## TABLE OF CONTENTS

|                                                        | Page       |
|--------------------------------------------------------|------------|
| ACKNOWLEDGEMENTS                                       | iii        |
| ABSTRACT (ENGLISH)                                     | iv         |
| ABSTRACT (THAI)                                        | v          |
| LIST OF TABLES                                         | ix         |
| LIST OF FIGURES                                        | x          |
| ABBREVIATIONS AND SYMBOLS                              | xv         |
| CHAPTER 1 INTRODUCTION                                 | 1          |
| 1.1 Introduction                                       | 1          |
| 1.2 Tungsten oxide                                     | 3          |
| 1.2.1 Physical properties                              | 3          |
| 1.2.2 Structure of Tungsten Oxide                      | 3          |
| 1.2.2.1 General characteristics of WO <sub>3</sub> and | 3          |
| transition metal oxides                                |            |
| 1.2.2.2 Perovskite-like Structure                      | <b>e</b> 4 |
| 1.2.2.3 Rutile-like Structure                          | 5          |
| 1.2.2.4 Tungsten oxide hydrates                        | 7          |

|           | 1.2.3 Application of Tungsten Oxide                                         | 9  |
|-----------|-----------------------------------------------------------------------------|----|
|           | 1.3 Hydrothermal/solvothermal method                                        | 10 |
|           | 1.4 Surfactant                                                              | 20 |
|           | 1.5 Literature Review                                                       | 25 |
|           | 1.6 Research Objectives                                                     | 31 |
| CHAPTER 2 | EXPERIMENTAL PROCEDURE                                                      | 32 |
|           | 2.1 Chemical reagents and equipments                                        | 32 |
|           | 2.1.1 Chemical reagents                                                     | 32 |
|           | 2.1.2 Equipments                                                            | 32 |
|           | 2.2 Synthesis methods                                                       | 33 |
|           | 2.2.1 Synthesis of tungsten oxide by a hydrothermal method                  | 33 |
|           | using ammonium metatungstate hydrate as a tungsten                          |    |
|           | source                                                                      |    |
|           | 2.2.2 Synthesis of tungsten oxide by a hydrothermal method                  | 35 |
|           | using sodium tungstate dihydrate as a tungsten source                       |    |
|           | 2.3 Characterization                                                        | 38 |
|           | 2.3.1 X-ray diffraction (XRD)                                               | 38 |
|           | 2.3.2 Fourier transform inferred (FTIR) spectroscopy and Raman spectroscopy | 39 |
|           | 2.3.3 Field Emission Scanning Electron Microscopy                           | 41 |
|           | (FE-SEM)                                                                    |    |

| 2.3.4 Transmission Electron Microscopy (TEM)                    | 42  |
|-----------------------------------------------------------------|-----|
| 2.3.6 Photoluminescence Spectroscopy                            | 43  |
| 2.3.7 UV-visible Spectroscopy                                   | 44  |
| CHAPTER 3 RESULTS AND DISCUSSION                                | 45  |
| 3.1 Result of the products synthesized by a hydrothermal method | 45  |
| using ammonium metatungstate hydrate as a tungsten source       |     |
| 3.2 Result of the products synthesized by a hydrothermal method | 58  |
| using sodium tungstate dihydrate as a tungsten source           |     |
| 3.2.1 Effect of acidity                                         | 58  |
| 3.2.2 Effect of reaction temperature                            | 63  |
| 3.2.3 Effect of reaction time                                   | 67  |
| CHAPTER 4 CONCLUSIONS                                           |     |
| 4.1 Synthesis of tungsten oxide by a hydrothermal method        | 77  |
| using ammonium metatungstate hydrate as a tungsten source       |     |
| 4.2 Synthesis of tungsten oxide by a hydrothermal method        | 78  |
| using sodium tungstate dihydrate as a tungsten source           |     |
| REFERENCES                                                      | 79  |
| APPENDICES by Chiang Mai Univers                                | 83  |
| APPENDIX A The Joint Committee for Powder Diffraction Standards | 84  |
| (JCPDS)                                                         |     |
| APPENDIX B Material Safety Data Sheet                           | 95  |
| CURRICULUM VITAE                                                | 100 |

