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CHAPTER I 

INTRODUCTION 

  

1.1 Background 

Understanding of the excited-state proton/hydrogen-atom transfer (ESPT/HT) 

reaction is a fundamental piece of knowledge in chemistry and biochemistry [1-2]. 

The ESPT/HT reaction, a subclass of proton transfer (PT) or hydrogen-atom transfer 

(HT) reaction, has been intensively studied due to its practical uses in many 

applications, particularly fluorescent probes [3-7], laser dyes [8-9], photostabilizers 

[10], and light-emitting devices [11-12]. Most of the PT and HT take place in 

molecules having bifunctional groups (proton donor and acceptor) [13-17] in which 

these molecules can form intramolecular hydrogen bonds between two functional 

groups.  

The excited-state intramolecular proton/hydrogen atom transfer (ESIntraPT/ 

HT) reactions can spontaneously occur in some molecules such as o-hydroxy Schiff 

base molecules [18-21], for example, 2-(iminomethyl)phenol and its derivatives. The 

appropriate position of proton donor and acceptor is the most important point of 

PT/HT reactions. However, the ESIntraPT/HT reaction cannot spontaneously occur in 

some molecules because the proton donor is positioned too far from the acceptor [15]. 

Thus, the solvents will be needed to trigger the excited-state intermolecular 

proton/hydrogen atom transfer (ESInterPT/HT) reactions. In presence of solvent 

assistance, formation of strong hydrogen bonds along the hydrogen-bonded network 

can reduce the reaction barrier and induce intermolecular multiple-PT/HT reaction to 
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take place after the photoexcitation. Simple model compounds of certain molecules 

with appropriate protic solvents show this kind of ESInterPT/HT processes, for 

instance, 1H-pyrrolo[3,2-h]quinoline (PQ) [15,17,22-24], 7-hydroxquinoline (7HQ) 

[25-27], and 7-azaindole (7AI) [13,16,28-30]. 

 

1.2 Excited-state proton/hydrogen atom transfer (ESPT/HT) reactions 

The ESPT/HT process is a fundamental reaction which plays an important role 

in chemistry and biochemistry [1-2]. The ESPT/HT reaction or sometime called a 

phototautomerization (a reversible transformation process between two forms of 

molecules by adsorption of light) is studied in many applications, for example, a 

model for hydrogen bonding in DNA bases and fluorescence emitting mechanism of 

green fluorescence markers in fluorescent probe [7]. Typically, this type of the PT/HT 

process occurs along the hydrogen-bonded network.  

 

Figure 1.1 Scheme of the excited-state proton/hydrogen atom transfer (ESPT/HT) 

reaction 
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From Figure 1.1, normal form is quite stable in the ground state. It cannot 

transform into tautomer spontaneously because of high reaction barrier. In 

photoexcitation process, however, the tautomer easily occurs because it has energy 

lower than its normal form in existence of low barrier or barrierless [13-17]. The 

reactions taking place can be divided into two types: intermolecular or intramolecular 

PT/HT. In addition, the intermolecular PT/HT reaction occurs by proton/hydrogen 

atom transfer between the same molecules (7-azaindole dimer) or assisted molecules 

(solvent-assisted molecules) and the intramolecular PT/HT reaction occurs by 

proton/hydrogen atom migration within its molecule without any help from other 

molecules. 

 

1.2.1 Excited-state intermolecular proton/hydrogen atom transfer 

(ESInterPT/HT) reactions 

Previous reports [29,31] of the molecules and hydrogen-bonded clusters 

provided insight into the intermolecular multiple-PT/HT process along the hydrogen-

bonded network. A simple model compound of certain molecules with specific 

solvents show this kind of property such as 7-azaindole (7AI) and 1H-pyrrolo[3,2-

h]quinoline (PQ). The 7AI molecule, a part of DNA bases in a model compound, is an 

important bicyclic aza-aromatic molecule that can form hydrogen bonds with solvent 

molecules forming cluster. The hydrogen bonds between donating proton from five-

membered ring of the pyrrole and accepting proton on six-membered ring of the 

pyridine are formed. Tautomerization of the 7AI with solvent clusters accompanying 

the ESInterPT/HT reaction has been both experimentally and theoretically studied 

[32-33]. The 7AI with solvent molecules such as water, ammonia, and alcohol 
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(ethanol and methanol) are served as a prototype of the ESInterPT/HT processes 

which have been intensively studied by many groups [13,33-34].  

