TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract in Thai	v
Abstract in English	vi
List of Tables	xi
List of Figures	xii
Abbreviations and Symbols	xviii
Chapter I Introduction	
1.1 Background	
1.2 Excited-state proton/hydrogen atom transfer (ESPT/HT) reactions	2
1.2.1 Excited-state intermolecular proton/hydrogen atom transfer	
(ESinterPT/HT) reactions	3
1.2.2 Excited-state intramolecular proton/hydrogen atom transfer	
(ESIntraPT/HT) reactions	5
1.3 Molecular property	6
1.3.1 Fluorescence	6
1.3.2 Frank-Condon principle	8
1.4 Computational chemistry	9
1.4.1 Schrödinger equation	9 SIL
1.4.2 Born-Oppenheimer approximation	v ^e
1.4.3 Ab initio method	11

1.4.3.1 Hartree-Fock approximation	11
1.4.3.2 Coupled cluster	13
1.4.4 Density functional theory	15
1.4.4.1 Honnenberg-Kohn theorems	15
1.4.4.2 Kohn-Sham equations	16
1.4.4.3 Hybrid three parameters of Beck and Lee-Yang-Parr	
correlation functional (B3LYP)	17
1.4.4.4 Time-dependent density functional theory (TD-DFT)	18
1.4.5 Adiabatic dynamics	20
1.4.5.1 Initial conditions	22
1.4.5.2 Wigner distributions	22
1.5 Objectives	24
Chapter II Excited-state intermolecular proton transfer reactions in	
7-azaindole with methanol clusters	
2.1 Introduction	26
2.2 Methods	28
2.2.1 Ground-state optimizations	28
2.2.2 Excited-state dynamics simulations	29
2.3 Results and discussion	30
2.3.1 Ground-state optimizations	30
2.3.2 Excited-state dynamics simulations	34
2.3.2.1 7AI(MeOH) ₁ complex	39
2.3.2.2 7AI(MeOH) ₂ complex	41 e c

viii

2.3.2.3 7AI(MeOH) ₃ complex	44
2.3.3 Reaction barriers and proton transfer types	47
2.4 Summary	48
Chapter III Excited-state intramolecular proton transfer reactions in	
2-(iminomethyl)phenol derivatives	
3.1 Introduction	50
3.2 Methods	52
3.2.1 Ground-state optimizations	52
3.2.2 Excited-state dynamics simulations	53
3.3 Results and discussion	53
3.3.1 Ground-state optimizations	53
3.3.2 Excited-state dynamics simulations	57
3.3.2.1 2-(Iminomethyl)phenol (IMP)	61
3.3.2.2 2-(<i>N</i> -Methyliminomethyl)phenol (MIMP)	63
3.3.2.3 2-(α-Iminoethyl)phenol (IEP)	65
3.3.2.4 2-(N-Methyl-α-iminoethyl)phenol (MIEP)	67
3.3.2.5 2-(<i>N</i> -Methyl-α-iminoethyl)-4-fluorophenol (MIEFP)	69
3.3.2.6 2-(<i>N</i> -Methyl-α-iminoethyl)-4-chlorophenol (MIECP)	71
3.4 Summary	74
andun ijno iaoluou	UI
Chapter IV Conclusion	75
References DV Chiang Mai Unit	77
Appendices 2 1 5 1 e S e M	83

Appendix A Potential energy diagrams of selected trajectories for842-(iminomethyl)phenol derivatives84Appendix B Calculations of reaction probability and proton transfer time86

Appendix C Oral and poster presentations

Curriculum Vitae

101

87

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table Page 2.1Summary of intermolecular hydrogen bonds and selected distances (Å) and øN1C1N2C2 dihedral angles (°) of the ground-state structures performed at RI-ADC(2)/SVP-SV(P) level 31 Summary of excited-state dynamics analysis of 7AI(MeOH)_{n=1-3} 2.2 34 complexes 2.3Relative ground (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) energies (kcal. mol⁻¹) of selected trajectories of each complex for characteristic stationary points of normal (N), intermediary structure (IS), and tautomer (T) along the reaction pathways 35 3.1 Summary of intramolecular hydrogen bonds and selected distances (Å) and ØC1C2C3N1 dihedral angles (°) of the ground-state structures 55 performed at B3LYP/TZVP level 3.2 Summary of the excited-state dynamics analysis of 2-(iminomethyl) 57 phenol derivatives Relative ground (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) energies (kcal. 3.3 mol⁻¹) of selected trajectories of each molecule of 2-(iminomethyl) phenol derivatives for characteristic stationary points of normal (N), intermediary structure (IS), and tautomer (T) along reaction pathways