#### LIST OF TABLES

| Table 9 9 9 9                                                         | Page |
|-----------------------------------------------------------------------|------|
| 1.1 Surfactant classifications                                        | 23   |
| 2.1 Experimental conditions for synthesizing of tungsten oxide by     | 37   |
| a hydrothermal method using sodium tungstate dihydrate as a tungsten  |      |
| source with different volumes of 3M HCl, length of reaction times and |      |
| reaction temperature.                                                 |      |
|                                                                       |      |

# ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

### LIST OF FIGURES

| Figu | ure                                                                                                                       | Page |
|------|---------------------------------------------------------------------------------------------------------------------------|------|
| 1.1  | (a) Unit cell for the perovskite lattice (Part I) and octahedral symmetries                                               | 6    |
|      | (Part II) in the perovskite structure; (b) One layer of the monoclinic WO <sub>3</sub>                                    |      |
|      | structure in the corner-sharing arrangement of octahedra (ReO <sub>3</sub> -type);                                        |      |
|      | (c) The monoclinic WO <sub>3</sub> structure (ReO <sub>3</sub> -type); (d) One layer of the                               |      |
|      | monoclinic WO <sub>3</sub> structure in the edge-sharing arrangement of octahedra.                                        |      |
| 1.2  | Formation of WO <sub>3</sub> .nH <sub>2</sub> O from the neutral precursor [H <sub>2</sub> WO <sub>4</sub> ] <sup>0</sup> | 8    |
| 1.3  | (a) The six membered rings of (WO <sub>6</sub> ) octahedra sharing their corners in                                       | 9    |
|      | the xy planeor one layer hexagonal WO <sub>3</sub> ; (b) The hexagonal WO <sub>3</sub>                                    |      |
|      | structure showing the tunnels along the z axis; the relevant right structures                                             |      |
|      | are three membered ring cases.                                                                                            |      |
| 1.4  | Hydrothermal technology in the 21st century.                                                                              | 14   |
| 1.5  | Hydrothermal tree showing different branches of science and technology.                                                   | 15   |
| 1.6  | Pressure temperature map of materials processing techniques.                                                              | 16   |
| 1.7  | Difference in particle processing by hydrothermal and conventional                                                        | 19   |
|      | technique                                                                                                                 |      |
| 1.8  | General purpose autoclave popularly used for hydrothermal treatment                                                       | 20   |
|      | and hydrothermal synthesis.                                                                                               |      |
| 1.9  | Schematic illustration of the micelle monomers.                                                                           | 21   |

| 1.10 | Schematic illustration of the commonly observed geometrical shapes of    | 25 |
|------|--------------------------------------------------------------------------|----|
|      | surfactant micelles in aqueous solution.                                 |    |
| 2.1  | Schematic diagram used for preparing tungsten oxide by a hydrothermal    | 34 |
|      | method using ammonium metatungstate hydrate as a tungsten source with    |    |
|      | different volumes of 1M HCl                                              |    |
| 2.2  | Schematic diagram used for preparing tungsten oxide by a hydrothermal    | 36 |
|      | method using sodium tungstate dihydrate as a tungsten source with        |    |
|      | different volumes of 3M HCl, length of reaction times and reaction       |    |
|      | temperature                                                              |    |
| 2.3  | X-ray diffractometer                                                     | 38 |
| 2.4  | Fourier transform inferred spectroscopy                                  | 39 |
| 2.5  | Raman spectroscopy                                                       | 40 |
| 2.6  | Field Emission Scanning Electron Microscopy                              | 41 |
| 2.7  | Transmission Electron Microscope                                         | 42 |
| 2.8  | Luminescence spectroscopy                                                | 43 |
| 2.9  | UV-visible spectroscopy                                                  | 44 |
| 3.1  | XRD patterns of the products synthesized by the hydrothermal reaction at | 45 |
|      | 200 °C for 24 h in the solutions containing 0.00, 2.50 ml, 5.00 ml, and  |    |
|      | 7.50 ml of 1M HCl.                                                       |    |
| 3.2  | SEM images at low and high magnifications of the product synthesized by  | 47 |
|      | the hydrothermal reaction at 200 °C for 24 h in the solution containing  |    |
|      | 5.00 ml of 1M HCl.                                                       |    |