Gordon and coworkers [13,29] studied on the 7AI(H2O)n=1-2 clusters where 

subscript n indicates number of water molecules in the cluster that showed an 

asynchronous HT time less than 50 fs after photoexcitation process using quantum 

mechanics/molecular mechanics (QM/MM) molecular dynamics. Their results 

showed equilibrium geometries and relative CASSCF energies of normal and 

tautomers in the ground (S0) and excited state (S1) that a tautomer is higher energetic 

than a normal form in the ground state. But in photoexcitation process, the tautomer 

easily occurs because it has energy less than its normal form. However, some models 

used in this simulation did not cover a dynamics property such as reaction probability 

or the energy distribution of the products from the simulations.  

Sakota et al. [31,35-36] also experimentally investigated the 7AI(MeOH)n=1-3 

clusters which were small enough to be studied in supersonic jet with laser 

spectroscopy. Their experimental studies based on dispersed fluorescence and 

resonance-enhanced multiphoton ionization spectra were observed and found that 

7AI(MeOH)2 cluster could undergo an excited-state triple-proton/hydrogen atom 

transfer (ESTPT/HT) process. The reaction reveals the importance of dynamics on 

methanol-assisted PT and shows a remarkable feature of the ESTPT/HT reaction in 

the 7AI(MeOH)2 cluster. This remarkable feature is the nature of the reaction 

mechanism changes from vibrational-mode specific fashion with increasing the 

internal energy. Thus, the 7AI with methanol cluster is an interesting model for 

studying mechanism pathways in quantum dynamics simulations of the 

ESInterPT/HT reaction.  
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1.2.2 Excited-state intramolecular proton/hydrogen atom transfer 

(ESIntraPT/HT) reactions  

Aromatic Schiff bases [21,37-38] are among the most studied compounds in 

the photochemistry because of their photochromic properties and structural varieties. 

For example, the best known and most widely studied photochromic Schiff base is 

salicylideneaniline (SA) [39]. This molecule is the earliest example of a system 

concerning about intramolecular PT/HT reaction. In Schiff base molecule, the 

photochromic investigation likely arises from the ESIntraPT/HT reaction. For more 

information of the PT/HT reaction, the development of ultrafast spectroscopic 

techniques has allowed not only a direct observation of PT/HT dynamics but also in 

several molecular systems. A Schiff base molecule such as 2-(iminomethyl)phenol is 

the most important compound in photochemistry. 2-(iminomethyl)phenol, the 

hydrogen atom of hydroxy group in the aromatic ring forming hydrogen bond to the 

nitrogen atom in the imine group which gives enol-keto tautomerization, is 

investigated for a model system of the intramolecular PT/HT process in biological 

systems [18]. 2-(iminomethyl)phenol and its derivatives are of interest due to the 

existence of O–H···N and O···H–N types of hydrogen bonds. In addition, the 

ESIntraPT/HT reactions taking place in 2-(iminomethyl)phenol and its derivatives are 

computationally affordable for theoretical study because of its simple reaction and 

small molecule for the molecular dynamics simulation on the excited state [19-20]. 

Furthermore, substituent effects showed that steric modification or increased acidity 

on an aromatic ring resulted in shortening and strengthening of the intramolecular 

hydrogen bond. Moreover, the steric effect of a bulky substituent could bring about 

shortening of O–H···N hydrogen bridge [18,20].  
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1.3 Molecular property 

1.3.1 Fluorescence 

There are two types of emissions of photons on excited state: fluorescence and 

phosphorescence. These types are very important in light-emitting devices. Their 

emission of photons produces different color of light. In this work, only fluorescence 

emission will be studied.  

When a molecule absorbs photons, the energy goes to its electrons. They will 

be excited from ground state into excited state with no changing of electron spin. 

Then, they will emit energy called fluorescence and fall down into the lower state 

which is our interest in this research. If the spin changes from singlet to triple state, 

the relaxation time will take longer than fluorescence called phosphorescence [40].  

