.1 Microwave irradiation method	79
4.1.2 Synthesis of LaPO ₄ by microwave irradiation method	79
4.1.3 Synthesis of CePO ₄ by microwave irradiation method	80
4.2 Suggestions	82
REFERENCE APPENDICES	83
APPENDIX A Joint committee on powder diffraction standard	90
of LaPO ₄	
APPENDIX B Joint committee on powder diffraction standard of CePO ₄	93
CURRICULUM VITAE	104
INTERNATIONAL PUBLICATION	106

LIST OF TABLES

Table		Page
1.1	Microwave Frequency Bands	16
1.2	Comparison of Reaction Duration	25
1.3	Comparison of Yields	26

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xiii

LIST OF FIGURES

Figure	พมยนต์ P	age
1.1	Pattern of world consumption of Rare earth elements	6
1.2	View of the LnPO ₄ structures in: (a) the hexagonal phase and	7
	(b) the monoclinic phase, showing the connection of the cerium	
	atom to the PO ₄ ³⁻ tetrahedron	
1.3	The process of photon excitation followed by photon emission is called	8
	Photoluminescence	
1.4	Schematic representation of photophysical processes in lanthanide(III)	10
	complexes (antenna effect)	
1.5	The electromagnetic spectrum	17
1.6	A microwave	17
1.7	Schematic of sample heating	18
1.8	Schematic of sample heating by microwaves	19
1.9	Reaction Coordinate	21
1.10	Methods of Heating by Microwave Radiation	22
1.11	Uniform Heating through Microwave Irradiation	27
1.12	Autoclave for used in Hydrothermal/Solvothermal method	30
2.1	Schematic diagram used for preparation of LaPO ₄ (and CePO ₄)	39
2.2	X-ray diffractometer	40

Figure		Page
2.3	Fourier transform infrared spectrometer	41
2.4	Field Emission Scanning Electron Microscope	42
2.5	Transmission Electron Microscope	43
2.6	Photoluminescence Spectrophotometer	44
2.7	Ultraviolet- Visible Near-Infrared Spectrometer	45
3.1	Molecular structure of Lanthanum Phosphate	46
3.2	XRD patterns of LaPO ₄ at pH values of 1-6 synthesized	48
	by microwave radiation method at 180 W for 60 min.	
3.3	FT-IR spectra of LaPO ₄ synthesized by microwave radiation	49
	method at the pH of 1, 3 and 5.	
3.4	SEM image of LaPO ₄ synthesized in the solution with the pH	51
	of 6 by microwave radiation at 180 W for 60 min.	
3.5	SEM image of LaPO ₄ synthesized in the solution with the pH	52
	of 5 by microwave radiation at 180 W for 60 min.	
3.6	SEM image of LaPO ₄ synthesized in the solution with the pH	52
	of 4 by microwave radiation at 180 W for 60 min.	
3.7	SEM image of LaPO ₄ synthesized in the solution with the pH	53
	of 3 by microwave radiation at 180 W for 60 min.	
3.8	SEM image of LaPO ₄ synthesized in the solution with the pH	53
	of 2 by microwave radiation at 180 W for 60 min.	

Figure		Page
3.9	SEM image of LaPO ₄ synthesized in the solution with the pH	54
	of 1 by microwave radiation at 180 W for 60 min.	
3.10	TEM image of LaPO ₄ synthesized in the solution with the pH	55
	of 1 by microwave radiation at 180 W for 60 min.	
3.11	TEM image of LaPO ₄ synthesized in the solution with the pH	56
	of 2 by microwave radiation at 180 W for 60 min.	
3.12	HRTEM image of growth direction of LaPO ₄ synthesized in the	56
	solution with the pH of 1 by microwave radiation at 180 W for 60 min	
3.13	HRTEM image of layer of LaPO ₄ synthesized in the solution with	57
	the pH of 1 by microwave radiation at 180 W for 60 min.	
3.14	Schematic diagram for the formation of LaPO ₄ products.	58
3.15	UV-vis NIR absorption of LaPO ₄ nanorods synthesized by	60
	microwave radiation at 180 W for 60 min in the solution with	
	the pH of 1.	
3.16	PL spectrum of LaPO ₄ nanorods synthesized by microwave	62
	radiation at 180 W for 60 min in the solution with the pH of 1.	
3.17	Formation of Cerium Phosphate	63
3.18	XRD patterns of CePO ₄ synthesized in the solutions with	64
	different pH values by microwave radiation at 180 W for 60 min.	

Figure		Page
3.19	FTIR spectra of CePO ₄ synthesized by microwave radiation	67
	method at the pH of 1, 3 and 5.	
3.20	SEM image of CePO ₄ synthesized by microwave radiation	68
	method at the pH of 5 by microwave radiation at 180 W for 60 min.	
3.21	SEM image of CePO ₄ synthesized by microwave radiation	69
	method at the pH of 4 by microwave radiation at 180 W for 60 min.	
3.22	SEM image of CePO ₄ synthesized by microwave radiation	69
	method at the pH of 3 by microwave radiation at 180 W for 60 min.	
3.23	SEM image of CePO ₄ synthesized by microwave radiation	70
	method at the pH of 2 by microwave radiation at 180 W for 60 min.	
3.24	SEM image of CePO ₄ synthesized by microwave radiation	70
	method at the pH of 1.5 by microwave radiation at 180 W for 60 min.	
3.25	SEM image of CePO ₄ synthesized by microwave radiation	71
	method at the pH of 1 by microwave radiation at 180 W for 60 min.	
3.26	TEM image of LaPO ₄ synthesized in the solution with the pH	72
	of 1 by microwave radiation at 180 W for 60 min.	
3.27	TEM image of LaPO ₄ synthesized in the solution with the pH	72
	of 1.5 by microwave radiation at 180 W for 60 min.	
3.28	TEM image of LaPO ₄ synthesized in the solution with the pH	73
	of 2 by microwave radiation at 180 W for 60 min.	
3.29	Schematic diagram for the formation of CePO ₄ products.	74

Figure		Page
3.30	(a) UV-vis absorption, and (b) $(\alpha hv)^2$ vs hv curve of CePO ₄	77
	nanorods synthesized in the solution pH of 1, using microwave	
	radiation at 180 W for 60 min.	
3.31	PL spectrum of CePO ₄ nanorods synthesized in the solution pH	78
	of 1, using microwave radiation at 180 W for 60 min.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

°C Degree Celsius Nanometer nm Micrometer μm ml Milliliter min Minute Second sec Wavelength λ Centimeters cm Watt Alpha Beta Gamma Angstrom Hour Lanthanum Ce Cerium Fourier Transform Infrared Spectroscopy **FTIR** PLPhotoluminescence **SEM** Scanning Electron Microscopy

TEM = Transmission Electron Microscopy

XRD = X-ray Diffraction

JCPDS = The Joint Committee on Powder

Diffraction Standards