| 3.3  | SEM images at low and high magnifications of the product synthesized by                             | 48 |
|------|-----------------------------------------------------------------------------------------------------|----|
|      | the hydrothermal reaction at 200 °C for 24 h in the solution containing                             |    |
|      | 7.50 ml of 1M HCl.                                                                                  |    |
| 3.4  | FTIR spectra of (a) CTAB, and (b-d) the products synthesized by the                                 | 49 |
|      | hydrothermal reaction at 200 °C for 24 h in the solutions containing                                |    |
|      | 2.50 ml, 5.00 ml, and 7.50 ml of 1M HCl, respectively.                                              |    |
| 3.5  | Raman spectrum of o-WO <sub>3</sub> microflowers, synthesized by the hydrothermal                   | 50 |
|      | reaction at 200 °C for 24 h in the solution containing 7.50 ml 1M HCl.                              |    |
| 3.6  | TEM images of o-WO <sub>3</sub> microflowers, synthesized by the hydrothermal                       | 51 |
|      | reaction at 200 °C for 24 h in the solution containing 7.50 ml 1M HCl.                              |    |
| 3.7  | (a, b) High magnification TEM images, and (c, d) SAED patterns of                                   | 52 |
|      | o-WO <sub>3</sub> microflowers of Figure 3.6 (b).                                                   |    |
| 3.8  | Schematic diagram for the formation of o-WO <sub>3</sub> microflowers.                              | 54 |
| 3.9  | (a) UV-visible spectrum, and (b) the plot of $(\alpha h \nu)^2$ versus $h \nu$ of o-WO <sub>3</sub> | 55 |
|      | microflowers, synthesized by the hydrothermal reaction at 200 °C for 24 h                           |    |
|      | in the solution containing 7.50 ml of 1M HCl.                                                       |    |
| 3.10 | PL spectrum of o-WO <sub>3</sub> microflowers.                                                      | 57 |
| 3.11 | XRD patterns of the products synthesized by the hydrothermal reaction at                            | 58 |
|      | 180 °C for 24 h in the respective solutions containing 4.00 ml, 4.50 ml,                            |    |
|      | 5.00 ml, 5.50 ml, 6.00 ml, 6.50 ml and 7.00 ml of 3M HCl.                                           |    |
| 3.12 | SEM image of the product synthesized by the hydrothermal reaction at                                | 59 |
|      | 180 °C for 24 h in the solution containing 4.00 ml 3M HCl.                                          |    |
| 3.13 | SEM image of the product synthesized by the hydrothermal reaction at                                | 60 |
|      | 180 °C for 24 h in the solution containing 4.50 ml 3M HCl.                                          |    |