 

 

Figure 1.2 Jablonski diagram 
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From Figure 1.2, Jablonski diagram shows the energy levels of each state 

indicated its spin multiplicity. The lowest lines represent the ground state, S0, of the 

atom or molecule. The higher lines (S1 and S2) represent excited singlet states. 

Whereas, the other lines (T1 and T2) represent excited triplet states. In a diatomic or 

polyatomic molecule, one or several series of vibrational and rotational states 

(quantized) are superimposed on each electronic state. The absorption lines (or bands) 

are represented by arrows directed upwards and the emission lines or bands by arrows 

directed downwards. The energy of the quanta of emission or absorption is 

proportional to the lengths of the arrows. An atom or molecule can absorb only 

energy into S1 and S2, then, it can release energy represented by downward arrows, 

leading from S2 to a lower energy state S1. It should be noted that energy absorption is 

very fast (10-15 fs). A radiationless process from S2 to S1 way in which a transition can 

occur by energy loss to surrounding molecules called internal conversion (IC) and 

vibrational relaxation of the excited molecule within 10-14-10-11 s. Emission of 

photons from S1 to S0 state called fluorescence (10-9-10-7 s) is found at higher 

wavelengths (low energy) than the absorption spectrum because it losses some energy 

in excited state due to the relaxation of electron and it does not change the spin 

multiplicity. The gap or the energy between the maximum of the first absorption band 

and the maximum of fluorescence is known as Stoke rule. In addition, there is some 

energy emission that is not fluorescence called non-radiative relaxation. However, a 

radiationless process involving a transition between two electronic states with 

different spin multiplicity, or intersystem crossing (ISC), possibly occurs. The 

radiative decay from an excited triplet state (T1) back to ground state (S0) is known 

as phosphorescence (10-3-102 s) [41]. 
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1.3.2 Franck-Condon principle 

Classically, the Franck–Condon principle is the approximation that an 

electronic transition is most likely to occur without changes in the positions of the 

nuclei in the molecular entity and its environment. According to the Born-

Oppenheimer approximation, the electrons are much lighter than those of nuclei so 

the motion of electrons is very rapid compared to the motion of nuclei [42].  

 

 

Figure 1.3 Potential energy diagrams of vertical excitation [41] 

 

The resulting state is called a Franck–Condon state and the transition involved 

a vertical transition (Figure 1.3). Since electronic transitions are very fast compared 

with nuclear motions, vibrational levels are favored when they correspond to a 

minimal change in the nuclear coordinates. The electronic transition can be 0-1, 0-2, 

or arbitrary state depending on the vibrational energy. 
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1.4 Computational chemistry 

1.4.1 Schrödinger equation 

Quantum mechanics (QM) is a correct mathematical description of the 

behavior of electrons especially in chemistry. Theoretically, QM can be used to 

predict any property of an individual atom or molecule exactly. Practically, however, 

the QM equations have been solved exactly for one electron systems only.   

There are many descriptions in QM concepts of the motions of particles; one 

describes the system using a wavefunction, �. The wavefunction for an interested 

system governed by a Hamiltonian, Ĥ is determined by the Schrödinger equation 

since it is the basis for most computational chemistry methods [43]. 

 

 EĤ      (1.1) 

The wavefunction is found by solving the Schrödinger equation for the 

system. The Schrödinger equation (1.1) represents a description of a molecular system 

in terms of a wavefunction (�), Hamiltonian operator (Ĥ), and the total energy (E). 

The Schrödinger equation can be solved exactly only for atoms or molecule 

containing one electron. For this reason, the numerical methods that allow us to 

approximate wavefunction have been employed to describe in theoretical 

approximations such as ab initio methods, simiempirical methods, density functional 

theory, and etc. 