xi

LIST OF FIGURES

Figure	e	
1.1	Scheme of the excited-state proton/hydrogen atom transfer	
	(ESPT/HT) reaction	2
1.2	Jablonski diagram	6
1.3	Potential energy diagrams of vertical excitation	8
1.4	1.4 Geometries of $7AI(MeOH)_n$ (n=1-3) and 2-(iminomethyl)phenol	
	derivatives	24
2.1	Scheme of intermolecular PT/HT reaction of 7-azaindole with	
	alcohol	26
2.2	The ground-state optimized structures of $7AI(MeOH)_n$ (when n=1-3)	
	complexes at RI-ADC(2)/SVP-SV(P) level. Numbering atoms for	
	intermolecular hydrogen bonds to methanol molecules (a)	
	7AI(MeOH) ₁ (b) 7AI(MeOH) ₂ and (c) 7AI(MeOH) ₃ . Intermolecular	
	hydrogen-bonded interactions are shown in dashed lines (Å)	30
2.3	Potential energy diagram of a selected trajectory for 7AI(MeOH) ₁	
	complex at ground state (S ₀) and excited states (S _{$\pi\pi^*$} , S _{$\pi\sigma^*$}) performed	
	at RI-ADC(2)/SVP-SV(P) level	36
2.4	Potential energy diagram of a selected trajectory for 7AI(MeOH) ₂	
	complex at ground state (S ₀) and excited states (S _{$\pi\pi^*$} , S _{$\pi\sigma^*$}) performed	
	at RI-ADC(2)/SVP-SV(P) level	37

- 2.5 Potential energy diagram of a selected trajectory for $7AI(MeOH)_3$ complex at ground state (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) performed at RI-ADC(2)/SVP-SV(P) level
- An on-the-fly dynamics simulation of a selected trajectory of a 7AI(MeOH)₁ complex showing time evolutions of the ESDPT reaction through hydrogen-bonded network within 78 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- 2.7 Average values over 54 trajectories of 7AI(MeOH)₁ complex (a)
 Average breaking and forming bonds showing time evolutions (b)
 Average relative energies of excited state (S₁), ground state (S₀), and
 energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral
 angle of N1C1N2C2
- 2.8 An on-the-fly dynamics simulation of a selected trajectory for a 7AI(MeOH)₂ complex showing time evolutions of the ESTPT reaction through hydrogen-bonded network within 75 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- 2.9 Average values over 67 trajectories of 7AI(MeOH)₂ complex (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of N1C1N2C2

38

39

40

42

- 2.10 An on-the-fly dynamics simulation of a selected trajectory for a 7AI(MeOH)₃ complex showing time evolutions of the ESQPT reaction through hydrogen-bonded network within 112 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- 2.11 Average values over 26 trajectories of 7AI(MeOH)₂ complex (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of N1C1N2C2
- 3.1 *o*-Hydroxy Schiff base molecule (R is phenol ring and R_1 and R_2 are hydrogen atom or methyl substitution)
- 3.2 Scheme of intramolecular PT/HT reaction of *o*-hydroxy Schiff base molecule
- 3.3 The ground-state optimized structures of 2-(iminomethyl)phenol derivatives at B3LYP/TZVP level. Numbering atoms for intramolecular hydrogen-bonded network. Intramolecular hydrogen bond is shown in dashed lines (Å)
- 3.4 Potential energy diagram of a selected trajectory for 2-(iminomethyl) phenol (IMP) at ground state (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) performed at B3LYP/SVP level
- 3.5 Potential energy diagram of a selected trajectory for 2-(*N*-methyl- α iminoethyl)phenol (MIEP) at ground state (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) performed at B3LYP/SVP level

45

46

50

51

54

- 3.6 Potential energy diagram of a selected trajectory for 2-(*N*-methyl- α iminoethyl)-4-fluorophenol at ground state (S₀) and excited states (S_{$\pi\pi^*$}, S_{$\pi\sigma^*$}) performed at B3LYP/SVP level
- 3.7 An on-the-fly dynamics simulation of a selected trajectory of a 2-(iminomethyl)phenol (IMP) showing time evolutions along hydrogen-bonded network within 9 fs. Normal (N), Proton transfer (PT), and Tautomer (T)

3.8

- Average values over 23 trajectories of 2-(iminomethyl)phenol (IMP) (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1
- An on-the-fly dynamics simulation of a selected trajectory of a 2-(*N*-methyliminomethyl)phenol (MIMP) showing time evolutions along hydrogen-bonded network within 9 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- 3.10 Average values over 22 trajectories of 2-(*N*-methylimino methyl)phenol (MIMP) (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1