| 3.14 | SEM image of the product synthesized by the hydrothermal reaction at      | 60 |
|------|---------------------------------------------------------------------------|----|
|      | 180 °C for 24 h in the solution containing 5.00 ml 3M HCl.                |    |
| 3.15 | SEM image of the product synthesized by the hydrothermal reaction at      | 61 |
|      | 180 °C for 24 h in the solution containing 5.50 ml 3M HCl.                |    |
| 3.16 | SEM image of the product synthesized by the hydrothermal reaction at      | 61 |
|      | 180 °C for 24 h in the solution containing 6.00 ml 3M HCl.                |    |
| 3.17 | SEM image of the product synthesized by the hydrothermal reaction at      | 62 |
|      | 180 °C for 24 h in the solution containing 6.50 ml 3M HCl.                |    |
| 3.18 | SEM image of the product synthesized by the hydrothermal reaction at      | 62 |
|      | 180 °C for 24 h in the solution containing 7.00 ml 3M HCl.                |    |
| 3.19 | XRD patterns of the products synthesized by the hydrothermal reaction at  | 63 |
|      | 120, 140, 160, 180 and 200 °C for 12 h in the solution containing 5.00 ml |    |
|      | 3M HCl.                                                                   |    |
| 3.20 | SEM image of the product synthesized by the hydrothermal reaction at      | 64 |
|      | 120 °C for 12 h in the solution containing 5.00 ml 3M HCl.                |    |
| 3.21 | SEM image of the product synthesized by the hydrothermal reaction at      | 65 |
|      | 140 °C for 12 h in the solution containing 5.00 ml 3M HCl.                |    |
| 3.22 | SEM image of the product synthesized by the hydrothermal reaction at      | 65 |
|      | 160 °C for 12 h in the solution containing 5.00 ml 3M HCl.                |    |
| 3.23 | SEM image of the product synthesized by the hydrothermal reaction at      | 66 |
|      | 180 °C for 12 h in the solution containing 5.00 ml 3M HCl.                |    |
| 3.24 | SEM image of the product synthesized by the hydrothermal reaction at      | 66 |
|      | 200 °C for 12 h in the solution containing 5.00 ml 3M HCl.                |    |

| 3.25 | XRD patterns of the products synthesized by the hydrothermal reaction at                    | 67 |
|------|---------------------------------------------------------------------------------------------|----|
|      | $200~^{\circ}\text{C}$ for 0, 6, 12, 24 and 48 h in the solution containing 5.00 ml 3M HCl. |    |
| 3.26 | SEM image of the product synthesized by the hydrothermal reaction at                        | 68 |
|      | 200 °C for 0 h in the solution containing 5.00 ml 3M HCl.                                   |    |
| 3.27 | SEM image of the product synthesized by the hydrothermal reaction at                        | 69 |
|      | 200 °C for 6 h in the solution containing 5.00 ml 3M HCl.                                   |    |
| 3.28 | SEM image of the product synthesized by the hydrothermal reaction at                        | 69 |
|      | 200 °C for 12 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.29 | SEM image of the product synthesized by the hydrothermal reaction at                        | 70 |
|      | 200 °C for 24 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.30 | SEM image of the product synthesized by the hydrothermal reaction at                        | 70 |
|      | 200 °C for 48 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.31 | SEM image of the product synthesized by the hydrothermal reaction at                        | 71 |
|      | 200 °C for 72 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.32 | FTIR spectrum of product synthesized by the hydrothermal reaction at                        | 72 |
|      | 200 °C for 48 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.33 | Raman spectrum of product synthesized by the hydrothermal reaction at                       | 73 |
|      | 200 °C for 48 h in the solution containing 5.00 ml 3M HCl.                                  |    |
| 3.34 | (a) UV-visible spectrum, and (b) the plot of $(\alpha h v)^2$ versus $h v$ of products      | 75 |
|      | synthesized by the hydrothermal reaction at 200 °C for 24 h in the solution                 |    |
|      | containing 7.50 ml of 1M HCl                                                                |    |

### ABBREVIATIONS AND SYMBOLS

°C = Degree Celsius

eV = Electron Volt

g = Gram

h = Hour

ml = Milliliter

nm = Nanometer

μm = Micrometer

JCPDS = The Joint Committee for Powder Diffraction

Standards

MW = Molecular Weight

FT-IR = Fourier-Transform Infrared Spectrometer

PL = Photoluminescence Spectrometer

SEM = Scanning Electron Microscope

TEM = Transmission Electron Microscope

XRD = X-ray Diffraction Spectrometer