 

1.4.2 Born-Oppenheimer approximation  

The complete nonrelativistic Hamiltonian of a molecule as a sum of kinetic 

and potential energy terms [44]: 
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where ZA and ZB are the nuclear charges, MA is the mass of nucleus A, m is the mass of 

the electron, RAB is the distance between nuclei A and B, rij is the distance between 

electrons i and j, riA is the distance between election i and nuclei A, ε0 is the 

permittivity of free space, and ћ is the Plank constant. The compact formula could be 

represented as 

 

)()(),()()(ˆ rVRVRrVrTRTH eeNNeNeN    (1.3) 

where    )(RTN   = kinetic energy of the nuclei 

  )(rTe     = kinetic energy of the electrons 

),( RrVeN  = electron-nuclei attractive Coulomb potential 

)(RVNN  = nuclear-nuclear repulsive Coulomb potential and 

)(rVee    = electron-electron repulsive Coulomb potential 

 

Born-Oppenheimer approximation is the assumption that the electronic motion 

and the nuclear motion in molecules can be separated. The electronic motion should 

be the same as if the nuclei are fixed. It notes that the nuclear motion is so much 

slower than that of electron or the nuclei are very much more massive than the 

electrons. Thus, leaving )(RVNN  out of the electronic Schrödinger equation leads to a 

similar equation,  
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)(),()(ˆ rVRrVrTH eeeNeelectron      (1.4) 

such that 

 

);();(ˆ RrERrH electronelectronelectron      (1.5) 

For most chemical applications, it is a good approximation to assume that the 

Schrödinger equation can be parametrically separated into a product of electronic and 

nuclear parts. This leads to an exact solution can be obtained by using an expansion of 

the form  

 

)();(),( RRrRr      (1.6) 

where ψ is a wavefunction associated with solving the electron part of the 

Schrödinger equation for fixed nuclear coordinates, and χ is a wavefunction 

associated with nuclear motion. 

 

1.4.3   Ab initio method 

1.4.3.1 Hartree-Fock approximation 

The ab initio term originated from Latin means “from the beginning”. The 

mathematical approximations are derived from only theoretical principle in order to 

find an approximate solution with no in conclusion of experimental data [43,45].  

The well-known type of ab initio calculation is Hartree-Fock (HF) 

approximation. The HF calculation starts with an initial guess for the orbital 

coefficients, usually using a semiempirical method. This function is used to calculate 

energy and a new set of orbital coefficients, which can then be used to obtain a new 
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set, and so on. This procedure continues iteratively until the energy and orbital 

coefficient remain constant from one iteration to the next or convergence called a self-

consistent field (SCF) [43,45].  

There are several ways in which we can proceed with the derivation of the HF 

equations. The traditional one is to look for an eigenvalue equation for the HF 

orbitals: 

 

iii
Fh  ˆ      (1.7) 

where the HF operator Fĥ depends only on the coordinates of any one of the 

electrons, but allows for the averaging over their interactions. 

 There are n doubly occupied molecular orbitals, and the number of electrons is 

2n because we have allocated α and β spin electron. Generally, Hartree model, the 

many-electron wavefunction was written as a straightforward product of one-electron 

orbital ψA and ψB. From Fock’s contribution to the field, it shows as a Slater 

determinant which is satisfied by the Pauli principle. For an N-electron system, the 

spin-orbital, )( 11 x , where 1x  denotes the position and spin of the singular electron 

the Slater determinant is defined as 

 

)(...)()(

............

)(...)()(

)(...)()(

!

1
),...,,(

211

22221

11211

21

NNN

N

N

N

xxx

xxx

xxx

N
xxx






   (1.8) 

The linear combination of Hartree products for the two-particle case can 

clearly be seen as identical with the Slater determinant for N = 2. A single Slater 
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determinant is used as an approximation to the electronic wavefunction in Hartree-

Fock theory. In more accurate theories, for example, configuration interaction (CI) 

and multireference configuration self-consistency field (MCSCF), a linear 

combination of Slater determinants is needed [45]. 

 

1.4.3.2 Coupled cluster 

Coupled cluster (CC) calculations are similar to configuration interaction (CI) 

calculations in that the wavefunction is a linear combination of many determinants. 

The CI calculation wavefunction is a multiple-determinant wavefunciton conducted 

by starting with the HF wavefunciton and making new determinant by promoting 

electron from the occupied to unoccupied orbitals. This CI calculation can be very 

accurate, but the cost of computing is very high (N8 time complexity). However, the 

means of choosing the determinants in a coupled cluster calculation is more complex 

than the choice of determinants in a CI. For CC expansion, it is included perturbation. 