60

61

62

63

- 3.11 An on-the-fly dynamics simulation of a selected trajectory of a
 2-(α-iminoethyl)phenol (IEP) showing time evolutions along
 hydrogen-bonded network within 14 fs. Normal (N), Proton transfer
 (PT), and Tautomer (T)
- 3.12 Average values over 25 trajectories of 2-(α-iminoethyl)phenol (IEP)
 (a) Average breaking and forming bonds showing time evolutions (b)
 Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1
- 3.13 An on-the-fly dynamics simulation of a selected trajectory of a
 2-(*N*-methyl-α-iminoethyl)phenol (MIEP) showing time evolutions along hydrogen-bonded network within 14 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- 3.14 Average values over 25 trajectories of 2-(*N*-methyl-α-iminoethyl) phenol (MIEP) (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1

3.15 An on-the-fly dynamics simulation of a selected trajectory of a
2-(*N*-methyl-α-iminoethyl)-4-fluorophenol (MIEFP) showing time evolutions along hydrogen-bonded network within 14 fs. Normal (N), Proton transfer (PT), and Tautomer (T)

65

66

67

- 3.16 Average values over 24 trajectories of 2-(*N*-methyl-α-iminoethyl)-4-fluorophenol (MIEFP) (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1
- 3.17 An on-the-fly dynamics simulation of a selected trajectory of a 2-(*N*-methyl-α-iminoethyl)-4-chlorophenol (MIECP) showing time evolutions along hydrogen-bonded network within 14 fs. Normal (N), Proton transfer (PT), and Tautomer (T)

3.18

Average values over 24 trajectories of 2-(*N*-methyl-α-iminoethyl)-4chlorophenol (MIECP) (a) Average breaking and forming bonds showing time evolutions (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) (c) Average dihedral angle of C1C2C3N1

72

70

71

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

0	ortho
	Wavefunction
Ĥ	Hamiltonian
E	Total energy
Z_A , Z_B	Nuclear charges
M_A	Mass of nucleus A
R_{AB}	Distance between nuclei A and B
r _{ij}	Distance between electrons <i>i</i> and <i>j</i>
r _{iA}	Distance between election <i>i</i> and nuclei <i>A</i>
ε_0	Permittivity of free space
ħ	Plank constant
Ψ	Wavefunction associated with solving the electron part
χ	Wavefunction associated with nuclear motion
HF	Hartree-Fock
SCF	Self-consistent field
\hat{h}^{F}	Hartree-Fock operator
α, β	Electron spin
ψ_A, ψ_B	Wavefunction of A and B
$\chi_1(x_1)$	Position and spin of the singular electron
	Configuration interaction
~-	

MCSCF	Multireference configuration self-consistency field
CC	Coupled cluster
RI	Resolution-of-the-identity
CC2	Second-order approximate coupled-cluster model
ADC(2)	Algebraic diagrammatic construction through second order
F	Fock operator
$ au_k^c$ and $ au_{kl}^{cd}$	Single and double replacement operators
$\operatorname{CIS}(D_{\infty})$	The doubles correlation to CI singles
DFT	Density functional theory
MP2	Second order Møller–Plesset perturbation
ρ(r)	Electron density
B3LYP	Becke's three parameters and Lee-Yang-Parr correlation
	function
TDDFT	Time-dependent density functional theory
$\rho(r,t)$	Time-dependent potentials and electron densities
Φ _α	Slater determinants of Kohn-Sham orbitals
<i>C</i> _{<i>iα</i>}	Coefficients determined form group theory
E_j	Energy of the many-body state
	Weight between 0 and 1/2
F_k	Electronic wavefunction
R ^c	Single nuclear configuration
TDSE	Time-dependent Schrödinger equation
c_k	electronic state k

xix

 V_k v

 F_{kj}

 P_W

Q

 χ^0_{HO}

Potential energy surface for state kNuclear velocity Nonadiabatic coupling vector between the states k and j Wigner distribution Normal modes Quantum harmonic oscillator wavefunction for the ground vibrational state Momentum associated with the normal coordinate Q^i Reduced mass Harmonic frequency and the equilibrium Harmonic oscillator wavefunction Excited-state proton transfer surface Excited-state hydrogen atom transfer surface Split valence polarized basis set Split valence basis set Femtosecond Kilocalorie per mole Angstrom Dihedral angle Degree Electron volt triple-ζ-valence polarized

 P^{i} μ^{i} ω_{OH}^{i} ξ_{OH}^{i} $S_{\pi\pi^*}$ $S_{\pi\sigma^*}$ SVP SV \mathbf{fs} kcal.mol⁻¹ Å eV TZVP