It gives variational energies as long as the excitations. The CC results are a bit more 

accurate than the equivalent size CI calculation results [43]. 

The resolution-of-the-identity (RI) with second-order approximate coupled-

cluster model, RI-CC2 is a module for the calculation of excitation energies and 

response properties at a correlated ab initio level, in particular the CC2. All 

calculations employ RI approximation for the electron repulsion integrals needed for 

the correlation treatment and the description of excitation processes. All 

functionalities are implemented for closed-shell restricted HF and open-shell 

unrestricted HF reference wavefunctions. However, RI with the algebraic 
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diagrammatic construction through second order, RI-ADC(2), is paid attention in  

7-azaindole system and is used in the calculations [46-47].  

In addition, the performance of the second-order methods for excitation 

energies is concerned in many systems. The approximation of CC2 is been used to 

solve the excitation energies corrected through second-order in the fluctuation 

potential, the Jacobian becomes 
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where F is the usual Fock operator and Ĥ = exp(-T1)H exp(T1), i.e., a Hamiltonian 

similarly transformed with the exponential function of the single replacement part of 

the cluster operator T=T1+T2. Here and in the following indices i, j, k, … are used for 

orbitals which are occupied in the reference determinant HF  and indices a, b, c, … 

are used for virtual orbitals. c
k and cd

kl  denote, respectively, single and double 

replacement operators. 

 The secular used in ADC(2) is the symmetric or, in the some case, the 

Hermitian part of that for the iterative variant of the doubles correlation to CI singles, 

CIS(D∞) in equation 1.10. 
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so that 
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)*)((
2

1 )()()2(   DCISDCISADC AAA    (1.11) 

 The above relations between CC2, CIS(D∞), and ADC(2) provide a simple 

recipe to implement the latter two methods in an existing CC2 program: for CIS(D∞), 

the only modification required is that the converged CC2 ground-state amplitudes are 

replaced by those form first-order perturbation theory. For ADC(2), in addition, the 

contributions of ],ˆ[ )1(
2TH to the singles-singles block have to be symmetrized.  

 

1.4.4 Density functional theory  

Density functional theory (DFT) is one of the most widely used methods based 

on electron density. This method has become popular in recent years because it is less 

computational requirement than other methods with similar accuracy such as second 

order Møller–Plesset perturbation (MP2). The general theoretical framework of DFT 

was originated by the Hohenberg and Kohn theorem. However, in practical 

applications, Kohn and Sham developed the theory formulated a method similar in 

structure of HF method [41]. 

 

1.4.4.1 Honnenberg-Kohn theorems 

Instead of solving the problem using single electron wavefunction, this method 

uses one function which represents the entire electron density of the molecule 

represented as ρ(r). Electronic energy of electron density is represented as 

 

][][][][  UVT EEEE      (1.12) 
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where ET[ρ] is kinetic energy, EV[ρ] is potential energy, and EU[ρ] is external 

perturbation and Coulombic repulsive force between pairs of electrons. 

 

1.4.4.2 Kohn-Sham equations  

A density functional is used to obtain the energy for the electron density. The 

advantage of using electron density is that integrals for Coulombic repulsion need to 

be done only over the electron density which is a three-dimensional function (N3).  

The exact ground-state electron density is given by 

 





n

i
i rr

1

2
)()(      (1.13) 

We can write in simple form as  

 

][][][][  xcVT EEEE     (1.14) 

where the sum is overall energy of the occupied Kohn-Sham orbitals, the first term in 

the equation 1.14 represent the kinetic energy of the electrons; the second term is 

potential energy including electron-nucleus attraction and Coulomb repulsive 

interaction between electrons; and last term is the exchange-correlation energy of the 

system. Exc term, which is often split the exchange-correlation term into a sum of one 

part for exchange effects and one part for correlation effects, must be the functional of 

the electron density. 

 

][][][  cxxc EEE      (1.15) 
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Therefore, exchange-correlation potential, Vxc can be presented as the 

functional derivatives of the exchange-correlation energy: 
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E
V      (1.16) 

 

1.4.4.3 Hybrid three parameters of Beck and Lee-Yang-Parr correlation 

functional (B3LYP) 

The purpose of including this complex mathematical function (functional) is to 

suggest the hybrid nature of the mathematics.  It notes that various approximations– 

local density approximation (LDA), Hartree-Fock (HF), Becke-1988 (B88),  

Lee-Yang-Parr 1988 (LYP88), and Vosko,Wilks, Nusair 1980 (VWN80) – are part of 

this hybrid functional: 

 

XC
DFTDFT

XC
HFHF

XC
hybrid ECECE ][    (1.17)   

From three parameters of Beck and Lee-Yang-Parr correlation functional 

(B3LYP), it has been reported that it could give a good results on the organic 

molecules with various experiments. The hybrid models B3LYP method is expressed 

in equation: 
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LYPB ECEcEEcEEcEE 338803 ()(][    (1.18) 

where HF exchange,  X
HFE . Local density approximation, X

LDAE . Gradient-corrected 

exchange,  C
BE 88 . Lee, Yang, and Parr correlation, C

LYPE . 
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1.4.4.4 Time-dependent density functional theory (TD-DFT)  

Time-dependent density functional theory (TDDFT) [48] is the generalization 

of stationary DFT to time-dependent potentials and electron densities, ),( tr . In the 

vast majority of cases, such as the calculation of photo absorption spectra for fixed 

nuclei, the electric field constitutes a small perturbation which can be treated using 

linear response theory. This has to be distinguished from directly solving the time-

dependent Kohn-Sham equations in the time domain, i.e. dynamically propagating 

orbitals and nuclei. TDDFT is a very popular tool for electronic excitation energies 

and oscillator strength. It is a powerful tool in studying photochemistry because its 

computation cost is not expensive.  

The excited-state electron density is given by Runge-Gross theorem as 
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Therefore, exchange-correlation potential, Vxc can be presented as the 

functional derivatives of the exchange-correlation energy: 
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From excitation energy, the procedure starts with the construction of many-

particle starts with good symmetry, �i, by taking a finite superposition of states 

 

 


ii c     (1.21) 
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where  is Slater determinants of Kohn-Sham orbitals, and the coefficients ic  is 

determined form group theory. Simply, we can express the determinants as linear 

combinations of the many-body wavefuntions 

 

 
j

jja     (1.22) 

By taking the expectation value of the Hamiltonian in the state  we reach here 

 


j

jj EaH
2ˆ

     (1.23) 

where Ej is the energy of the many-body state j  and  is built from n Kohn-Sham 

orbitals.  

 The next technique, called ensemble DFT, makes use of fractional occupation 

numbers. Ensemble DFT evolves around the concept of an ensemble. In the simplest 

case it consists of a mixture of the ground state, 1 , and the first excited state, 2 , 

described by the density matrix,  

 

2211)1(ˆ  D    (1.24) 

 where the weight, ω, is between 0 and 1/2 (in this last case the ensemble is called 

“equiensemble”. We can further define the ensemble energy and density 

 

21)1()( EEE       (1.25) 
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)()()1()( 21 rrr      (1.26) 

at ω = 0, the ensemble energy clearly reduces to the ground-state energy. Using the 

ensemble density it is possible to construct a DFT, i.e. to prove a Hohenberg-Kohn 

theorem and construct a Kohn-Sham scheme. To calculate the energies from ensemble 

DFT we can follow two paths. The first involves obtaining the ground-stat energy and 

the ensemble energy for some fixed ω, from which the excitation energy E1-E2 

trivially follows 

 


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 .    (1.27) 

The second path is obtained by taking the derivatives of equation 1.24 
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It is then possible to prove  
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1.4.5 Adiabatic dynamics [49] 

The basic problem in dynamics simulations of molecules is to solve the time-

dependent Schrödinger equation (TDSE) for the complete molecular system, 
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where Ĥ  is the Hamiltonian and � is the wavefunction depending on t, on the 

nuclear coordinates, R, and on the electronic coordinates, r, of the whole system.  

The nuclear motion can be described using Born-Oppenheimer expansion  
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where ψi is a electronic wavefunction and χi is a nuclear wavefunction in equation 

(1.30) for electronic state i. 
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where Fk is the electronic wavefunction.  

In equation 1.32, each quantity with superscript c was approximated by its 

value at a single nuclear configuration, Rc, which is given by the Newton's 

equations for each nucleus m 
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For this reason, we should impose a series of approximations to perform the 

simulations. In this approximation, the TDSE is reduced to a set of first-order 

differential equation for the amplitudes ck of each electronic state k: 
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In this equation, Vk is the potential energy surface for state k, v is the nuclear 

velocity and Fkj is the nonadiabatic coupling vector between the states k and j. 

 

1.4.5.1 Initial conditions 

In order to integrate the Newton’s equations for the nuclei, an ensemble of 

initial conditions needs to be prepared. Normally, this problem is approached by 

building a phase space distribution in the electronic ground state and then projecting it 

onto the electronic excited states. The ground state distribution can be prepared either 

by a ground state trajectory simulation or from a probabilistic sampling. In addition, 

the quantum nature of typical distributions like that given by the Wigner function, the 

two sets may differ substantially.  

 

1.4.5.2 Wigner distributions 

Assuming a quadratic approximation for the ground-state potential energy 

surface around the minimum, the 3Nat−6 internal coordinates can be described in 

terms of normal modes Q and the nuclear wavefunction can be approximated as that 

of a quantum harmonic oscillator. The classical phase space distribution can be 

approximated by a Wigner distribution 
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where 0
HO  is the quantum harmonic oscillator wavefunction for the ground 

vibrational state and Pi is the momentum associated with the normal coordinate iQ . 
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where i and  i
OH are, respectively, the reduced mass, the harmonic frequency and the 

equilibrium, distance of normal mode i. 

 To sample coordinates and momentum, independent random values are 

assigned to Pi and iQ , then, the acceptance of the pair is evaluated according to the 

probability given by equation 1.36. To solve the problem, the equation 1.35 can be 

written as   
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where i
OH is the harmonic oscillator wavefunction in the momentum respresentation. 

Even though equation 1.37 is valid for the ground vibrational level, it motivated to 

write an analogous quasi-Wigner distribution for the excited vibrational states 
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1.5  Objectives 

In this work, the computational investigations of interested systems: 7AI with 

methanol or 7AI(MeOH)n (when n=1-3) clusters and 2-(iminomethyl)phenol 

derivatives as shown in Figure 1.4 will be prepared and used to perform 

computational details in both ground-state optimizations and excited-state dynamics 

simulations. Prior to dynamics simulations, ground-state optimizations in the gas 

phase will be used to carry out for detailed information of static calculations. In the 

first-excited state, S1, on-the-fly dynamics simulations will be employed to obtain the 

ESInterPT/HT reactions for 7AI(MeOH)n=1-3 clusters and the ESIntraPT/HT reactions 

for 2-(iminomethyl)phenol derivatives. In 7AI(MeOH)n=1-3 clusters, cluster-size 

effects of methanol added in the complexes will be studied. Similarly in  

2-(iminomethyl)phenol derivatives, substituent effects in a phenol ring will be also 

examined. 

 

7AI(MeOH)1 7AI(MeOH)2 7AI(MeOH)3 

Figure 1.4 Geometries of 7AI(MeOH)n (n=1-3) and 2-(iminomethyl)phenol derivatives 
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2-(Iminomethyl)phenol  

(IMP) 

2-(N-Methyliminomethyl)phenol 

(MIMP) 

 
2-(α-Iminoethyl)phenol  

(IEP) 

2-(N-Methyl-α-iminoethyl)phenol 

(MIEP) 

 

2-(N-Methyl-α-iminoethyl)-4-fluorophenol 

(MIEFP) 

2-(N-Methyl-α-iminoethyl)-4-chlorophenol 

(MIECP) 

Figure 1.4 (continued) Geometries of 7AI(MeOH)n (n=1-3) and 2-(iminomethyl)phenol 

derivatives  

 

Finally, excited-state analysis will be investigated to determine time evolution, 

vertical excitations and reaction pathways in which the ESPT occurs through Sππ* 

state whereas ESHT occurs through Sπσ* state in photoexcitation. 


